
A MinHash approach for fast scanpath classification
David Geisler

University of Tuebingen
Germany

david.geisler@uni-tuebingen.de

Nora Castner
University of Tuebingen

Germany
nora.castner@uni-tuebingen.de

Gjergji Kasneci
University of Tuebingen

Germany
gjergji.kasneci@uni-tuebingen.de

Enkelejda Kasneci
University of Tuebingen

Germany
enkelejda.kasneci@uni-tuebingen.de

ABSTRACT
The visual scanpath describes the shift of visual attention over time.
Characteristic patterns in the attention shifts allow inferences about
cognitive processes, performed tasks, intention, or expertise. To anal-
yse such patterns, the scanpath is often represented as a sequence
of symbols that can be used to calculate a similarity score to other
scanpaths. However, as the length of the scanpath or the number of
possible symbols increases, established methods for scanpath sim-
ilarity become inefficient, both in terms of runtime and memory
consumption. We present a MinHash approach for efficient scanpath
similarity calculation. Our approach shows competitive results in
clustering and classification of scanpaths compared to established
methods such as Needleman-Wunsch, but at a fraction of the required
runtime. Furthermore, with time complexity of O(n) and constant
memory consumption, our approach is ideally suited for real-time
operation or analyzing large amounts of data.

CCS CONCEPTS
• Human-centered computing→User models; User studies; Heuris-
tic evaluations; Laboratory experiments.
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1 INTRODUCTION
Our eyes move around to perceive and understand the world around
us in order to compensate for our limited- though clearest- foveal
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Figure 1: Workflow of the proposed MinHash approach in 4
steps: 1 The recorded scanpath is quantified using RoIs on
the stimulus. 2 Extraction and permutation of subsequences.
3 Approximate the Jaccard Index by randomly chosen pattern
matches using MinHash 4 Extract features for scanpath
classification.

vision. When viewing the world, we frequently focus our attention,
otherwise known as a fixation, before shifting to another area with a
rapid eye movement known as a saccade. The way how we explore
a scene is highly affected by our previous knowledge or expertise,
cognitive state or task, and even personality [Braunagel et al. 2017;
Eivazi et al. 2017; Gandomkar et al. 2018; Hoppe et al. 2018].

Besides representing cognitive states, the user’s scene exploration
can also be thought of as a modality of an adaptive system. One effort
towards smarter interaction with systems is automated scanpath anal-
ysis, in order to infer more information about the user or the context
(e.g. task-related intentions, expertise level, etc.). For example, in the
automotive context, efficient scanpath analysis in an online fashion
was employed to recognize the drivers’ level of awareness [Braunagel
et al. 2017]. Or in the context of HCI, characteristic scanpaths can
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be used as input to a computer interface [Esteves et al. 2015]. For
example gaze-based systems for smart home control offers a new
means of utilization for persons with mobile disabilities [Bissoli et al.
2019]. Furthermore, using the scanpath information as an additional
modality in adaptive systems can offer new ways for customized user-
interface designs. For instance, gaze analysis was often proposed as a
measure for adaptive training of medical personnel [Van der Gijp et al.
2017]. However, actually working training procedures are still scarce.
The main reason could be that the existing models do not generalize
well. Usually they are trained and evaluated on a certain data set. The
extracted features and patterns are then very specific to the classifica-
tion task and cannot be transferred to other application domains. For a
better generalization it is necessary to build models using data mining
from large amounts of scanpaths from different application domains.

A wide spread approach in scanpath comparison and classification
is to encode the scanpath as string. Subsequently, multiple scanpaths
are clustered and classified by their string similarity to each other.
However, the performance of those string based approaches depends
strong on the information encoded in the string. At the same time, the
more information are coded into the string, the larger the alphabet and
string length gets. In a driving scenario, for instance, the number of
relevant AoIs can be extremely high: different road users, road signs,
instruments, mirrors, etc. At the same time, many applications in the
driving domain require an online operating mode. But even in offline
mode, depending on the scenario, hundreds of AoI transitions can
quickly be observed. This, in turn, leads to long delays in the analysis
of the encoded strings. Consequently, researchers and developers are
forced to either reduce the number of AoIs, shorten the examination
periods or reduce the sample size.

We introduce MinHash, as fast scanpath comparison and classifi-
cation tool. Our approach equips the community with the ability to
efficiently analyze patterns of extremely large scanpaths, and thus
allows researchers more freedom in the string encoding of scanpaths
and mining patterns in huge amount of dataset. Our Approach reaches
classification rates, close to the state-of-the-art, but at moderate and
controllable runtime. Additionally, we provide the source and ready
to run binaries for linux on our GIT repository:

https://atreus.informatik.uni-tuebingen.de/geislerd/pe-tools-scanpath
In the following section we recapitulate the state-of-the-art in scan-

path analysis, with focus on string based approaches. In section 3 the
proposed MinHash approach is described in detail, and how it can be
used in order to classify scanpaths based on their similarity to each
other. Section 4 provides the evaluation of the proposed approach. Two
in terms of classification accuracy, and one about runtime. Finally, sec-
tion 5 and 6 state the limitations of our approach and the final remarks.

2 RELATED WORK
Scanpath analysis is part of the standard repertoire of every eye track-
ing researcher. Accordingly, there are already a multitude of different
approaches ranging from attention comparison to mixture models.
The review from Anderson et. al. gives a comprehensive overview
of the state-of-the-art in 2014 [Anderson et al. 2015]. In the follow-
ing, we concentrate on the fundamental scanpath analyzing tools and
complement Anderson et. al.’s review with more recent approaches.

Scanpath Similarity Besides the visual and manual evaluation of
scanpaths [Berger et al. 2012; Kübler et al. 2016; Raschke et al. 2014],

the most common automatic assessment is by their similarity to each
other.

One of the most well known methods to calculate the scanpath sim-
ilarity is MultiMatch. MultiMatch calculates the scanpath distance in
multiple dimensions, e.g. location and duration. The strength of Mul-
tiMatch is that it can be applied directly to the scanpath (in the form
of x-y coordinates). The similarity of two scan paths is determined
purely by their attributes. Shifts in the eye tracking signal, as well as
reversed fixation orders, can be compensated by MultiMatch, making
it more robust [Dewhurst et al. 2012; Foulsham et al. 2012; Jarodzka
et al. 2010]. However, it also means that semantic information is not
included in the scanpath distance.

Similarly, Eyenalysis maps the individual fixations of a scanpath
to the closest of a second scanpath. The similarity between the two
scanpaths is then calculated by the spatial distance of the mapped
fixations [Mathôt et al. 2012].

FuncSim, on the other hand, divides the scanpath into functional
sub units and calculates the similarity of two scanpaths within the sub
units [Foerster and Schneider 2014]. The subdivision of the scanpath
allows the input of semantic information.

String Similarity Many approaches use a string representation in
order to encode various scanpath properties and semantics into a one
dimensional signal (see figure 2 as example). Despite its weaknesses
due to possible quantization errors, these approaches are still very
successful in the calculation of scanpath similarity and subsequent
classification of cognitive states, e.g. task recognition [Kübler 2016].

The mapping of the scanpath to a string is usually done by Regions
of Interest (RoIs) in the stimulus. The RoIs can either be calculated
automatically: e.g. using a static grid, fixation clusters, or with image
processing methods [Fuhl et al. 2018a,b; Heminghous and Duchowski
2006; Kübler et al. 2014]. They can also be labeled manually, which
is generally a more accurate representation of the image or task se-
mantics.

The gold standard in the calculation of string similarities is the
Needleman-Wunsch algorithm, which calculates the costs of gap
operations in both strings to align one string to another [Needleman
and Wunsch 1970]. The Levenstein distance can be considered a
special case of the Needleman-Wunsch algorithm. In contrast to the
Needleman-Wunsch, only operations of the length one are allowed,
which reduces the runtime complexity fromO(n3) toO(n2) [Leven-
shtein 1966]. These approaches are highly investigated for scanpath
comparison, and work very well on short scanpaths [Busjahn et al.
2015; Castner et al. 2018; Cristino et al. 2010; Day 2010; Deitelhoff
et al. 2019].

However, the string editing distance has some drawbacks: First, the
runtime is not acceptable for long scanpaths. Second, the sequence
of symbols in the string usually represents the fixation sequence. It is
known that especially patterns in the transition between fixations con-
tains valuable information about the executed task or expertise [Cast-
ner et al. 2018]. However, such patterns are not reflected in a string
distance.

Subsequence matching SubsMatch takes this into account and
assesses the similarity of two scanpaths by the frequency of subse-
quences. Therefore, the string is subdivided into subsequences using a
sliding window. Each extracted subsequence is counted in a dictionary.
The similarity of two scanpaths is then calculated as the distance over

https://atreus.informatik.uni-tuebingen.de/geislerd/pe-tools-scanpath
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the frequencies of the subsequence [Kübler et al. 2014, 2017]. These
subsequences are particularly significant with regard to various clas-
sification problems, such as performed task or expertise [Castner et al.
2018; Kübler 2016; Kübler et al. 2015; Kübler and Kasneci 2015].

However depending on the length of the extracted subsequences
and variety of symbols in the string, the dictionary may become
extremely large. Thus, iterating over a union of two dictionaries to
calculate the frequency difference can be very costly. Conversely,
users are restricted in the number of used RoIs, or in the length of the
examined subsequences, in order to finish their work on time.

To reveal the full power of subsequence matching, our approach
tackles the runtime challenge: Using MinHash. MinHash allows to
calculate the similarity between the scanpaths efficiently as a Jaccard
Index approximation of string’s subsequences.

3 METHOD
MinHash is a widely used approach in the field of data mining and is
mostly used for clustering and classifying documents [Manaa and Ab-
dulameer 2018]. We adopted this approach to calculate scanpath sim-
ilarities in order to cluster and classify them subsequently. Therefore,
we quantify the scanpath on the stimulus using RoIs and extract subse-
quences. The frequency of the subsequences is then used to estimate
the Jaccard Index of two scanpaths using MinHash. The Jaccard Index
of the scanpaths to each other is then used to classify new scanpaths.

We have divided our approach into four successive steps as shown
in Figure 1, which will be introduced and discussed in the following.

Step 1 First, the gaze signal is quantized to a string of symbols S .
The quantification can be done using a static grid over the stimulus
– or if available – based on RoIs. Every time a fixation falls into a grid
cell or RoI, S gets expanded by the corresponding symbol. In addition
to spatial representation, other attributes such as fixation duration,
saccade length or direction can also be used for quantification. For
example, the fixation period is often represented as repetition of the
same symbol. Or depending on the saccade length a extra symbol is
attached.

Figure 2 shows an exemplary quantification of a scanpath on the
“Unexpected Visitor“ image from the Yarbus experiment. It combines
the grid for the background with semantic RoIs on for the foreground.

Step 2 Extract Word Frequencies Our method assesses the
similarity of two scanpaths based on the frequency of visual scanpath
subsequences. In the following steps, we will refer to a subsequence
as wordw . In the simplest case, a word of n consecutive symbols rep-
resents the sequence of fixation transitions. Yet, the symbol does not
only represent the spatial region of the stimulus, but it also includes
semantic information, and the interpretation of such a word becomes
more significant. For example, the illustrated in Figure 2, the word
ATQ not only contains the information that the fixations has fallen into
a certain area of the stimulus, but also implies that there were transi-
tions between different head-related RoIs. These patterns are known to
be particularly descriptive in terms of various classification tasks, such
as predicting the currently performed task of the subject [Castner et al.
2018; Kübler 2016; Kübler et al. 2015; Kübler and Kasneci 2015].

To extract the words in a scanpath, our method uses a sliding win-
dow approach. We also suggest to not only extract words of a fixed
length. Our approach allows to extract words of different length and
with gaps. Thus, scanpath subsequences are matched even with small
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the gap at Z, leading to a frequency of two for the word TQAK in
DSi .

variations. Figure 3 shows an example of the extraction of words with
a length of four (wmin =wmax = 4) and one optional gap (wgap). In
addition, it is usually advantageous to scan the scanpath backwards
for words. Thus, subsequences can be depicted to the same word, even
if they differ in one place or are reversed.

Each extracted wordw of the scanpath S is counted in the Dictio-
naryDS in form of a (chained) hash table withnb buckets and the hash
function h(w)−→[0,nb ). Until this step, the procedure is similar to
SubsMatch. In the next step, SubsMatch would calculate the distance
of the dictionaries DS0 , ...,DSn with each other using any distance
metric [Kübler et al. 2014], or feed it directly as a feature vector
in a machine learning process [Kübler et al. 2017]. However, it is
necessary to iterate over all words present in DS0 ,...,DSn . Depending
on the alphabet size na and extracted word lengths, this can become
extremely costly:

∑wmax
wn=wminn

wn
a . This extreme case becomes more

likely with increasing scanpath length. Instead, MinHash compares
nh random word frequencies. Therefore, the extracted words are addi-
tionally indexed in nh hash tables DH0 ,...,DHnh−1

using the disjunct
hash functionsh0(w),...,hnh−1.
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Algorithm 1 shows this step as pseudo code. Extracting and count-
ing the word frequency fromS needs to iterate over the whole scanpath,
which leads to a runtimeO(n). Accessing hash tables for a constant
word length is a constant operation. The inner loop does not impact
the runtime since nh is constant.

Algorithm 1: Word frequency counting
Input: S
Data: DH0. . .nh−1

Result: DS
1 foreachw ∈S do

/* Increase the frequency

of the word w in the scanpath dictionary DS */

2 DS (h0(w))←−DS (h0(w))+1
3 foreach DHi ∈DH0. . .nh−1

do
4 ifhi (w)<DHi then

/* Add

word w to the global dictionary DHi */

5 DHi (hi (w))←−w

Step 3 MinHash The underlying idea is that for a optimal (col-
lision free) hash function,h applies:

JDSk ,DSl
=P

(
hmin

(
DSk

)
=hmin

(
DSl

) )
, (1)

where JDSk ,DSl
is the Jaccard index of the words in the dictionary

DSk andDSl .hmin(D) extracts the minimal hash value of the words in
the dictionary D. P(...) is the probability that the minimal hash value
of the dictionary DSk is equal to the minimal hash value of DSl . In
other words, the probability that the first word in the hash table of
the dictionary DSk is equal to the first word in the hash table of the
Dictionary DSl is equal to the Jaccard Index of DSk and DSl .

Then, the probability P(...) can be approximated by building many
dictionaries D(0)S ,...,D

(nh )
S using different hash functions h0 (w),...,

hnh (w):

P
(
hmin

(
DSk

)
=hmin

(
DSl

) )
≈

nh∑
i=0

match
(
D
(i)
Sl
(0),D(i)Sk (0)

)
·n−1h , (2)

with

match
(
D
(i)
Sl
(0),D(i)Sk (0)

)
=

{
1 if D(i)Sl (0)=D

(i)
Sk
(0)

0 otherwise
, (3)

where D(i)(0) is the first entry of the hash table in the dictionary D
using the hash functionhi (w). However in our case, words may occur
multiple times in a scanpath. Therefore, we deal with word frequen-
cies. Instead of checking whether a word is present in both scanpaths,
the match (...) function should estimate whether the frequency of
the both words matches and how it contributes to the Jaccard Index.
For this purpose, the word frequencies are binarized by means of
nt randomly selected hyperplanes T . If both word frequencies are
on the same side of the hyperplane, it is counted as a match and the
Jaccard Index is increased proportionally. Figure 4 visualizes this
procedure using four hyperplanesT0,...,T3. The closer the respective
word frequencies are to each other, the more often they fall on the
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the frequency domain of the words TAKZ and TQAK for four
exemplary scanpaths S0, ... ,S3. The Jaccard index is calculated
from the Signature matrix, which indicates the side of the
scanpath Si regarding to a hyperplaneTi .

same side of the hyperplane, leading to a higher Jaccard Index. The
match(...) function is, therefore, redefined as following:

match
(
D
(i)
Sl
(0),D(i)Sk (0)

)
=

nt∑
j=0

thresh
(
D
(i)
Sl
(0),D(i)Sk (0),Tj

)
·n−1t , (4)

where thresh(...) returns 1 if both word frequencies are on the same
side of the hyperplaneTj , otherwise 0.

For the calculation of many scanpaths, it is necessary to build nh
dictionaries for each scanpath, which leads to extreme memory con-
sumption. For the application on common hardware it is advisable
to do this calculation once for all scanpaths together: DH0 ,...,DHnh−1

.
These dictionaries also contain words that are not part of the scanpath
pair DSk ,DSl . Thus, it is necessary to iterate over DHi until the cur-
rent word is contained in DSk or DSl ; but the resulting overhead is
small and reduces for longer scanpaths (see the runtime evaluation
in section 4).

Algorithm 2 shows the implementation of the proposed MinHash
approach. In addition to the weighting by the hyperplanes,w |w |−wmin

weight
also includes the word length |w |. The idea is that longer words occur
less often in two scanpaths, but are more meaningful about similarity.
c accumulates all weights and normalizes the estimated Jaccard Index
at the end into the value range between 0 and 1. Please note that c also
provides a good confidence measure about the approximation of the
Jaccard Index JDSk ,DSl

.

Step 4 Classification The classification of an unknown scan-
path Stest can be realized over the Jaccard Index to the trainings
scanpaths Strain = (S0,...,Sn ) and their related class labels Ctrain =
(C0,...,Cn ). Then the majority class label of the k most similar train-
ings scanpath is predicted asCtest: a kNN classifier.

However, considering the similarity matrices in figure 6 (ETRA
challenge 2019), it is apparent that one class of scanpaths (Natural)
does not form a distinct cluster. Rather, the similarity of the scanpaths
seems to be equally similar to all others. The prediction of scan paths
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Algorithm 2: MinHash
Input: DSk ,DSl
Data: DH0. . .nh−1

Result: JDSk ,DSl

1 c←−0 and JDSk ,DSl
←−0

2 foreach DHi ∈DH0. . .nh−1
do

3 foreachw ∈DHi do
/* Only consider words that occur at least

in one of the two scanpaths Si and Sj. */

4 if DSk (hi (w))>0∨DSl (hi (w))>0 then
/* Weighting of the match/mismatch

found based on the word length. */

5 f ←−w
|w |−wmin
weight

/* Count

all weights for later normalization. */

6 c←−c+ f
/* Apply random hyperplane thresholds

T0, ...,Tnt −1 for local sensitivity. */

7 foreachT ∈T0...nt−1 do
8 if DSk (hi (w))>T =DSl

(
hj (w)

)
>T then

/* Sk and Sl on the same side of the

hyperplane T. Increase Jaccard

Index approximation JDSk ,DSl
. */

9 JDSk ,DSl
←− JDSk ,DSl

+ f ·n−1t

10 break

11 JDSk ,DSl
←− JDSk ,DSl

·c−1

of this class by the k nearest neighbors would likely fail. As long
as there is only one such weakly pronounced class, however, this
can be handled with a small trick. Instead of choosing the k most
similar scanpaths, the k scanpaths with the most similar Jaccard In-
dices are chosen. Therefore, a similarity matrix Jtrain over all training
scanpaths is calculated. Each row and column of the matrix Jtrain
corresponds to one training scanpath. Thus, the element at the row r
and column c represents the Jaccard Index JDSr ,DSc

. Next, the Jac-
card Index of the scanpaths Stest is calculated to all training scanpaths
Strain: Jtest= JDS0 ,Dtest ,...,JDSn ,Dtest . For the classification step, the k
most similar (euclidean distance) rows in Jtrain to Jtest are determined.
Since, each row in Jtest corresponds to a training scanpath, and thus to
Class label, the predicted class label can be determined by a majority
decision. Figure 5 shows the procedure with regard to the Jaccard
similarity of the seven scanpaths S0,...,S6 to S0 and S1.

Yet, this approach can also be used with other classifiers instead
of kNN. Algorithm 3 shows an abstract workflow to train and classify
scanpaths based on the Jaccard Similarty. The functions fit () and
predict() can be exchanged with any classification method that sup-
ports multidimensional features; which is beneficial especially if the
classification must be in real time.kNN has the disadvantage of a lazy-
learning approach. Meaning, the modelling does not take place during
training, but at the time of prediction. An eager-learning approach,
like the SVM, creates a model (hyperplane) while training, and does
not run over all training data for the prediction. We had favorable
outcomes using a linear SVM and tree classifier. Yet, the performance

kNN Classification

S1

S0

S2

S3

S1

S0

S4

S5 S6

k 
= 

4

0 1
4

0
3
4

1
4

3
4

1

1

1
2

1
2

Jaccard Index

Ja
cc

ar
d 

In
de

x

Figure 5: kNN classifica-
tion using the Jaccard
Index of the scanpath S0
(horizontal axis) and S1
(vertical axis) to the scan-
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sified as blue, since three of
the four nearest neighbors
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of these methods depends strongly on its parametrization, we limited
ourselves tokNN in the following to keep the evaluation neat and clear.

Algorithm 3: Classification
Input: S0,...,Sn and C0,...,Cn and Stest
Result:Ctest
/* The feature vector

to train the classifier is the square matrix J of

the pairwise Jaccard Index JDSk ,DSl
of the training

scanpaths S0, ...,Sn, respective their dictionaries

DS0 , ...,DSn . Please note JDSk ,DSl
= JDSl ,DSk

. */

1 Jtrain←−©­­­­­­«

1 JDS0 ,DS1
... JDS0 ,DSn

JDS1 ,DS0
1

. . .
...

...
. . . 1 JDSn−1 ,DSn

JDSn ,DS0
... JDSn ,DSn−1

1

ª®®®®®®¬
Ctrain←−{C0,...,Cn }M←−fit(Jtrain,Ctrain)

/* Analogous to the

training input Jtrain, the test vector is assembled

as the pairwise Jaccard Index Jtest of the training

scanpaths Strain to the test scanpath Stest */

2 Jtest←−
(
JDS0 ,DStest

... JDSn ,DStest

)
3 Ctest←−predict(M,Jtest)

Implementation details In the following we give some short re-
marks to the implementation details, in order to optimize the trace-
ability in a practical application of our approach:

(1) MinHash makes extensive use of hash tables. In the most stan-
dard libraries. they are implemented as chained [Leiserson
et al. 2001]. Meaning that nb buckets are reserved. The hash
function assigns any word to one of these buckets. Collisions
are solved by maintaining a linked list in each bucket. Addition-
ally, a second linked list is maintained referencing active (non
empty) buckets. This enables fast iteration over the contained
elements. However, it implicate two issues: (i) no permuta-
tion inside a bucket→ the permutation is limited by nb . It is
therefore advisable to select nb large enough depending on
the number of different words in a scanpath. (ii) The order of
the bucket activation is reconstructed by the active bucket list.
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Together with (i), the insertion order is partly reconstructed
when iterating. For algorithm 2, it must assured to iterate over
the buckets in their logical order, not in their acivation order.

(2) The random hyperplanes in algorithm 2 can be efficiently ap-
proximated by a cosine similarity [Singhal et al. 2001].

(3) Our approach benefits from the fact that almost all steps can be
parallelized: The extraction of words by using different threads
for each window size and gap position. The MinHash by using
dedicated threads for each permuted dictionary DHi . And the
pairwise calculation of the Jaccard Index.

4 EVALUATION
The evaluation does not focus on the absolute classification accuracy,
but rather on how close the classification accuracy of MinHash is
to the state of the art, at a shorter runtime. We compared MinHash
with SubsMatch and Needleman-Wunsch. All three approaches are
string-based methods and thus use the same input features (quantized
scanpath from step 1 ). In addition, all three approaches calculate sim-
ilarities or distances between strings, which makes it possible to use a
uniform classification method (kNN from step 4 ). This ensures that
the actual novelty (step 3 ) can be evaluated and ranked as isolated
as possible to the existing approaches.

We evaluated our approach on two different datasets: The ETRA
challenge dataset from 2019, and a self recorded Yarbus dataset with
three different tasks. Furthermore the runtime behavior for different
scanpaths lengths and number of subjects was investigated using
synthetic data.

ETRA challenge 2019 The dataset from the ETRA challenge
2019 [McCamy et al. 2014; Otero-Millan et al. 2008] consists of
345 task related recordings. 115 each for free viewing a natural scene
(15 different stimuli), image puzzles (18 different stimuli), and find
waldo (15 different stimuli). The gaze signal was quantizied by a fixed
7×7 grid over the stimulus. Then, all sequences of consecutive re-
peating symbols shorter than 8 where deleted (8 consecutive symbols
correspond to∼100ms @ 75Hz), since they were considered too short
as a valid fixation. Sequences longer than or equal to 8 symbols were
reduced by the factor of 8, but truncated to maximal 3 consecutive
symbols. E.g.:

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE︸                                                    ︷︷                                                    ︸
32×E→EEE

AATTTTTTTTT︸         ︷︷         ︸
9×T→T

ETERRRRRRRR︸       ︷︷       ︸
8×R→R

EEAAAAAAAAAAAAAAAAA︸                        ︷︷                        ︸
17×A→AA

TT

Is reduced to: EEETRAA. This leads to an enormous reduction of the
scanpaths. However, the average scanpath length is still 313 symbols
(min. 173, max. 500).

MinHash has been configured withwmin=2,wmax=3, a valid gap
wgap=1, and a base weight ofwweight=1.2. The evaluation was con-
ducted as a 345-fold cross validation using Matlabs crossvalind
function to partition the training and test set. The classification was
performed as described in section 3 step 4 using kNN (k=4) in the
Jaccard Index domain, using matlabs fitcknn function. The pre-
diction target was the performed task of the subject (natural viewing,
puzzle, where’s Waldo) across all stimuli.

Figure 6 shows the results for different numbers of hash functions
nh = {64,128,256,512}, and for SubsMatch (Needleman-Wunsch was
runtime conditionally not applicable). As the number of different hash
functions increases, the accuracy of the classification increases until
it saturates at about 88% at nh =256. SubsMatch achieves an accuracy
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Figure 6: Each column represents a cross validation using the
ETRA 2019 challenge dataset. The first 4 columns show the
classification using MinHash across different numbers of hash
functions. The last column shows the result of SubsMatch. The
first column shows the pairwise calculated similarity of two
scanpaths. Each row and column corresponds to one scanpath.
For the classes Puzzle and Waldo, distinct clusters are recog-
nizable. The second row shows the similarity values of the first
row in the similarity domain of scanpath S0 and S173. Even when
considering only 2 of 345 dimension, a clear cluster formation is
recognizable with increasing number of hash functions. The last
row shows classification performance of the cross validation as
confusion matrix.

Head Body Miscellaneous

Figure 7: Grown semantic
RoIs of heads, bodies, and
various scene parts on one of
the Defending Yarbus [Borji
and Itti 2014] stimuli.

of 91%. However, MinHash takes only the half of the processing time
for nh =256, by almost same performance as subsmatch.

Yarbus This dataset is much more challenging in terms of classi-
fication performance compared to the ETRA2019 challenge dataset.
The recording includes 23 subjects. 10 images from the Defending
Yarbus [Borji and Itti 2014] were presented to each subject in ran-
domly permuted order for 10 seconds. For each image, the subject
was asked to solve one of three different tasks:

(1) Estimate ages of the people
(2) Remember clothes
(3) Estimate how long the visitor had been away

The scanpaths were created using semantic RoIs with a background
grid of 3× 3. Therefore heads, bodies, and other prominent image
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areas were marked with rectangles. In order to compensate for noise
and inaccuracies in the gaze signal, and to eliminate overlapping RoIs,
we grow the RoIs until they encountered each other or reached a max-
imum size (see figure 7). The resulting scanpath was reduced similar
to the ETRA 2019 challenge dataset, but with a reduction factor of 6
(60Hz eye tracker). This resulted in 10×23 scanpaths with an average
length of 26 symbols (min. 5, max. 36).

Analogous to the ETRA 2019 Challenge, a cross validation with
wmin=2,wmax=3, a valid gapwgap=1, a base weight ofwweight=1.2,
and kNN with k=4 was performed. Figure 8 shows the classification
performance of MinHash with nh =128, SubsMatch, and Needleman-
Wunsch. The prediction target was the task performed per stimulus. It
is noticeable that this challenge is much more difficult than the ETRA
2019 challenge. The best result was achieved by SubsMatch with an
accuracy of 59% and a chance of 33%. However, this evaluation clearly
shows the limits of the MinHash approach. For such short scanpaths
and few subjects, MinHash is not able to play out its speed boost signif-
icantly: Even Needleman-Wunsch is faster. At the same time, due to its
design, MinHash can never achieve better accuracy than SubsMatch.

Runtime MinHash has a complex runtime behavior. In theory,
MinHash’s runtime is O(n), since it needs n operations to scan the
input scanpaths and to build up the hash tables. However, since all
considered algorithms have to read the input with a runtime ofO(n),
we only examine the part of the actual similarity calculation below.
In this case, the runtime of MinHash is constant for large n.

For the runtime evaluation we used a desktop PC with moderate
hardware: i5-4590 @ 3.30GHz and 16GB RAM. All methods where
tested using a single thread. The evaluation was done by random
generated scanpaths, since it reflects the worst case scenario for the
MinHash and SubsMatch algorithm. Therefore, a uniform distributed
random sequence of symbols of a given alphabet and a fixed scanpath
length was generated. Thus, each word has the same likelihood to
be part of the scanpath, which leads to huge hash tables. For short
but many scanpaths, MinHash suffers from many different words in
the dictionary, but a low probability to find them in a single scanpath.
Therefore, it iterates through the Dictionary until the word appears in
one of the compared scanpaths (see algorithm 2 line 4). This event can
be prevented by creating nh dedicated hash tables for each scanpath
pair. These hash tables contain only words that occur in at least one of
the two scanpaths. Instead of iterating through DHi , the first element
can be accessed directly. However, this approach is not technically
feasible in most cases in terms of memory consumption. In addition,
the overhead would remain linear during indexing, but still increases
significantly.

Additionally, we can show that the actual number of iterations is
comparatively low for large scanpaths. The probability that q itera-
tions on the global dictionary DHi are necessary in order to obtain a
word that is part of the scanpath dictionaries DSk or DSl can be de-
scribed as a geometric distribution with an expected value of [Dekking
et al. 2005]:

E[P(X =q)]= (1−p)·p−1, (5)

where p is the probability to find a word that is part of one of the both
scanpaths at a random position in DHi :

p=
��DSk ∪DSl

��·��DHi

��−1, whereby DHi =

n⋃
j=0

DSj , (6)
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Figure 8: Evaluation of MinHash, SubsMatch, and Needleman-
Wunsch. The first column shows the 10 presented stimuli [Borji
and Itti 2014]. For each stimulus, subjects completed one of three
tasks: (Task 1) Estimate ages of the people, (Task 2) Remember
clothes, (Task 3) Estimate how long the visitor had been away.
The following three columns show the confusion matrix for the
classification of the task performed by the subject.
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Figure 9: Shows the runtime behavior of the MinHash approach
as well as of SubsMatch and Needleman-Wunsch with increas-
ing scanpath length. Needleman-Wunsch is O

(
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)
(or O

(
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)
as

Levenstein distance). Assuming that a scanpath is a random
process, the runtime of SubsMatch and MinHash saturates for
long scanpaths.

which resolves to:

E[P(X =q)]=
��DHi

��·��DSk ∪DSl
��−1−1. (7)

Further, for long scanpaths applies:

lim
|Sk ,Sl |→∞

��DSk ∪DSl
��= ��DHi

��, (8)

respectively:

lim���DSk ∪DSl

���→∞E[P(X =q)]=0, (9)

under the assumption that a scanpath is a random process of symbols.
Fun fact: p is the Jaccard Index of the union of the Dictionaries DSk
and DSl to the global dictionary DHi .

Figure 9 shows the runtime of the Needleman-Wunsch, SubsMatch,
and MinHash algorithm for different scanpath lengths. For two scan-
paths, the duration of MinHash is almost constant for different nh
but increasing scanpath length |S |. However the runtime behavior at
64 scanpaths shows an interesting effect. First, the runtime increases
for larger scanpaths. This is expected, since the number of words in
the dictionary grows faster than the likelihood of a word to be in the
scanpath. However, after a certain point the runtime decreases, and
saturates on a certain level. This is a remarkable behavior for an algo-
rithm, and is attributed to two competing effects: First, the dictionary
size saturates at the level where all possible words are indexed. At this
point, the negative impact of larger scanpaths also saturates. Second,
the likelihood of a word to be part of a scanpath increases, and thus,
less iterations for each hash permutations are necessary to find a word
that is part of at least one of the compared scanpaths. Figure 10 shows
this effect more emphasized. Comparing more than 32 scanpaths,
MinHash is slower for short scanpaths (256 symbols) than for long
scanpaths (512 symbols).
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Figure 10: Shows the influence of the increasing number of scan
paths for a fixed scanpath length.

The first effect also applies to SubsMatch. Yet, SubsMatch does not
use a global dictionary, but uses the dictionaries of the respective scan-
paths:DH0 =DSk ∪DSl . With increasing scanpath size, the probability
increases that DH0 contains all words, and the runtime saturates.

5 LIMITATIONS
The evaluation on the Yarbus dataset shows that MinHash is not suited
for every dataset. Only if the scanpath length in relation to the number
of scanpaths is large enough, MinHash becomes really fast compared
to SubsMatch (and to Needleman-Wunsch anyway). It should also be
noted again, that MinHash approximates the Jaccard Index by testing
nh words, and therefore cannot achieve the classification performance
of SubsMatch. SubsMatch calculates the Jaccard Index completely
over all extracted words.

In addition, despite the global dictionary, the memory requirements
for many words can become very extensive. For the calculation of
the similarity matrix Jtest in the ETRA 2019 challenge evaluation,
∼170MB of the working memory is required with nh =256,wmin=2
and wmax = 3. For the calculation with wmax = 4, there are already
more than 500MB required.

6 FINAL REMARKS
We have presented a method based on MinHash that efficiently esti-
mates the Jaccard Index in a quantizied scanpath with large length
and word variety. On the Etra 2019 challenge dataset, we were able to
almost achieve the classification performance of subsmatch at a sig-
nificantly lower runtime. The evaluation also showed that this runtime
advantage increases with increasing input size. Thus, MinHash is par-
ticularly suitable for data mining in large quantities of long scanpaths.
This provides the community a tool that allows to encode extensive
information when quantizing scanpaths without the exploding alpha-
bet and scanpath size affecting the classification runtime. At the same
time, the Jaccard Index approximation of MinHash is mathematically
reasoned and cleanly proven, which supports the validity of derived
propositions.

Our C++ implementation of MinHash, SubsMatch, and Needleman-
Wunsch is freely available (including Matlab interface) on our public
GIT repository. Linux users can also use the ready to run binaries:

https://atreus.informatik.uni-tuebingen.de/geislerd/pe-tools-scanpath

https://atreus.informatik.uni-tuebingen.de/geislerd/pe-tools-scanpath
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