
ORIGINAL RESEARCH
published: 26 July 2021

doi: 10.3389/fspor.2021.692526

Frontiers in Sports and Active Living | www.frontiersin.org 1 July 2021 | Volume 3 | Article 692526

Edited by:

Matthias Kempe,

University of Groningen, Netherlands

Reviewed by:

Nathan D. Schilaty,

Mayo Clinic, United States

Samanta Rosati,

Politecnico di Torino, Italy

*Correspondence:

Benedikt Hosp

benedikt.hosp@uni-tuebingen.de

†ORCID:

Benedikt Hosp

orcid.org/0000-0001-8259-5463

Florian Schultz

orcid.org/0000-0002-7818-2823

Enkelejda Kasneci

orcid.org/0000-0003-3146-4484

Oliver Höner

orcid.org/0000-0002-3108-1531

Specialty section:

This article was submitted to

Sports Science, Technology and

Engineering,

a section of the journal

Frontiers in Sports and Active Living

Received: 08 April 2021

Accepted: 04 June 2021

Published: 26 July 2021

Citation:

Hosp B, Schultz F, Kasneci E and

Höner O (2021) Expertise

Classification of Soccer Goalkeepers

in Highly Dynamic Decision Tasks: A

Deep Learning Approach for Temporal

and Spatial Feature Recognition of

Fixation Image Patch Sequences.

Front. Sports Act. Living 3:692526.

doi: 10.3389/fspor.2021.692526

Expertise Classification of Soccer
Goalkeepers in Highly Dynamic
Decision Tasks: A Deep Learning
Approach for Temporal and Spatial
Feature Recognition of Fixation
Image Patch Sequences

Benedikt Hosp 1,2*†, Florian Schultz 2†, Enkelejda Kasneci 1† and Oliver Höner 2†

1Human-Computer Interaction, University of Tübingen, Tübingen, Germany, 2 Institute of Sports Science, University of

Tübingen, Tübingen, Germany

The focus of expertise research moves constantly forward and includes cognitive factors,

such as visual information perception and processing. In highly dynamic tasks, such as

decision making in sports, these factors becomemore important to build a foundation for

diagnostic systems and adaptive learning environments. Although most recent research

focuses on behavioral features, the underlying cognitive mechanisms have been poorly

understood, mainly due to a lack of adequate methods for the analysis of complex

eye tracking data that goes beyond aggregated fixations and saccades. There are no

consistent statements about specific perceptual features that explain expertise. However,

these mechanisms are an important part of expertise, especially in decision making in

sports games, as highly trained perceptual cognitive abilities can provide athletes with

some advantage. We developed a deep learning approach that independently finds

latent perceptual features in fixation image patches. It then derives expertise based

solely on these fixation patches, which encompass the gaze behavior of athletes in an

elaborately implemented virtual reality setup. We present a CNN-BiLSTM based model

for expertise assessment in goalkeeper-specific decision tasks on initiating passes in

build-up situations. The empirical validation demonstrated that our model has the ability

to find valuable latent features that detect the expertise level of 33 athletes (novice,

advanced, and expert) with 73.11% accuracy. This model is a first step in the direction

of generalizable expertise recognition based on eye movements.

Keywords: eye tracking, deep learning, convolutional neural network, long short-termmemory, expertise, machine

learning, football

1. INTRODUCTION

In general, expertise research spans many different areas. Expertise research based on behavioral
data has found its way into several fields, i.e., dentistry (Castner et al., 2020), surgery (Eivazi and
Bednarik, 2011; Kübler et al., 2015; Hosp et al., 2021b), and sports (Discombe and Cotterill, 2015;
Fegatelli et al., 2016; Kredel et al., 2017; Moran et al., 2018; Snegireva et al., 2018; Hosp et al.,
2021a). In all of these areas, the assessment of user expertise is a fundamental task. By estimating
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the expertise of an user as accurately as possible, adaptive systems
can be built to model different, distinct expertise classes and
potentially create tasks specifically adapted to the expertise class.
For diagnostics, within the framework of sports science expertise
research, groups of different performance levels are examined
using the “expert-novice paradigm” (Chi et al., 1981). According
to Tenenbaum et al. (2000), this is the most efficient way to study
the development of cognitive and motor skills. Based on this
paradigm, Ericsson and Smith (1991) developed the frequently
used framework of the “Expert Performance Approach”. This
approach assumes that the behavior of a participant in a
laboratory task is closest to their behavior on the pitch if the
laboratory setting is as realistic as possible. It is, therefore,
required to establish the highest possible ecological validity of
laboratory tests, taking into account the internal validity (Kredel
et al., 2017). According to this assumption, within the Expert
Performance Approach, sports-specific scenes are often selected
as stimuli for diagnostic (Romeas et al., 2016). However, in
previous studies the video stimuli were mostly presented on
large screens or PC monitors and often from a third-person
perspective (for review, refer to e.g., Mann et al., 2007; Murr et al.,
2020). This classical laboratory setting results in a low external
validity (Marasso et al., 2014; for an overview refer to Travassos
et al., 2013). The trade-off of these validities plays an important
role. Especially in highly dynamic environments it is difficult
to obtain robust and natural data. Robust data is obtained in
highly controlled environments, while natural data is obtained in
natural environments. Therefore, these two aspects are opposites
and relative to discussions about the tension between the internal
and the ecological validity of scientific studies. This is especially
true in fields such as sports, where besides tactical and physical
components, highly refined perceptual-cognitive abilities are key
to success (Helsen and Starkes, 1999; Berry et al., 2008; Catteeuw
et al., 2009; Abernethy, 2010). Since the physical strain of the
athletes in high-level sports is very high due to training several
times a day, enhancing cognitive factors like decision-making
without additional physical training is gaining in importance
(Appelbaum and Erickson, 2016). For this reason, research efforts
to identify the major cognitive factors leading to differences
in performance, especially with regard to decision-making in
the sports game have increased in recent years. One aim of
these efforts is the development of valid diagnostics that can,
for example, identify the gaze behavior of experts engaged in
successful decision-making. Accordingly, by teaching this gaze
behavior it may be possible to design training programs that lead
to improved decision-making.

Due to ongoing technological development in the field
of virtual reality (VR), it is now possible to present 360◦

stimuli from a first-person perspective in head-mounted displays
(HMD). This increases the feeling of “presence” for participants,
which is defined as the psychological experience of “being
there” (Cummings and Bailenson, 2016). An increased feeling
of presence should lead to more valid results as compared
with presentations on screens (Slater, 2018; Bird, 2019). In
addition to the valid stimulation and recording of behavior, an
analysis of the underlying mechanisms of expertise is necessary
to formulate explanatory approaches for identified performance

differences. For the analyses of cognitive processes (e.g., decision-
making under pressure or anticipation of the continuation of a
scene) in sport games, new developments in image processing,
measurement methods, machine learning and eye tracking may
be used to control the stimuli or utilized as non-invasive methods
that do not influence the natural behavior of the athlete. The
developments in eye tracking have shown that these methods
of measurement hardly disturb natural behavior, but, instead,
become increasingly accurate and informative because cognitive
processes, such as perception are very simple, non invasive, and
meaningful to track.

In sports science, the non invasive method of eye tracking
is considered a common and objective research method for the
analysis of visual attention and the intake of visual information
(for an overview refer to Hagemann et al., 2006). In this
study, it is also assumed that the measurement of athlete gaze
behavior in real sports situations generates the highest ecological
validity. Mobile eye trackers have disadvantages (e.g., inaccurate
measurements due to slippage or low frequencies), that can be
circumvented by eye trackers integrated into the HMD. Due to
the 360◦ videos that can be presented there, gaze behavior can
be recorded at high frequency (up to 250 Hz) in ecological valid
environments with high experimental control.

The type of analysis also plays an important role because
up until this point eye tracking data has mainly been evaluated
manually, visually, or with statistical methods (Blascheck et al.,
2017). A newer and popular technique to classify expertise is to
train a model by a brute-force approach of all possible features
available from the data. Hosp et al. (2021a) use this technique
to investigate the expertise of soccer goalkeepers by recording
their gaze during game build-up. In their approach to expertise
recognition, they take all possible features provided by the eye
tracking vendor and add derived statistical features on top.
They found a support vector model (SVM) with high accuracy.
However, this feature crafting is highly time-consuming and
does not necessarily provide the most suited features. There is
no real evidence that certain features or feature combinations
highlight expertise. For example, Klostermann and Moeinirad
(2020) revealed that fixations, saccades, and their frequencies and
lengths are often used, but cannot lead to a full understanding
of expertise. They conclude that single features describing gaze
behavior are only conditionally suitable to classify expertise
differences or, at they very least, have yet to be found. Relatively,
expertise comes from the optimized perception of helpful gaze
locations and the sequence of these locations, which are also
called scan path. To explore the gaze locations and their temporal
succession, the approach is to let an artificial intelligence (AI)
describe the features around these gaze locations (albeit very
abstract). In doing so, the AI itself decides which shapes, colors,
corners, and edges in the fixation locations are considered
important for distinguishing expertise. This does not lead to new
insights about the features of gaze behavior in athletes. However,
the sequence of fixation locations from the stimulus can be
used, first to automatically recognize expertise and differences
in the scan path, and second, given sufficient data, to generate
an optimal scan path. Ultimately, this scan path, can help one
understand important expertise-related fixation locations and
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their sequence in the gaze signal. Furthermore, with an optimal
scan path one can infer the importance of opponents, teammates
(or at least parts of such), or the ball for the decision-making
process. By looking at the fixation patches and running an object
or person detection, a successful orientation of the scene can
be achieved.

This leads to a large amount of data which is advantageous
for machine learning as machine learning algorithms show their
strengths in regression and the classification of large amounts
of data. Even in supervised machine learning algorithms, where
features need to be selected first, we often face the problem
of choosing optimal features because there is no indication
as to which set of features can best show the expertise
of a class.

Next to supervised learning there are other approaches that
work in an end-to-end learning fashion, where features do
not need to be identified beforehand. The most important
representatives in this field are the convolutional neural
networks (CNNs) and recurrent neural networks (RNN), i.e.,
bidirectional long short-term memory networks (BiLSTM).
CNNs are well used in a range of applications including
semantic segmentation and object recognition and can learn
to distinguish relevant patterns and shapes or to derive
abstract objects.

RNNs and particularly long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997), which have the
ability to find temporal relationships (Liu and Han, 2018; Tian
et al., 2019), are also widely used. LSTMs optimize RNNs by
minimizing the impact of vanishing and exploding gradients.
By using a special function block, LSTMs implement a long
short-term memory, which pushes the performance of neural
networks. These functional blocks allow for the remembrance of
long-time dependencies and previous information. The network
learns which information from the past is important for the
current output and which can be forgotten (by a forget gate). As
the gaze signal is a continuous signal, LSTM are predesignated
to be used in the analysis of temporal patterns in the gaze
signal. Currently, both kinds of machine learning techniques
are well used for expertise identification in different domains,
e.g., in dentistry education (Castner et al., 2018, 2020), or
microsurgery (Eivazi and Bednarik, 2011; Eivazi et al., 2012, 2017;
Bednarik et al., 2013). Neural networks (Castner et al., 2020) and
supervised learning algorithms (Bednarik et al., 2013; Castner
et al., 2018; Hosp et al., 2021a,b) have both shown their power
in objective expertise identification based on gaze behavior. They
found major differences in gaze behavior and could link these
differences to different expertise classes. This means that both
machine learning techniques provide suitable methods to deal
with large amounts of data and analysis in a fast, objective, and
reproducible way.

To evaluate gazePatchNet, we conducted a study where
we showed participants 360◦ stimuli of defined soccer game
situations from the natural perspective of a goalkeeper on a
consumer grade HTC Vive HMD. Each stimulus presented a
build-up scene and ended after a pass to the user. The user’s gaze
was recorded by the integrated SensoMotoric Instruments (SMI)
eye tracker with a frequency of 250 Hz. We used the eye tracking

data to classify the expertise of the participants into three classes,
namely, novice, advanced, and expert. This approach is meant
to serve as a first step in the direction of a perceptual-cognitive
training system. If our model is robust enough, the discovered
knowledge can be used to identify optimal synthetic scan paths
that can then be used to train the gaze behavior of athletes. The
underlying hypothesis is that an improved gaze strategy leads to
a more reliable recognition of cues and to better decision-making
based on these cues.

2. MATERIALS AND METHODS

2.1. Stimulus
To show the stimulus video material in virtual reality, we used
the SteamVR framework prefab in Unity. SteamVR is an open-
source framework that allows common real-time game engines,
like Unity, to interface with HMDs. On contrary of an artificial
recreation of the environment (simulation) within the game
engine, we projected realistic footage of 4k omnidirectional
videos that captured the inside of a sphere around the participant
(3,840 × 1,920 pixel). This allowed us to display a natural
stimulus with high immersion in a realistically mimicked scene.
The 360◦ footage was captured in cooperation with the German
Football Association (DFB) at the training space of the elite
youth academy of a German first league club (VfB Stuttgart). To
capture the footage, we placed a 360◦ camera at the position of
the goalkeeper, while five teammates and five opponents were
physically replaying the defined scenarios on the training space.
The camera captured the scene with 30 FPS. Each scene was
developed based on common scenarios during amatch, each with
unique movements. All stimuli were captured on-field and acted
out by youth elite players of the highest level in Germany. At the
end of each scene six options (five teammates to pass the ball or
kick-out) occurred how to continue the game (see Figure 2 for
an overview of the options). In each video, there was one optimal
option leading to binary answers in each video, i.e., the optimal
option was counted as one, all five other options were counted
as zero. Plausibility of the scenes, movements, and ratings of
the decision options were evaluated by an expert trainer team
of the DFB.

2.2. Data Collection
The responses of participants were relayed verbally and
finally rated as either right or wrong, with only one right
decision available per video. The correct decision is a pass
to the only teammate who is not covered by an opponent.
In total, each participant saw 52 trials, consisting of 26
videos with unique movements, repeated in a different
order. Each video trial of each participant was counted as
one sample.

2.3. Participants
Characteristics of all participants are shown in Table 1. Data of
(n = 12) experts were collected during a DFB goalkeeper camp,
where the DFB gathers the top German soccer goalkeepers (U-
15 to U-21) for specialized training. The data of the (n = 8)
advanced and the data of (n = 13) novice athletes were collected

Frontiers in Sports and Active Living | www.frontiersin.org 3 July 2021 | Volume 3 | Article 692526

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Hosp et al. Deep-Learning Expertise Classification

FIGURE 1 | Example field of view in virtual reality head-set.

FIGURE 2 | Schematic overview of the response options. The sixth option (kick out) is missing.

TABLE 1 | Participants summary.

Class Age (Mean/SD) Training hours/week

(Mean/SD)

Active years

(Mean/SD)

Novice (n =13) 28.64 / 3.72 0.00 / 0.00 1.78 / 5.21

Advanced (n = 8) 22.00 / 3.72 4.94 / 0.91 15.50 / 5.77

Expert (n = 12) 16.60 / 1.54 8.83 / 4.27 9.16 / 5.04

in the lab of the university. The advanced players belong to
different soccer teams playing in the southern regional league
(semi-professional, 4th level) in Germany. The novices have very
little to no experience in amateur leagues, up to district league,

with no participation in competitions and no training on a
weekly basis.

2.4. Procedure
The study was confirmed by the Faculty of Economics and
Social Sciences Ethic Committee of the University of Tübingen.
After completing a consent form, we started familiarizing the
participants with the stimulus presentation and response mode.
During the familiarization phase, we showed a sample 360◦

screenshot of a video on the HMD to allow free exploration
of the scene, followed by a schematic overview of the field
(refer to Figure 2). After that, the video scene (refer to Figure 1

for an example) was played and stopped (black screen) after
the last return pass to the position of the participant. In each

Frontiers in Sports and Active Living | www.frontiersin.org 4 July 2021 | Volume 3 | Article 692526

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Hosp et al. Deep-Learning Expertise Classification

scene we manipulated the color of the ball with a colored dot
during the last return pass. This was done to force the gaze
of the participants on the ball during this important phase.
As soon as the screen went black, the participant had to
report the color of the ball and their decision for an option
to continue the game. The decision selection is identical to
the initial schematic overview of the field (Figure 2) with an
emergency option to “kick out.” This procedure was repeated
five times.

After this familiarization phase, we started the first block
of 26 trials. The second block contained the same 26
videos but in different order. Between the blocks, participants
could take off the HMD for a break. The video in the
Supplement Materials shows an example visualization of the
setup in VR.

2.5. Image Patch Extraction
As introduced above, this method (coined gazePatchNet)
includes the following: (1) finding latent features in the image
patches around the fixations of the participants and (2) classifying
the scanpath as a sequence of the consecutive fixation image
patches. The whole process is illustrated in Figure 3. As not all
data collection went smoothly, because of slippage of the head-
set (too loose) or bad calibration results, we reviewed the gaze
signal quality of all samples. We considered a sample valid only
if the tracking ratio was higher than 75%. We assigned either
class 0 (for novice samples), class 1 (for advanced samples) or

class 2 (for expert samples), to each sample. After removing
invalid data points, we collected all gaze signal samples for
each fixation (timestamp x and y) and saved them with the
corresponding omnidirectional video file. The fixations were
calculated with the velocity threshold-based event detection filter
(I-VT) (Salvucci and Goldberg, 2000) algorithm of the vendor
using a threshold of 50◦/s. We calculated the temporal as well
as spatial center of the fixation based on the averaged gaze signal
samples of the fixation. Afterward, we looped over the video file
frames to find the corresponding frame by timestamp and cut out
an image patch around the fixation on the frame. The size of the
patch fits the input size of the input layer of the GoogLeNet CNN
(224 × 224 × 3 pixels), which we used to extract features later.
As soon as we had all the fixation image patches of one trial, we
created sequences that fit to the BiLSTM. These sequences were
essentially fixation image patches in order of their occurrence in
the stimulus video.

2.6. Data Augmentation
For each sequence, we computed a new and modified sequence
containing the same images. This means we doubled the whole
data set by adding the same sequences with the same, but
augmented images. An example is shown in Figure 4. Figure 4A
shows an input image (image cut from the stimulus around
a fixation). At first, we applied a random Gaussian blur
(Figure 4B) and salt and pepper noise (Figure 4C). Afterwards,
we augmented the images in a randomized manner with

FIGURE 3 | Augmentation pipeline. (A) shows the original image cut around a fixation, (B) shows the image after gaussian blur, (C) shows the image after salt and

pepper noise addition, and (D) shows the transformed image.

FIGURE 4 | gazePatchNet: Our CNN-BiLSTM-based model architecture for expertise classification.
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geometric transformations (Shorten and Khoshgoftaar, 2019)
(Figure 4D). Each image was either rotated by a random factor
between -180 and 180 degrees, sheared by a random factor
between –15 and 15 degrees or both, flipped on x- or y-axis
or was x- or y- translated between –80 and 80 degrees. These
augmentation steps were supposed to make training harder for
the model in a realistic way. We assumed shear and rotation
were real translational variations of the head of the participants
(whole field of view around fixation). This data augmentation
was completed before training in an offline manner. The whole
data set was augmented in 135 s. LSTMs usually support
varying sequence lengths. However, sequences that are much
longer than typical sequences can introduce a lot of padding
or discarding of data because of the padding or truncation
of sequences. Thus, we removed an average of 20 sequences,
about 2% of all sequences. The remaining sequences were sorted
by length. This led to a more homogeneous padding of the
input sequences.

2.7. Transfer Learning
To get latent spatial features in the image patches automatically,
we used a CNN (GoogLeNet) as a feature extractor. The CNN
was trained on ImageNet, which has about 1,000 classes. Each
sequence (the augmented sequences included) was fed to the
CNN. We did not use the output layers, as we did not need
the classification probabilities for the 1,000 classes of ImageNet,
but, rather, for three classes of expertise. On the contrary, we
proceeded with transfer learning by grabbing the output of the
last activation function [Refer to Figure 5, the last pooling layer
of the GoogLeNet network (“pool5–7 × 7s1”)], and added the
layers of gazePatchNet (Refer to Table 2). By using GoogLeNet
as a feature extractor, we simultaneously obtained a feature
dimension reduction. Thus, our images of 224 × 224 × 3 pixels
were reduced by the CNN to 1,024 × 1 dimensions. As a result,
we achieved not only shape, pattern, and object detection but
also the correct input format for an LSTM by keeping track of
the input to the CNN and building sequences of related outputs
(activated images).

2.8. Training and Testing
We trained the model in 33 runs. In each run, the samples of
one participant were kept out (leave-one-out validation). The
sequences of this participant were used at the end of each run
to predict their class. As the model has not seen the samples of
the one subject which was left out, these samples can be used
to show the predictive power and classification accuracy of the
trained model on unknown data. The data of the remaining
32 participants was split by a ratio of 70:30. About 30% of the
data were randomly picked for testing and optimization during
training. The remaining 70% of the samples (as well as the
augmented samples) were used for training the model.

2.9. Model Description
Table 2 shows the structure of the layers of the networks.
The sequenced activations, containing the selected features,
from GoogLeNet were passed to the BiLSTM layers, where the
temporal relationships were calculated. To input sequences of

images into the network, the first layer was a sequence input
layer with the same input dimensions (1,024) as the output of the
activations by the CNN at the last pooling layer (GoogLeNet).
As the models with gated recurrent units (GRU) and LSTM
layers did not perform well in our tests (between 20 and 25%
lower accuracy), we chose BiLSTM layers as the next part. The
BiLSTM layer had 50 hidden units (therefore 4,000× 1,024 input
weights, 4,000 × 500 recurrent weights and 4,000 × 1 biases)
and output only the final step. The advantage of BiLSTM layers
is that they are fairly generative and take future (forward) and
past (backward) states of information into account. After the
BiLSTM layer, we added a fully connected layer with 13 hidden
units (100 × 1,000 weights and 100 × 1 biases). To prevent
the model from over fitting, we added a dropout layer with a
probability of not using a neuron of 50%. As we had three classes
to predict, the following fully connected layer had three hidden
units. We took the maximum output to identify the class. To
help training converge quickly, we added a softmax layer and
calculated the cross-entropy loss for multi-class classification to
optimize the model.

FIGURE 5 | Transfer learning for feature selection.

TABLE 2 | GazePatchNet architecture.

Name Type Activations

1 sequence Sequence Input 1,024

2 bilstm BiLSTM 1,000

3 fc-1 Fully Connected 100

4 dropout Dropout 100

5 fc-2 Fully Connected 3

TABLE 3 | Training options.

Parameter Value

MiniBatch size 42

Learning rate 4.4e-4

L2-Regularization 8.2e-4

Sequence length longest sample

Shuffle no

Validation frequency 52

Validation patience 6

Learning rate schedule no

Max. epochs 100
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Table 3 provides an overview of the training options. We used
grid search to find an optimal hyper parameter set for the whole
network (Feurer and Hutter, 2019). The best set consisted of a
mini-batch size of 42, a low learning rate of 4.4e-4, which was not
increasing during training time, a L2-regularization of 8.2e-4, to
prevent over-fitting, and a validation frequency that was set to
52, so that the model was validated at every epoch. A validation
patience of 6 seemed to be the optimal trade-off between over and
under fitting. This means that the training was stopped earlier if
loss on the validation set was larger than or equal to the previous
smallest loss of six times in a row.We did not shuffle training and
validation data every epoch, as we only wanted to use validation
data to offer information about the current classification status.
The maximum number of epochs for training was set to 100, as
longer training results in over or under fitting.

2.10. Metrics
We calculated the average/median accuracy of all runs. In each
run, 70% of the samples belonged to training set and 30% to
the validation set. We kept one participant totally out to test
how well the model behaved on new, unseen data. As accuracy
is a metric defined by the number of correct predictions divided
by the total number of predictions, we could only infer a small
amount of information about the model. This was particularly
because the samples of the classes used for training and validation
were balanced during trainings, but the distribution of expert,
advanced, and novice participants for testing was not. Thus,
we also had to consider further performance metrics of the
model. The confusion matrix is a sound metric to show true
and false positives of the single classes. Similar to the confusion

matrix, the following metrics were split into the three classes
for easy comparison. To gain a deeper performance insight, we
showed the receiver operating characteristic (ROC) curve. An
ROC curve shows the performance of a classification model at
different classification thresholds. Based on the ROC curve, we
simply calculated the area under the curve (AUC), which is
a common single score and is used for comparisons between
different models, usually on a binary classification. Since we
split the classes and computed the AUC for each, we compared
which classes were predicted most successfully. A score of 1.0
described a perfect skilled model. All scores were calculated by
an one-vs-all approach.

3. RESULTS

The model achieved an average accuracy of 73.11% over 33
runs. For each run, data from one participant were kept out of
training and used as test data. We looked at the data indirectly by
describing one trial (one video of a participant) as one sample
and classifying these samples as novice, advanced, or expert.
This means that some participant samples can be detected as
belonging to another group. The distributions of the single
samples to different classes is shown on the confusion matrix
in Figure 6. The accuracy of predicting a novice correctly is at
55.1%. The prediction rate of the advanced class with an accuracy
of 69.4%, is admittedly much higher. And even higher than the
advanced class, experts are predicted with an accuracy of 93.4%.

Out of 1,816 samples of the novice class, 166 samples
were predicted as belonging to the expert class and 650 to
the advanced class. 1,114 samples were correctly classified as

FIGURE 6 | Confusion matrix.
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FIGURE 7 | ROC-curve for all three classes.

advanced. However, about one-third of the advanced samples
were predicted falsely, which is distributed as 372 on novice
class and 119 on expert class. About 641 of the expert samples
were correctly predicted and 30 samples to advanced and 15 to
novice class.

Figure 7 shows three ROC curves with results, corresponding
to the confusion matrix. The blue line represents the expert ROC
curve. With an AUC of 0.951, the classification is nearly perfect.
This corresponds to the confusion matrix values, as well. The red
line represents the advanced class which does not perform as well
as the expert, but still achieves an AUC of 0.833. The yellow line
shows the performance of the novice class, which is a little bit
higher than the advanced, with an AUC of 0.871.

4. DISCUSSION AND CONCLUSION

In this study, we presented gazePatchNet, a model that, based
on by-transfer learning, adapted CNN for feature extraction
and BiLSTM for temporal dependency identification, automating
classification in the broadest sense. We recorded the gaze
behavior of soccer goalkeepers during build up in a 360◦ video
environment on a HMD and used their fixation image patches on
the stimuli as input signals to classify three groups of expertise.
The results are promising as we can show, with a relatively
small amount of data, that the combination of a CNN, transfer
learning, and BiLSTM network is effective in classifying this
kind of data. At least the expert and advanced classes are clearly
recognizable. However, the novices look more diverse in their
behavior and therefore are much harder to predict. The model
on average shows great performance, which is reflected by the
average accuracy of 73.11% with great sensitivity values visible

in the ROC plot. The differences between expert and the other
groups are especially significant.

The classification of the advanced and novice class is about
20 and 40%, respectively, lower, but advanced are still doubled
when compared with chance-level. This is supposed to increase
with more samples for the model to learn from. These results are
well in line with other studies on dynamic tasks, e.g., Bednarik
et al. (2013) or Eivazi et al. (2017) who reached a classification
accuracy of 66 and 70%, respectively, on medical applications.
Both studies predicted the expertise of two skill levels. A more
diverse result is found in Castner et al. (2018). Their study
predicted the expertise of students from five different semesters
alongside experts. With their one-vs-all approach, they mostly
reached an accuracy of 37% (chance-level 20%).

In this model, the accuracy of predicting an expert correctly is
at 93.4% as this class is the easiest to detect. The prediction rate
of the advanced class is much lower with an accuracy of 69.4%
because this class is supposed to be the hardest to detect. The
accuracy, however, is nearly double the chance-level with about
two-third of the advanced samples being classified correctly.
Much lower than the advanced, the novices are predicted with
an accuracy of 55.1% which is nearly two times as high as the
chance-level but still 15% lower.

Out of 686 samples of the expert class, only 15 were predicted
as belonging to the novice class and 30 to the advanced class.
1,114 samples were correctly classified as advanced, but about
one-third of the advanced samples were predicted incorrectly.
Although interesting, this is no surprise. It may show that the
decision boundary for the advanced class does not need to be
so robust as many of the advanced participants were gazing like
novices and many novices as advanced according to the model.
In summary of the performance of the classifications based on
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the ROC curves, one can state that the samples of all classes were
predicted with high certainties and demonstrate the accuracy of
a highly skilled predictive model. The average precision value
(73.11%) and the mean precision of 71.89% confirm the power
of the model.

Looking deeper at the ROC-curves, the model performs well
on all classes. As samples of advanced players are often predicted
as belonging to an novice class and samples of novices players as
belonging to an advanced class, it may be necessary to increase
the sample size, to robust the decision boundary. In case the
model predicts a sample that really belongs to the expert class,
it performs this assignment with a high probability of over 93%.

In this study, the novice and advanced classes are more
difficult to classify. This means that the expert group is a
pretty well recognizable group. The advanced and novice groups
are more heterogeneous as there are participants that have
more/less experience than others. Another reason for this could
be the missing metrics needed to divide between the two classes
properly. This question is typically addressed with the availability
of more data. The problem may stem from the small sample size
of advanced participants as this group could be too small for the
model to define robust decision boundaries. The fact, that expert
samples were barely (15 samples) predicted to be samples of an
advanced player, shows that there are clear decision boundaries
for the advanced and expert classes. In addition, the cognitive
factor is only one of the several factors that contribute to
expertise. For goalkeepers, for example, it is still most important
to be able to block shots on goal. If a goalkeeper can do this
extremely well, he may be invited by the DFB, even though he
could make “worse” decisions after return passes. Conversely, it
can also be the case with advanced participants are very good
decision-makers, but they did not hold as many balls, which
is why they are not invited by the DFB. As a result, it is very
important to not just test players from different classes but to
test players with the assumed highest decision-making skills. For
the diagnosis of expertise, we aim to test the best of the very best
players and compare them with other expertise groups. We need
them to define an optimal behavior. The expert players are among
the 50 most successful young goalkeepers in Germany, which is
reflected in the results of this model. A long range plan is to
optimize the training for young players. This study is the first step
in that direction. For that, we need to know which behavior is
optimal and how we can design training steps for young players
to reach this optimal behavior.

The difference in active years/training, and therefore
experience, between advanced and expert participants is much
smaller and needs to be finer graded. There may be advanced
players with a lot of experience that helps them to perform like
experts and there may be experts that do not perform as well
because they have much less experience. It is, therefore, not
astonishing that some advanced samples are recognized as expert
samples. If one assumes that behavior in some samples is better
than others, this consequently leads to classifications distributed
in different groups. It is more important that the number of
classifications of higher ranked participants into lower classes is
minimized to depict real expertise.

Instead of providing a description of the behavior of different
classes, this model describes a pipeline to find latent features by

itself. This circumvents one problem: handcrafted features. The
characteristics of handcrafted features may be difficult to teach
a user in the form of new behavior based on feature values.
Even if the optimal set of features is found, it is difficult to
incorporate the findings into a training system. For future, this
model offers a different way of teaching a participant a new
behavior by visualizing the test person what has when to be
observed. Therefore, a model should be created that in the best
case, finds an optimal behavior. Based on such information, an
optimal behavior for each class can be created and artificially
extracted to create information that can be taught to users. A
prerequisite will be the analysis of single scan paths, which can
be accessed by looking at the fixation image patches.

Currently, as the fixation point is temporally and spatially
averaged, another improvement might be achieved when
optimizing the input layer by using an object detection
beforehand. Especially when counting in the error rate of the eye
tracker and early fixations some samples might end up directly
next to an object and some directly on it. In this case, the CNN
will return different shapes. By using the object as an area of
interest (AOI) and taking the intersection as input, this behavior
can be unified as one can assume that the participant is perceiving
the same object in both cases. The CNN can also be optimized. At
the moment this CNN is trained on ImageNet to classify about
1,000 classes. By retraining the CNN on a set of 360◦ videos,
with manually labeled teammates, opponents, goals, ball, and
free spaces, the intersections of the gaze with AOIs can become
advantageous and result in higher classification rates.

5. PERSPECTIVES

As aforementioned, the results already allow for the use of this
model as a diagnostic system and as the basis for a training
system. The information gathered from this study can be used
to model behavior of athletes to personalize new adaptive
interfaces that can understand user behaviors based on relevant
user information recorded during training. For example, Wade
et al. (2016) performed intervention for individuals with autism
spectrum disorders.

With an objective way to classify the perceptual skill of a
person, a first step toward a virtual reality training system (VRTS)
with an adaptive design of level difficulty is achieved. With a
definition of the perceptual skill of a person and the knowledge of
the corresponding skill class, the choice of the difficulty level in a
VRTS can be adapted automatically. For higher ranked users, the
difficulty can be increased by pointing out fewer cues or adapting
the stimulus, e.g., by placing relevant information outside the
foveal area (usage of peripheral vision), designing more crowded
scenes (retain overview) or showing highly dynamic situations
(faster perception and reaction times). A fundamental challenge
for such a VRTS is to enhance the model with more classes
and more participants per each class. More data need to be
collected to create a more robust model. A balanced data set
would reveal interesting effects on recall and precision and, based
on the current performance, might even increase the overall
accuracy as the class with the least number of samples has the
highest precision values. Different kinds of models also need to
be investigated. For feature extraction, a network which is trained
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on human detection might provide even better results as the
head/face and other parts of the human anatomy are potentially
considered to be of importance. With 33 participants and an
average accuracy of 73.11% on the test set, this model is suitable
to be used for this kind of classification.

In a further step, to research the applicability of this model,
we need to focus on adequate training scenarios. The system
can, for example, be used to create an optimal synthetic scan
path. By using the knowledge, discovered by this model, one
can implement a generative adversarial network. This technique
learns to generate new data, in this case a new scan path, with
the same statistics as this training set. With enough data to
train gazePatchNet to provide strong robust classes, a synthesized
optimal scan path can be created. Should this be possible, it
could also become relevant from a practical sports perspective
to teach a certain gaze strategy obtained from the generative
model. The optimal scan paths identified for each scene could
be used to train the gaze behavior of athletes. The underlying
hypothesis is that an improved gaze strategy leads to a more
reliable recognition of cues and better decision-making based
on these cues. To investigate this, however, appropriate training
studies are necessary, which must provide information as to (a)
whether it is feasible for athletes to replace their gaze behavior,
developed over years, with a foreign behavior and, if so, (b)
whether the modification of their gaze behavior also leads to
better decision-making in the lab. Finally, the possibility of a
corresponding transfer to the field must be checked.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found here: https://atreus.i
nformatik.uni-tuebingen.de/hosp/goalkeeperexpertisesupvervise
dml_data.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Faculty of Economics and Social Sciences Ethics

Committee of the University of Tübingen. Written informed
consent to participate in this study was provided by the
participants’ legal guardian/next of kin. Written informed
consent was obtained from the individual(s), and minor(s)’ legal
guardian/next of kin, for the publication of any potentially
identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

BH: writing, analysis, coding, conception, and study. EK:
writing and supervision. FS: conduction of study, material, and
writing. OH: conduction of study, material, writing, and funding
acquisition. All authors contributed to the article and approved
the submitted version.

FUNDING

This research was supported by the DFB Academy of the
German Football Association (DFB). We acknowledge support
by the Open Access Publishing Fund of the University
of Tübingen.

ACKNOWLEDGMENTS

We thank our colleagues from the DFB (Marc Ziegler,
Thomas Hauser, Markus Weise) who provided insight
and expertise that greatly assisted the research. Moreover,
we thank the VfB Stuttgart youth academy and their staff
members (Mathias Munz, Michael Stügelmaier, André
Wachter, Nico Willig) for their tremendous support during
the project. Enkelejda Kasneci is a member of the Machine
Learning Cluster of Excellence, EXC number 2064/1 Project
number 390727645.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fspor.
2021.692526/full#supplementary-material

REFERENCES

Abernethy, B. (2010). Revisiting the relationship between pattern recall and

anticipatory skill. Int. J. Sport Psychol. 41, 91–106.

Appelbaum, G., and Erickson, G. (2016). International review of sport

and exercise psychology sports vision training: a review of the state-

of-the-art in digital training techniques. Exerc. Psychol. 11, 160–189.

doi: 10.1080/1750984X.2016.1266376

Bednarik, R., Eivazi, S., and Vrzakova, H. (2013). “A computational approach for

prediction of problem-solving behavior using support vectormachines and eye-

tracking data,” in Eye Gaze in Intelligent User Interfaces (London: Springer),

111–134.

Berry, J., Abernethy, B., and Côté J. (2008). The contribution of structured

activity and deliberate play to the development of expert perceptual and

decision-making skill. J. Sport Exerc. Psychol. 30, 685–708. doi: 10.1123/jsep.30.

6.685

Bird, J. M. (2019). Ready Exerciser One: Examining the Efficacy of Immersive

Technologies in the exercise domain. Ph.D. thesis, Brunel University London.

Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., and Ertl, T.

(2017). Visualization of eye tracking data: a taxonomy and survey. Comput.

Graphics Forum 36, 260–284. doi: 10.1111/cgf.13079

Castner, N., Kasneci, E., Kübler, T., Scheiter, K., Richter, J., Eder, T., et al. (2018).

“Scanpath comparison in medical image reading skills of dental students:

distinguishing stages of expertise development,” in Proceedings of the 2018 ACM

Symposium on Eye Tracking Research and Applications (New York, NY), 1–9.

Castner, N., Kuebler, T. C., Scheiter, K., Richter, J., Eder, T., Hüttig, F., et al.

(2020). “Deep semantic gaze embedding and scanpath comparison for expertise

classification during opt viewing,” inACMSymposium on Eye Tracking Research

and Applications (New York, NY), 1–10.

Catteeuw, P., Helsen, W., Gilis, B., and Wagemans, J. (2009). Decision-making

skills, role specificity, and deliberate practice in association football refereeing.

J. Sports Sci. 27, 1125–1136. doi: 10.1080/02640410903079179

Frontiers in Sports and Active Living | www.frontiersin.org 10 July 2021 | Volume 3 | Article 692526

https://atreus.informatik.uni-tuebingen.de/hosp/goalkeeperexpertisesupvervisedml_data
https://www.frontiersin.org/articles/10.3389/fspor.2021.692526/full#supplementary-material
https://doi.org/10.1080/1750984X.2016.1266376
https://doi.org/10.1123/jsep.30.6.685
https://doi.org/10.1111/cgf.13079
https://doi.org/10.1080/02640410903079179
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Hosp et al. Deep-Learning Expertise Classification

Chi, M. T., Feltovich, P. J., and Glaser, R. (1981). Categorization and representation

of physics problems by experts and novices. Cogn. Scie. 5, 121–152.

doi: 10.1207/s15516709cog0502_2

Cummings, J. J., and Bailenson, J. N. (2016). How immersive is enough?

a meta-analysis of the effect of immersive technology on user

presence. Media Psychol. 19, 272–309. doi: 10.1080/15213269.2015.10

15740

Discombe, R. M., and Cotterill, S. T. (2015). Eye tracking in sport: a guide for new

and aspiring researchers. Sport Exerc. Psychol. Rev. 11, 49–58.

Eivazi, S., and Bednarik, R. (2011). “Predicting problem-solving behavior

and performance levels from visual attention data,” in Proceedings

Workshop on Eye Gaze in Intelligent Human Machine Interaction at IUI

(New York, NY), 9–16.

Eivazi, S., Bednarik, R., Tukiainen, M., von und zu Fraunberg, M., Leinonen,

V., and Jääskeläinen, J. E. (2012). “Gaze behaviour of expert and novice

microneurosurgeons differs during observations of tumor removal recordings,”

in Proceedings of the Symposium on Eye Tracking Research and Applications

(New York, NY), 377–380.

Eivazi, S., Slupina, M., Fuhl, W., Afkari, H., Hafez, A., and Kasneci, E. (2017).

“Towards automatic skill evaluation in microsurgery,” in Proceedings of the

22nd International Conference on Intelligent User Interfaces Companion (New

York, NY: ACM), 73–76.

Ericsson, K. A., and Smith, J. (1991). Toward a General Theory of Expertise:

Prospects and Limits. Cambridge: Cambridge University Press.

Fegatelli, D., Giancamilli, F., Mallia, L., Chirico, A., and Lucidi, F. (2016). “The

use of eye tracking (et) in targeting sports: a review of the studies on quiet eye

(qe),” in Intelligent Interactive Multimedia Systems and Services 2016 (Basel),

715–730.

Feurer, M., and Hutter, F. (2019). “Hyperparameter optimization,” in Automated

Machine Learning (Cham: Springer), 3–33.

Hagemann, N., Strauss, B., and Cañal-Bruland, R. (2006). Training perceptual

skill by orienting visual attention. J. Sport Exerc. Psychol. 28, 143–158.

doi: 10.1123/jsep.28.2.143

Helsen, W. F., and Starkes, J. L. (1999). A multidimensional approach to skilled

perception and performance in sport. Appl. Cogn. Psychol. 13, 1–27.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hosp, B., Yin, Myat Su, H. P. S.-N. P., and Kasneci, E. (2021b). Differentiating

surgeon expertise solely by eye movement features. arXiv preprint

arXiv:2102.08155v1.

Hosp, B. W., Schultz, F., Höner, O., and Kasneci, E. (2021a). Soccer goalkeeper

expertise identification based on eye movements. PLoS ONE 16:e0251070.

doi: 10.1371/journal.pone.0251070

Klostermann, A., and Moeinirad, S. (2020). Fewer fixations of longer duration?

expert gaze behavior revisited. German J. Exerc. Sport Res. 50, 146–161.

doi: 10.1007/s12662-019-00616-y

Kredel, R., Vater, C., Klostermann, A., and Hossner, E.-J. (2017). Eye-

tracking technology and the dynamics of natural gaze behavior in sports:

a systematic review of 40 years of research. Front. Psychol. 8:1845.

doi: 10.3389/fpsyg.2017.01845

Kübler, T., Eivazi, S., and Kasneci, E. (2015). “Automated visual scanpath analysis

reveals the expertise level of micro-neurosurgeons,” in MICCAI Workshop on

Interventional Microscopy (Basel), 1–8.

Liu, N., and Han, J. (2018). “A deep spatial contextual long-term

recurrent convolutional network for saliency detection,” IEEE

Trans. Image Proc. 27, 3264–3274. doi: 10.1109/TIP.2018.28

17047

Mann, D. T., Williams, A. M., Ward, P., and Janelle, C. M. (2007). Perceptual-

cognitive expertise in sport: ameta-analysis. J. Sport Exerc. Psychol. 29, 457–478.

doi: 10.1123/jsep.29.4.457

Marasso, D., Laborde, S., Bardaglio, G., and Raab, M. (2014). A developmental

perspective on decision making in sports. Int. Rev. Sport Exerc. Psychol. 7,

251–273. doi: 10.1080/1750984X.2014.932424

Moran, A., Campbell, M., and Ranieri, D. (2018). Implications of eye tracking

technology for applied sport psychology. Journal of Sport Psychology in Action

9, 249–259. doi: 10.1080/21520704.2018.1511660

Murr, D., Larkin, P., and Höner, O. (2020). Decision-making skills of high-

performance youth soccer players. German J. Exerc. Sport Re. 51, 102–111.

doi: 10.1007/s12662-020-00687-2

Romeas, T., Guldner, A., and Faubert, J. (2016). 3d-multiple object tracking

training task improves passing decision-making accuracy in soccer

players. Psychol. Sport Exerc. 22, 1–9. doi: 10.1016/j.psychsport.2015.

06.002

Salvucci, D. D., and Goldberg, J. H. (2000). “Identifying fixations and saccades in

eye-tracking protocols,” in Proceedings of the 2000 Symposium on Eye Tracking

Research and Applications (New York, NY), 71–78.

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data

augmentation for deep learning. J. Big Data 6, 1–48. doi: 10.1186/s40537-01

9-0197-0

Slater, M. (2018). Immersion and the illusion of presence in virtual reality. Br. J.

Psychol. 109, 431–433. doi: 10.1111/bjop.12305

Snegireva, N., Derman, W., Patricios, J., and Welman, K. (2018). Eye

tracking technology in sports-related concussion: a systematic review

and meta-analysis. Physiol. Meas. 39, 12TR01. doi: 10.1088/1361-6579/

aaef44

Tenenbaum, G., Sar-El, T., and Bar-Eli, M. (2000). Anticipation of

ball location in low and high-skill performers: a developmental

perspective. Psychol. Sport Exerc. 1, 117–128. doi: 10.1016/S1469-0292(00)

00008-X

Tian, H., Tao, Y., Pouyanfar, S., Chen, S.-C., and Shyu, M.-L. (2019).

Multimodal deep representation learning for video classification.

World Wide Web 22, 1325–1341. doi: 10.1007/s11280-018-

0548-3

Travassos, B., Araujo, D., Davids, K., O’hara, K., Leitão, J., and Cortinhas, A.

(2013). Expertise effects on decision-making in sport are constrained by

requisite response behaviours–a meta-analysis. Psychol. Sport Exerc. 14, 211–

219. doi: 10.1016/j.psychsport.2012.11.002

Wade, J., Zhang, L., Bian, D., Fan, J., Swanson, A., Weitlauf, A., et al. (2016). A

gaze-contingent adaptive virtual reality driving environment for intervention

in individuals with autism spectrum disorders.ACMTrans. Interact. Intell. Syst.

6, 1–23. doi: 10.1145/2892636

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Hosp, Schultz, Kasneci and Höner. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Sports and Active Living | www.frontiersin.org 11 July 2021 | Volume 3 | Article 692526

https://doi.org/10.1207/s15516709cog0502_2
https://doi.org/10.1080/15213269.2015.1015740
https://doi.org/10.1123/jsep.28.2.143
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1371/journal.pone.0251070
https://doi.org/10.1007/s12662-019-00616-y
https://doi.org/10.3389/fpsyg.2017.01845
https://doi.org/10.1109/TIP.2018.2817047
https://doi.org/10.1123/jsep.29.4.457
https://doi.org/10.1080/1750984X.2014.932424
https://doi.org/10.1080/21520704.2018.1511660
https://doi.org/10.1007/s12662-020-00687-2
https://doi.org/10.1016/j.psychsport.2015.06.002
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1111/bjop.12305
https://doi.org/10.1088/1361-6579/aaef44
https://doi.org/10.1016/S1469-0292(00)00008-X
https://doi.org/10.1007/s11280-018-0548-3
https://doi.org/10.1016/j.psychsport.2012.11.002
https://doi.org/10.1145/2892636
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles

	Expertise Classification of Soccer Goalkeepers in Highly Dynamic Decision Tasks: A Deep Learning Approach for Temporal and Spatial Feature Recognition of Fixation Image Patch Sequences
	1. Introduction
	2. Materials and Methods
	2.1. Stimulus
	2.2. Data Collection
	2.3. Participants
	2.4. Procedure
	2.5. Image Patch Extraction
	2.6. Data Augmentation
	2.7. Transfer Learning
	2.8. Training and Testing
	2.9. Model Description
	2.10. Metrics

	3. Results
	4. Discussion and Conclusion
	5. Perspectives
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


