Human Computer Interaction

Prof. Dr. Enkelejda Kasneci

Photo of

University of Tübingen
Dpt. of Computer Science
Human-Computer Interaction
Sand 14
72076 Tübingen
Germany

Telephone
+49 - (0) 70 71 - 29 - 74015
Telefax
+49 - (0) 70 71 - 29 - 50 62
E-Mail
enkelejda.kasneci@uni-tuebingen.de
Office
Sand 14, C221
Office hours
on appointment

Publications on Google Scholar

Enkelejda Kasneci is a Professor of Computer Science at the University of Tübingen, Germany, where she leads the Human-Computer Interaction Lab. As a BOSCH scholar, she received her M.Sc. degree in Computer Science from the University of Stuttgart in 2007. In 2013, she received her PhD in Computer Science from the University of Tübingen. For her PhD research, she was awarded the research prize of the Federation Südwestmetall in 2014. From 2013 to 2015, she was a postdoctoral researcher and a Margarete-von-Wrangell Fellow at the University of Tübingen. Her research evolves around the application of machine learning for intelligent and perceptual human-computer interaction. She served as academic editor for PlosOne and as a TPC member and reviewer for several major conferences and journals.

Research Interests

  • Eye-tracking methods and applications, especially eye tracking in the wild
  • Applied machine learning
  • Eye movements and driving
  • Autonomous driving and Driver Observation Technology
  • Eye movements and VR/AR

Invited Talks

  • 2020: ECCV 2020 OpenEyes: Eye Gaze in AR, VR and in the wild
  • 2020: Closing Keynote at Augmented Human, AH 2020
  • 2019: Machine Learning in Education, FernUni Hagen
  • 2019: Keynote at the ACM Symposium on Eye Tracking Research and Applications, ETRA 2019
  • 2019: Opening Keynote European Conference on Eye Movements, ECEM 2019
  • 2018: Keynote on Cognitive Interfaces, Ada-Lovelace-Festival, Berlin
  • 2018: Global Female Leaders Summit, Berlin
  • 2017: Hub.Berlin
  • 2017: Ada-Lovelace-Festival, Berlin
  • 2017: Eye-Tracking während des Fahrens, OCG Jahresopening 2017, Vienna
  • 2016: It’s in your eyes – How eye tracking will shape our future, Ada-Lovelace-Festival, Berlin
  • 2016: Maschinelles Lernen und Eye-Tracking-Technologie zur Erforschung der Mechanismen der visuellen Wahrnehmung, INFORMATIK2016, Klagenfurt
  • 2015: Eye tracking in natural settings - Challenges and opportunities, Institut für Neuro- und Bioinformatik, Universität zu Lübeck
  • 2015: Arbitrarily shaped areas of interest based on gaze density gradient, European Conference on Eye Movements, ECEM 2015, Vienna
  • 2015: Exploiting the potential of eye movements analysis in the driving context, Perceptual User Interfaces Group, Max Planck Institute for Informatics, Saarbrücken
  • 2015: Eye movements and driving, Volkswagen Research Center, Wolfsburg
  • 2014: Online Eye-Tracking Data Analysis, SMI Vision, Research Center Berlin
  • 2013: Towards the Automated Recognition of Assistance Need for Drivers with Impaired Visual Field, Mercedes-Benz Technology Center Sindelfingen

Scholarships, Awards and Administrative Functions

Publications

2020

Predicting visual perceivability of scene objects through spatio-temporal modeling of retinal receptive fields

David Geisler, Andrew T Duchowski, and Enkelejda Kasneci. Neurocomputing. Elsevier, 2020.

BIB

Distilling Location Proposals of Unknown Objects Through Gaze Information for Human-Robot Interaction

Daniel Weber, Thiago Santini, Andreas Zell, and Enkelejda Kasneci. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

PDF BIB

RemoteEye: An open-source high-speed remote eye tracker

Benedikt Hosp, Shahram Eivazi, Maximilian Maurer, Woflgang Fuhl, David Geisler, and Enkelejda Kasneci. Behavior Research Methods, pages 1–15. Springer, 2020.

PDF BIB

Deep semantic gaze embedding and scanpath comparison for expertise classification during OPT viewing

Nora Castner, Thomas C Kübler, Juliane Richter, Therese Eder, Fabian Huettig, Constanze Keutel, and Enkelejda Kasneci. Eye Tracking Research and Applications. ACM, 2020.

PDF BIB

Privacy Preserving Gaze Estimation using Synthetic Images via a Randomized Encoding Based Framework

Efe Bozkir, Ali B. Ünal, Mete Akgün, Enkelejda Kasneci, and Nico Pfeifer. Eye Tracking Research and Applications. ACM, 2020.

BIB

A Novel -Eye-Tracking Sensor for AR Glasses Based on Laser Self-Mixing Showing Exceptional Robustness Against Illumination

Johannes Meyer, Thomas Schlebusch, Hans Spruit, Jochen Hellmig, and Enkelejda Kasneci. Eye Tracking Research and Applications. ACM, 2020.

BIB

Exploiting the GBVS for Saliency aware Gaze Heatmaps

David Geisler, Daniel Weber, Nora Castner, and Enkelejda Kasneci. Eye Tracking Research and Applications. ACM, 2020.

PDF BIB

A MinHash approach for fast scanpath classification

David Geisler, Nora Castner, Gjergji Kasneci, and Enkelejda Kasneci. Eye Tracking Research and Applications. ACM, 2020.

PDF BIB

Training Decision Trees as Replacement for Convolution Layers

W. Fuhl, G. Kasneci, W. Rosenstiel, and E. Kasneci. Conference on Artificial Intelligence, AAAI, 2020.

PDF BIB

Tiny convolution, decision tree, and binary neuronal networks for robust and real time pupil outline estimation

W. Fuhl, H. Gao, and E. Kasneci. ACM Symposium on Eye Tracking Research & Applications, ETRA 2020. ACM, 2020.

PDF BIB

Neural networks for optical vector and eye ball parameter estimation

W. Fuhl, H. Gao, and E. Kasneci. ACM Symposium on Eye Tracking Research & Applications, ETRA 2020. ACM, 2020.

PDF BIB

A Novel Camera-Free Eye Tracking Sensor for Augmented Reality based on Laser Scanning

Johannes Meyer, Thomas Schlebusch, Wolfgang Fuhl, and Enkelejda Kasneci. Sensors Journal, pages 1-1. IEEE, 2020.

PDF BIB

Fully Convolutional Neural Networks for Raw Eye Tracking Data Segmentation, Generation, and Reconstruction

Wolfgang Fuhl, Yao Rong, and Kasneci Enkelejda. Proceedings of the International Conference on Pattern Recognition, pages 0–0, 2020.

PDF BIB

Explainable Online Validation of Machine Learning Models for Practical Applications

Wolfgang Fuhl, Yao Rong, Thomas Motz, Michael Scheidt, Andreas Hartel, Andreas Koch, and Enkelejda Kasneci. Proceedings of the International Conference on Pattern Recognition, pages 0–0, 2020.

PDF BIB

Multi Layer Neural Networks as Replacement for Pooling Operations

Wolfgang Fuhl and Enkelejda Kasneci. arXiv preprint arXiv:2006.06969. CoRR, 2020.

PDF BIB

Reinforcement learning for the privacy preservation and manipulation of eye tracking data

Wolfgang Fuhl, Efe Bozkir, and Enkelejda Kasneci. arXiv preprint arXiv:2002.06806. CoRR, 2020.

BIB

Eye Tracking Data Collection Protocol for VR for Remotely Located Subjects using Blockchain and Smart Contracts

Efe Bozkir, Shahram Eivazi, Mete Akgün, and Enkelejda Kasneci. IEEE International Conference on Artifical Intelligence and Virtual Reality (AIVR), – To Appear in Work-in-Progress papers, 2020.

BIB

Differential Privacy for Eye Tracking with Temporal Correlations

Efe Bozkir, Onur Günlü, Wolfgang Fuhl, Rafael F. Schaefer, and Enkelejda Kasneci. arXiv preprint arXiv:2002.08972. CoRR, 2020.

BIB

Weight and Gradient Centralization in Deep Neural Networks

Wolfgang Fuhl and Enkelejda Kasneci. arXiv. CoRR, 2020.

PDF BIB

Rotated Ring, Radial and Depth Wise Separable Radial Convolutions

Wolfgang Fuhl and Enkelejda Kasneci. arXiv. CoRR, 2020.

PDF BIB Supplementary Material

Pupil diameter differentiates expertise in dental radiography visual search

Nora Castner, Tobias Appel, Thérése Eder, Juliane Richter, Katharina Scheiter, Constanze Keutel, Fabian Hüttig, Andrew Duchowski, and Enkelejda Kasneci. PLOS ONE 15(5): 1-19. Public Library of Science, 2020.

PDF BIB

Driver Intention Anticipation Based on In-Cabin and Driving Scene Monitoring

Rong Yao, Akata Zeynep, and Kasneci Enkelejda. IEEE Conference on Intelligent Transportation Systems (ITSC), 2020, pages 0–0, 2020.

BIB

The display makes a difference: A mobile eye tracking study on the perception of art before and after a museum’s rearrangement

L. Reitstätter, H. Brinkmann, T. Santini, E. Specker, Z. Dare, F. Bakondi, A. Miscená, E. Kasneci, H. Leder, and R. Rosenberg. Peer-reviewed publication, 2020.

PDF BIB

Driver Drowsiness Classification Based on Eye Blink and Head Movement Features Using the k-NN Algorithm

Mariella Dreißig, Mohamed Baccour, Tim Schäck, and Enkelejda Kasneci. Peer-reviewed publication. IEEE, 2020.

PDF BIB

2019

Encodji: Encoding Gaze Data Into Emoji Space for an Amusing Scanpath Classification Approach ;)

Wolfgang Fuhl, Efe Bozkir, Benedikt Hosp, Nora Castner, David Geisler, Thiago C., and Enkelejda Kasneci. Eye Tracking Research and Applications, 2019.

PDF BIB

Person Independent, Privacy Preserving, and Real Time Assessment of Cognitive Load using Eye Tracking in a Virtual Reality Setup

Efe Bozkir, David Geisler, and Enkelejda Kasneci. The IEEE Conference on Virtual Reality and 3D User Interfaces (VR) Workshops, 2019.

PDF BIB

Improving Real-Time CNN-Based Pupil Detection Through Domain-Specific Data Augmentation

S. Eivazi, T. Santini, A. Keshavarzi, T. C. Kübler, and A. Mazzei. Proceedings of the 2019 ACM Symposium on Eye Tracking Research & Applications (ETRA) – To Appear, 2019.

PDF BIB

Get a Grip: Slippage-Robust and Glint-Free Gaze Estimation for Real-Time Pervasive Head-Mounted Eye Tracking

T. Santini, D. Niehorster, and E. Kasneci. Proceedings of the 2019 ACM Symposium on Eye Tracking Research & Applications (ETRA), 2019.

BIB

Ferns for area of interest free scanpath classification

W. Fuhl, N. Castner, T. C. Kübler, A. Lotz, W. Rosenstiel, and E. Kasneci. Proceedings of the 2019 ACM Symposium on Eye Tracking Research & Applications (ETRA) , 2019.

PDF BIB

500,000 images closer to eyelid and pupil segmentation

W. Fuhl, W. Rosenstiel, and E. Kasneci. Computer Analysis of Images and Patterns, CAIP, 2019.

PDF BIB

The applicability of Cycle GANs for pupil and eyelid segmentation, data generation and image refinement

W. Fuhl, D. Geisler, W. Rosenstiel, and E. Kasneci. International Conference on Computer Vision Workshops, ICCVW, 2019.

PDF BIB

Learning to validate the quality of detected landmarks

W. Fuhl and E. Kasneci. International Conference on Machine Vision, ICMV, 2019.

PDF BIB

Assessment of Driver Attention During a Safety Critical Situation in VR to Generate VR-based Training

Efe Bozkir, David Geisler, and Enkelejda Kasneci. ACM Symposium on Applied Perception 2019, 2019.

PDF BIB

2018

Eye-Hand Behavior in Human-Robot Shared Manipulation

R. M., T. Santini, T. C. Kübler, E. Kasneci, S. Srinivasa, and H. Admoni. Proceedings of the 13th Annual ACM/IEEE International Conference on Human Robot Interaction, 2018.

BIB

Real-time 3D Glint Detection in Remote Eye Tracking Based on Bayesian Inference

David Geisler, Dieter Fox, and Enkelejda Kasneci. International Conference on Robotics and Automation (ICRA), 2018.

PDF BIB

PuRe: Robust Pupil Detection for Real-Time Pervasive Eye Tracking

T. Santini, W. Fuhl, and E. Kasneci. Elsevier Computer Vision and Image Understanding To Appear, 2018.

PDF BIB

The Art of Pervasive Eye Tracking: Unconstrained Eye Tracking in the Austrian Gallery Belvedere

T. Santini, H. Brinkmann, L. Reistätter, H. Leder, R. Rosenberg, W. Rosenstiel, and E. Kasneci. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA): Adjunct publication – PETMEI 2018, 2018.

BIB

PuReST: Robust Pupil Tracking for Real-Time Pervasive Eye Tracking

T. Santini, W. Fuhl, and E. Kasneci. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA), 2018.

PDF BIB

Overlooking: The nature of gaze behavior and anomaly detection in expert dentists

Nora Castner, Solveig Klepper, Lena Kopnarski, Fabian Hüttig, Constanze Keutel, Katharina Scheiter, Juliane Richter, T. Eder, and Enkelejda Kasneci. Workshop on Modeling Cognitive Processes from Multimodal Data (MCPMD’18 ), 2018.

PDF BIB

CBF:Circular binary features for robust and real-time pupil center detection

W. Fuhl, D. Geisler, T. Santini, T. Appel, W. Rosenstiel, and E. Kasneci. ACM Symposium on Eye Tracking Research & Applications, 2018.

PDF BIB

Teachers’ Perception in the Classroom

Ö. Sümer, P. Goldberg, K. Stürmer, T. Seidel, P. Gerjets, U. Trautwein, and E. Kasneci. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018.

BIB

Development and Evaluation of a Gaze Feedback System Integrated into EyeTrace

K. Otto, N. Castner, D. Geisler, and E. Kasneci. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA) , 2018.

PDF BIB

An Inconspicuous and Modular Head-Mounted Eye Tracker

S. Eivazi, T. Kübler, T. Santini, and E. Kasneci. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA) , 2018.

BIB

Automatic generation of saliency-based areas of interest

W. Fuhl, T. Kübler, T. Santini, and E. Kasneci. Symposium on Vision, Modeling and Visualization (VMV), 2018.

PDF BIB

Region of interest generation algorithms for eye tracking data

W. Fuhl, T. C. Kübler, H. Brinkmann, R. Rosenberg, W. Rosenstiel, and E. Kasneci. Third Workshop on Eye Tracking and Visualization (ETVIS), in conjunction with ACM ETRA, 2018.

PDF BIB

Scanpath comparison in medical image reading skills of dental students

N. Castner, E. Kasneci, T. C. Kübler, K. Scheiter, and J. Richter. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA), 2018.

PDF BIB

MAM: Transfer learning for fully automatic video annotation and specialized detector creation

W. Fuhl, N. Castner, L. Zhuang, M. Holzer, W. Rosenstiel, and E. Kasneci. International Conference on Computer Vision Workshops, ICCVW, 2018.

PDF BIB

Eye movement velocity and gaze data generator for evaluation, robustness testing and assess of eye tracking software and visualization tools

W. Fuhl and E. Kasneci. Poster at Egocentric Perception, Interaction and Computing, EPIC, 2018.

PDF BIB

BORE: Boosted-oriented edge optimization for robust, real time remote pupil center detection

W. Fuhl, S. Eivazi, B. Hosp, A. Eivazi, W. Rosenstiel, and E. Kasneci. Eye Tracking Research and Applications, ETRA, 2018.

PDF BIB

Rule based learning for eye movement type detection

W. Fuhl, N. Castner, and E. Kasneci. International Conference on Multimodal Interaction Workshops, ICMIW, 2018.

PDF BIB

Histogram of oriented velocities for eye movement detection

W. Fuhl, N. Castner, and E. Kasneci. International Conference on Multimodal Interaction Workshops, ICMIW, 2018.

PDF BIB

Eye movement simulation and detector creation to reduce laborious parameter adjustments

W. Fuhl, T. Santini, T. Kuebler, N. Castner, W. Rosenstiel, and E. Kasneci. arXiv preprint arXiv:1804.00970, 2018.

PDF BIB

2017

Online recognition of driver-activity based on visual scanpath classification

Christian Braunagel, David Geisler, Wolfgang Rosenstiel, and Enkelejda Kasneci. IEEE Intelligent Transportation Systems Magazine 9(4): 23–36. IEEE, 2017.

BIB

Eye tracking as a tool to evaluate functional ability in everyday tasks in glaucoma

E. Kasneci, A. A., and J. M.. Journal of Ophthalmology Article ID 6425913, 2017.

BIB

Saliency Sandbox: Bottom-Up Saliency Framework

D. Geisler, W. Fuhl, T. Santini, and E. Kasneci. 12th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), 2017.

PDF BIB

EyeRecToo: Open-Source Software for Real-Time Pervasive Head-Mounted Eye-Tracking

T. Santini, W. Fuhl, D. Geisler, and E. Kasneci. 12th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), 2017.

PDF BIB

EyeLad: Remote Eye Tracking Image Labeling Tool

W. Fuhl, T. Santini, D. Geisler, T. C. Kübler, and E. Kasneci. 12th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), 2017.

PDF BIB

Fast and Robust Eyelid Outline and Aperture Detection in Real-World Scenarios

W. Fuhl, T. Santini, and E. Kasneci. IEEE Winter Conference on Applications of Computer Vision (WACV 2017), 2017.

PDF BIB

Aggregating physiological and eye tracking signals to predict perception in the absence of ground truth

E. Kasneci, T. C. Kübler, K. Broelemann, and G. Kasneci. Computers in Human Behavior, Elsevier 68: 450-455, 2017.

BIB

Ways of improving the precision of eye tracking data: Controlling the influence of dirt and dust on pupil detection

W. Fuhl, T. C. Kübler, D. Hospach, O. Bringmann, W. Rosenstiel, and E. Kasneci. Journal of Eye Movement Research 10(3), 2017.

PDF BIB

CalibMe: Fast and Unsupervised Eye Tracker Calibration for Gaze-Based Pervasive Human-Computer Interaction

T. Santini, W. Fuhl, and E. Kasneci. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017.

PDF BIB

Towards pervasive eye tracking

E. Kasneci. it-Information Technology, De Gruyter Oldenbourg, 2017.

BIB

Using Eye Tracking to Evaluate and Develop Innovative Teaching Strategies for Fostering Image Reading Skills of Novices in Medical Training

N. Castner, S. Eivazi, K. Scheiter, and E. Kasneci. Eye Tracking Enhanced Learning (ETEL2017), 2017.

PDF BIB

Automatic Mapping of Remote Crowd Gaze to Stimuli in the Classroom

T. Santini, T. C. Kübler, L. Draghetti, P. Gerjets, W. Wagner, U. Trautwein, and E. Kasneci. Eye Tracking Enhanced Learning (ETEL2017), 2017.

BIB

Towards Intelligent Surgical Microscopes: Surgeons Gaze and Instrument Tracking

Shahram Eivazi, Wolfgang Fuhl, and Enkelejda Kasneci. Proceedings of the 22st International Conference on Intelligent User Interfaces, IUI 2017. ACM, 2017.

PDF BIB

Towards automatic skill evaluation in microsurgery

Shahram Eivazi, Michael Slupina, Wolfgang Fuhl, Hoorieh Afkari, Ahmad Hafez, and Enkelejda Kasneci. Proceedings of the 22st International Conference on Intelligent User Interfaces, IUI 2017. ACM, 2017.

PDF BIB

Monitoring Response Quality During Campimetry Via Eye-Tracking

G. Dambros, J. Ungewiss, T. C. Kübler, E. Kasneci, and M. Spüler. Proceedings of the 22st International Conference on Intelligent User Interfaces, IUI 2017, ACM, 2017.

BIB

PupilNet v2.0: Convolutional Neural Networks for Robust Pupil Detection

W. Fuhl, T. Santini, G. Kasneci, and E. Kasneci. CoRR, 2017.

PDF BIB

Fast camera focus estimation for gaze-based focus control

W. Fuhl, T. Santini, and E. Kasneci. CoRR, 2017.

PDF BIB

Optimal eye movement strategies: a comparison of neurosurgeons gaze patterns when using a surgical microscope

S. Eivazi, A. Hafez, W. Fuhl, H. Afkari, E. Kasneci, M. Lehecka, and R. Bednarik. Acta Neurochirurgica, 2017.

PDF BIB

2016

EyeRec: An Open-source Data Acquisition Software for Head-mounted Eye-tracking

T. Santini, W. Fuhl, T. C. Kübler, and E. Kasneci. Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP) 3: VISAPP: 386–391, 2016.

PDF BIB

3D Gaze Estimation Using Eye Vergence

E.G. Mlot, H. Bahmani, S. Wahl, and E. Kasneci. 9th International Conference on Health Informatics, Healthinf 2016, 2016.

BIB

Rendering refraction and reflection of eyeglasses for synthetic eye tracker images

T. C. Kübler, T. Rittig, J. Ungewiss, C. Krauss, and E. Kasneci. ACM Symposium on Eye Tracking Research and Applications, ETRA 2016, 2016.

BIB

On the necessity of adaptive eye movement classification in conditionally automated driving scenarios

C. Braunagel, D. Geisler, W. Stolzmann, W. Rosenstiel, and E. Kasneci. ACM Symposium on Eye Tracking Research & Applications, ETRA 2016, 2016.

PDF BIB

ElSe: Ellipse Selection for Robust Pupil Detection in Real-World Environments

W. Fuhl, T. Santini, T. C. Kübler, and E. Kasneci. Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications (ETRA), pages 123–130, 2016.

PDF BIB

Bayesian Identification of Fixations, Saccades, and Smooth Pursuits

T. Santini, W. Fuhl, T. C. Kübler, and E. Kasneci. Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications (ETRA), pages 163–170, 2016.

PDF BIB

Pupil detection for head-mounted eye tracking in the wild: An evaluation of the state of the art

Wolfgang Fuhl, Marc Tonsen, Andreas Bulling, and Enkelejda Kasneci. Machine Vision and Applications, pages 1-14, 2016.

PDF BIB

SubsMatch 2.0: Scanpath comparison and classification based on subsequence frequencies

T. C. Kübler, C. Rothe, U. Schiefer, W. Rosenstiel, and E. Kasneci. Behavior Research Methods online first: 1-17, 2016.

PDF BIB

Eyes Wide Open? Eyelid Location and Eye Aperture Estimation for Pervasive Eye Tracking in Real-World Scenarios

W. Fuhl, T. Santini, D. Geisler, T. C. Kübler, W. Rosenstiel, and E. Kasneci. ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct publication – PETMEI 2016, 2016.

PDF BIB

Brightness- and Motion-Based Blink Detection for Head-Mounted Eye Trackers

T. Appel, T. Santini, and E. Kasneci. ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct publication – PETMEI 2016, 2016.

PDF BIB

Novel methods for analysis and visualization of saccade trajectories

T. C. Kübler, W. Fuhl, R. Rosenberg, W. Rosenstiel, and E. Kasneci. 3. ECCV Workshop VISART 2016, 2016.

PDF BIB

Non-Intrusive Practitioner Pupil Detection for Unmodified Microscope Oculars

W. Fuhl, T. Santini, C. Reichert, D. Claus, A. Herkommer, H. Bahmani, K. Rifai, S. Wahl, and E. Kasneci. Elsevier Computers in Biology and Medicine 79: 36-44, 2016.

PDF BIB

Evaluation of State-of-the-Art Pupil Detection Algorithms on Remote Eye Images

W. Fuhl, D. Geisler, T. Santini, and E. Kasneci. ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct publication – PETMEI 2016, 2016.

PDF BIB

Feature-based attentional influences on the accommodation response

H. Bahmani, W. Fuhl, E. Gutierrez, G. Kasneci, E. Kasneci, and S. Wahl. Vision Sciences Society Annual Meeting Abstract, 2016.

BIB

PupilNet: Convolutional Neural Networks for Robust Pupil Detection

W. Fuhl, T. Santini, G. Kasneci, and E. Kasneci. CoRR, 2016.

PDF BIB

2015

Towards Automated Scan Pattern Analysis for Dynamic Scenes

J. Ungewiss, T. C. Kübler, D.R. Bukenberger, E. Kasneci, and U. Schiefer. The Eye, The Brain And The Auto 2015, 2015.

BIB

Online Recognition of Fixations, Saccades, and Smooth Pursuits for Automated Analysis of Traffic Hazard Perception

E. Kasneci, G. Kasneci, T. C. Kübler, and W. Rosenstiel. 4: 411-434. Artificial Neural Networks - Springer Series in Bio-/Neuroinformatics (Ed. Petia Koprinkova-Hristova, Valeri Mladenov, Nikola K. Kasabov), Springer International Publishing, 2015.

BIB

Analysis of eye movements with Eyetrace

T. C. Kübler, K. Sippel, W. Fuhl, G. Schievelbein, J. Aufreiter, R. Rosenberg, W. Rosenstiel, and E. Kasneci. 574: 458-471. Biomedical Engineering Systems and Technologies. Communications in Computer and Information Science (CCIS). Springer International Publishing, 2015.

PDF BIB

Exploiting the potential of eye movements analysis in the driving context

E. Kasneci, T. C. Kübler, C. Braunagel, W. Fuhl, W. Stolzmann, and W. Rosenstiel. 15. Internationales Stuttgarter Symposium Automobil- und Motorentechnik. Springer Fachmedien Wiesbaden, 2015.

PDF BIB

ExCuSe: Robust Pupil Detection in Real-World Scenarios

W. Fuhl, T. C. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci. 16th International Conference on Computer Analysis of Images and Patterns (CAIP 2015), 2015.

PDF BIB

Driver-Activity Recognition in the Context of Conditionally Autonomous Driving

C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel. 18th International IEEE Conference on Intelligent Transportation Systems (ITSC 2015), 2015.

BIB

Automated Comparison of Scanpaths in Dynamic Scenes

T. C. Kübler and E. Kasneci. Pfeiffer, Thies ; Essig, Kai (Hrsg.): Proceedings of the 2nd International Workshop on Solutions for Automatic Gaze Data Analysis 2015 (SAGA 2015), 2015.

BIB

Automated Visual Scanpath Analysis Reveals the Expertise Level of Micro-neurosurgeons

T. C. Kübler, S. Eivazi, and E. Kasneci. MICCAI 15 Workshop on Interventional Microscopy, 2015.

PDF BIB

Driving with Glaucoma: Task Performance and Gaze Movements

T. C. Kübler, E. Kasneci, K. Aehling, M. Heister, W. Rosenstiel, U. Schiefer, and E. Papageorgiou. Optometry and Vision Science 92(11): 1037-1046, 2015.

BIB

Driving with Homonymous Visual Field Defects: Driving Performance and Compensatory Gaze Movements

T. C. Kübler, E. Kasneci, W. Rosenstiel, K. Aehling, M. Heister, K. Nagel, U. Schiefer, and E. Papageorgiou. Journal of Eye Movement Research 8(5): 1-11, 2015.

BIB

Arbitrarily shaped areas of interest based on gaze density gradient

W. Fuhl, T. C. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci. European Conference on Eye Movements, ECEM 2015, 2015.

PDF BIB

2014

Driving with Binocular Visual Field Loss? A Study on a Supervised On-road Parcours with Simultaneous Eye and Head Tracking

E. Kasneci, K. Sippel, K. Aehling, M. Heister, W. Rosenstiel, U. Schiefer, and E. Papageorgiou. PLoS ONE 9(2): e87470, 2014.

BIB

The Applicability of Probabilistic Methods to the Online Recognition of Fixations and Saccades in Dynamic Scenes

E. Kasneci, G. Kasneci, T. C. Kübler, and W. Rosenstiel. Proceedings of the 8th Symposium on Eye Tracking Research and Applications, ETRA 2014, pages 323-326, 2014.

BIB

SubsMatch: Scanpath Similarity in Dynamic Scenes based on Subsequence Frequencies

T. C. Kübler, E. Kasneci, and W. Rosenstiel. Proceedings of the 8th Symposium on Eye Tracking Research and Applications, ETRA 2014, pages 319-322, 2014.

BIB

Rule-based classification of visual field defects

E. Kasneci, G. Kasneci, U. Schiefer, and W. Rosenstiel. 7th International Conference on Health Informatics (HEALTHINF 2014), 2014.

BIB

Stress-indicators and exploratory gaze for the analysis of hazard perception in patients with visual field loss

T. C. Kübler, E. Kasneci, W. Rosenstiel, U. Schiefer, K. Nagel, and E. Papageorgiou. Transportation Research Part F: Traffic Psychology and Behaviour 24: 231 - 243, 2014.

BIB

Binocular Glaucomatous Visual Field Loss and Its Impact on Visual Exploration - A Supermarket Study

K. Sippel, E. Kasneci, K. Aehling, M. Heister, W. Rosenstiel, U. Schiefer, and E. Papageorgiou. PLoS ONE 9(8): e106089, 2014.

BIB

Homonymous Visual Field Loss and its Impact on Visual Exploration - A Supermarket Study

E. Kasneci, K. Sippel, K. Aehling, M. Heister, W. Rosenstiel, U. Schiefer, and E. Papageorgiou. Translational Vision Science & Technology In Press, 2014.

BIB

Towards automated comparison of eye-tracking recordings in dynamic scenes

T. C. Kübler, D. R., J. Ungewiss, A. Wörner, C. Rothe, U. Schiefer, W. Rosenstiel, and E. Kasneci. EUVIP 2014, 2014.

BIB

2013

A New Method for Assessing the Exploratory Field of View (EFOV)

E. Tafaj, S. Hempel, M. Heister, K. Aehling, J. Dietzsch, F. Schaeffel, W. Rosenstiel, and U. Schiefer. 6th International Conference on Health Informatics, HEALTHINF 2013, 2013.

BIB

Online Classification of Eye Tracking Data for Automated Analysis of Traffic Hazard Perception

E. Tafaj, T. C. Kübler, G. Kasneci, W. Rosenstiel, and M. Bogdan. Artificial Neural Networks and Machine Learning (ICANN 2013), 2013.

BIB

Auswirkungen des visuellen Explorationsverhaltens von Patienten mit binokularen Gesichtsfelddefekten auf alltagsrelevante Tätigkeiten - Ergebnisse der TUTOR-Studie

U. Schiefer, T. C. Kübler, M. Heister, K. Aehling, K. Sippel, E. Papageorgiou, W. Rosenstiel, and E. Tafaj. 111. DOG-Kongress, 2013.

BIB

Towards the Automated Recognition of Assistance Need for Drivers with Impaired Visual Field

E. Kasneci. PhD thesis. Universität Tübingen, 2013.

BIB

2012

Erste Ergebnisse der TUTOR-Pilotstudie: Binokulare Gesichtsfeldausfälle und deren Auswirkungen auf die visuelle Exploration

U. Schiefer, K. Sippel, M. Heister, K. Aehling, C. Heine, K. Januschowski, E. Papageorgiou, W. Rosenstiel, and E. Tafaj. Ophthalmologische Nachrichten, 09.2012, 2012.

BIB

Bayesian Online Clustering of Eye-Tracking Data

E. Tafaj, G. Kasneci, W. Rosenstiel, and M. Bogdan. Eye Tracking Research and Applications (ETRA 2012), 2012.

PDF BIB

2011

Reliable Classification of visual field defects in automated perimetry using clustering

E. Tafaj, J. Dietzsch, U. Schiefer, W. Rosenstiel, and M. Bogdan. Proceedings 8th IASTED/IEEE International Conference on Biomedical Engineering, pages 446 - 451, 2011.

BIB

Methode zur Messung der physiologischen Blendung im Fahrsimulator

V. Melcher, M. Aust, O. Stefani, E. Lösch, H. Wilhelm, and E. Tafaj. 57. Frühjahrskongress der Gesellschaft für Arbeitswissenschaft e. V.: "Mensch, Technik, Organisation - Vernetzung im Produktentstehungs- und -herstellungsprozess", Chemnitz, 03/2011, 2011.

BIB

Fast extraction of neuron morphologies from large-scale electron-microscopic image stacks

S. Lang, P. Drouvelis, E. Tafaj, P. Bastian, and B. Sakmann. Journal of Computational Neuroscience, 2011.

BIB

Zukünftige Fahrzeuge adaptieren sich auf den Fahrer: Identifikation charakteristischer Verhaltensmerkmale von Fahrzeugführern unter demographischen Gesichtspunkten

E. Tafaj, P. Rumbolz, M. Bogdan, J. Wiedemann, and W. Rosenstiel. GMM-Fachbericht Band 69 zur Tagung Automotive meets Electronics 2011, Dortmund, 2011.

BIB

Vishnoo - An Open-Source Software for Vision Research

E. Tafaj, T. C. Kübler, J. Peter, U. Schiefer, and M. Bogdan. 24th IEEE International Symposium on Computer-Based Medical Systems (CBMS 2011), Bristol, UK, 2011.

BIB

2010

Introduction of a Portable Campimeter Based on a Laptop/Tablet PC

E. Tafaj, C. Uebber, J. Dietzsch, U. Schiefer, M. Bogdan, and W. Rosenstiel. Proceedings of the 19th Imaging and Perimetry Society (IPS), Tenerife, Spain, 2010.

BIB

Fahrzeugentwicklung für eine Gesellschaft im demografischen Wandel. H. Häfner, K. Beyreuther, W. Schlicht (Hrsg.). Altern gestalten, Medizin, Technik, Umwelt

J. Wiedemann, M. Horn, W. Rosenstiel, and E. Tafaj. , pages 109-120. Springer-Verlag Berlin Heidelberg 2010, 2010.

BIB

Teaching

Course Term
Eye-based Human-Computer Interaction
Forschungsprojekt Human-Computer Interaction
Forschungsprojekt AB E. Kasneci
Grundlagen der Multimediatechnik
Multimodale Mensch-Maschine Interaktion
Praktikum zu Grundlagen der Multimediatechnik
Programmierung in C/C++
Proseminar Grundlagen Mensch-Maschine Interaktion
Seminar Advanced Topics in Human-Computer Interaction
Seminar Advanced Topics in Perception Engineering
Teamprojekt Machine Learning in the Field of Eye Tracking
Teamprojekt Remote Eye Tracking
User Experience
Advanced Topics in Perception Engineering
Computational Models of Visual Attention
Eye Movements and Visual Perception
Eye Movements and Visual Perception
Eye Movements and Visual Perception
Grundlagen der Multimediatechnik
Praktikum zu Grundlagen der Multimediatechnik
Programmieren mobiler eingebetteter Systeme
Programmieren mobiler eingebetteter Systeme
Programmieren mobiler eingebetteter Systeme
Programmieren mobiler eingebetteter Systeme
Technische Anwendungen der Informatik: Hard- und Software aktueller Eye-Tracking-Systeme
Technische Anwendungen der Informatik: Hard- und Software aktueller Eye-Tracking-Systeme
Technische Anwendungen der Informatik: Hard- und Software aktueller Eye-Tracking-Systeme
Seminar: Advanced Topics in Perception Engineering
Eye Tracking in Mobile Computing and Virtual Reality

Research

500,000 images closer to eyelid and pupil segmentation

We propose a fully convolutional neural networkfor pupil and eyelid segmentation as well as eyelid landmark and pupil ellipsis regression. The network is jointly trained using the Log loss forsegmentation and L1 loss for landmark and ellipsis regression. The ap-plication of the proposed network is the offline processing and creationof datasets. Which can be used to train resource-saving and real-timemachine learning algorithms such as random forests. In addition, we willprovide the worlds largest eye images dataset with more than 500,000images.

Learn More

The applicability of Cycle GANs for pupil and eyelid segmentation, datageneration and image refinement

We evaluated Generative Adversarial Networks(GAN) for eyelid and pupil area segmentation, data gener-ation, and image refinement. While the segmentation GANperforms the desired task, the others serve as supportiveNetworks. The trained data generation GAN does not re-quire simulated data to increase the dataset, it simply usesexisting data and creates subsets. The purpose of the re-finement GAN, in contrast, is to simplify manual annota-tion by removing noise and occlusion in an image withoutchanging the eye structure and pupil position. In addition100,000 pupil and eyelid segmentations are made publiclyavailable for images from the labeled pupils in the wild dataset.

Learn More

Neural networks for optical vector and eye ball parameter estimation

In this work we evaluate neural networks, support vector machinesand decision trees for the regression of the center of the eyeballand the optical vector based on the pupil ellipse. In the evaluationwe analyze single ellipses as well as window-based approaches asinput. Comparisons are made regarding accuracy and runtime. Theevaluation gives an overview of the general expected accuracy withdifferent models and amounts of input ellipses. A simulator wasimplemented for the generation of the training and evaluation data.For a visual evaluation and to push the state of the art in opticalvector estimation, the best model was applied to real data. Thisreal data came from public data sets in which the ellipse is alreadyannotated by an algorithm. The optical vectors on real data and thegenerator are made publicly available.

Learn More

Blink Detection

A blink detection algorithm on eye images tailored towards head-mounted eye-trackers.

Learn More

Eye labeling tool

Ground truth data is an important prerequisite for the development and evaluation of many algorithms in the area of computer vision, especially when these are based on convolutional neural networks or other machine learning approaches that unfold their power mostly by supervised learning. This learning relies on ground truth data, which is laborious, tedious, and error prone for humans to generate. In this paper, we contribute a labeling tool (EyeLad) specifically designed for remote eye-tracking data to enable researchers to leverage machine learning based approaches in this field, which is of great interest for the automotive, medical, and human-computer interaction applications. The tool is multi platform and supports a variety of state-of-theart detection and tracking algorithms, including eye detection, pupil detection, and eyelid coarse positioning.

Learn More

Eye Movements Identification

Approaches for segmentation and synthesis of eye-tracking data using different neural networks and machine learning approaches.

Learn More

EyeRecToo

In this paper, we introduce EyeRecToo, an open-source software for real-time pervasive head-mounted eye-tracking. Out of the box, EyeRecToo offers multiple real-time state-of-the-art pupil detection and gaze estimation methods, which can be easily replaced by user implemented algorithms if desired. A novel calibration method that allows users to calibrate the system without the assistance of a human supervisor is also integrated.

Learn More

Eyetrace

Eyetrace is a tool for analysis of eye-tracking data. It has the approach to bunch a variety of different evaluation methods for a large share of eye trackers supporting scientific work and medical diagnosis. To allow EyeTrace to be compatible to different eye trackers, an additional tool called Eyetrace Butler is used. The Eyetrace Butler performs a data preprocessing and conversion for analysis with Eyetrace. It provides plugins for different eye trackers and converts their data into a format that can be imported and used by Eyetrace.

Learn More

Intelligent Surgical Microscope

Head-mounted eye tracking offers remarkable opportunities for research and applications regarding pervasive health monitoring, mental state inference, and human computer interaction in dynamic scenarios. Although a plethora of software for the acquisition of eye-tracking data exists, they often exhibit critical issues when pervasive eye tracking is considered, e.g., closed source, costly eye tracker hardware dependencies, and requiring a human supervisor for calibration. In this paper, we introduce EyeRecToo, an open-source software for real-time pervasive head-mounted eye-tracking. Out of the box, EyeRecToo offers multiple real-time state-of-the-art pupil detection and gaze estimation methods, which can be easily replaced by user implemented algorithms if desired. A novel calibration method that allows users to calibrate the system without the assistance of a human supervisor is also integrated. Moreover, this software supports multiple head-mounted eye-tracking hardware, records eye and scene videos, and stores pupil and gaze information, which are also available as a real-time stream. Thus, EyeRecToo serves as a framework to quickly enable pervasive eye-tracking research and applications.

Learn More

Robust Pupil Detection and Gaze Estimation

The reliable estimation of the pupil position in eye images is perhaps the most important prerequisite in gaze-based HMI applications. While there are many approaches that enable accurate pupil tracking under laboratory conditions, tracking the pupil in real-world images is highly challenging due to changes in illumination, reflections on glasses or on the eyeball, off-axis camera position, contact lenses, and many more.

Learn More

Scanpath Comparison

Our eye movements are driven by a continuous trade-off between the need for detailed examination of objects of interest and the necessity to keep an overview of our surrounding. In consequence, behavioral patterns that are characteristic for our actions and their planning are typically manifested in the way we move our eyes to interact with our environment. Identifying such patterns from individual eye movement measurements is however highly challenging.

Learn More

Vishnoo - A Visual Search Examination Tool

Vishnoo (Visual Search Examination Tool) is an integrated framework that combines configurable search tasks with gaze tracking capabilities, thus enabling the analysis of both, the visual field and the visual attention.

Learn More

Open Thesis Topics

10.07.2019

Automatisierter Scanpath Vergleich

Menschen können ihre Aufmerksamkeit gezielt lenken. Eine Methode diese Aufmerksamkeitszuweisung aufzuzeichnen sind Eye-Tracking Aufnahmen: Objekte, die momentan interessant sind, werden mit den Augen fixiert. Oftmals ist es nicht nur interessant, wohin einzelne Individuen ihre Aufmerksamkeit lenken, sondern auch ein Vergleich zwischen Individuen oder verschiedenen Zeitpunkten. Hierzu werden diese auf einfache Elemente reduziert: Fixationen und Sakkaden (schnelle Augenbewegungen). Die zeitliche Abfolge und räumliche Position von Fixationen und Sakkaden nennt man Scanpath. Aktuelle Vergleichsmetoden basieren auf zwei verschiedenen Ansätzen:

Read more …