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Fig. 1. The workflow of our experiment: The raw gaze data is transformed into sets of scanpath images, each
set contains different engineered features commonly found in the eye-tracking literature. The sets are each
used as model input into a VGG-16 Convolutional Neural Network and evaluated using k-fold cross-validation
and, in a separate trial, using a holdout test set. We also evaluate the sets of scanpaths using a SVM Image
Classifier. The resulting metrics from each model experiment are reported for each set of scanpath images.

Image classification models are becoming a popular method of analysis for scanpath classification. To imple-
ment these models, gaze data must first be reconfigured into a 2D image. However, this step gets relatively little
attention in the literature as focus is mostly placed on model configuration. As standard model architectures
have become more accessible to the wider eye-tracking community, we highlight the importance of carefully
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choosing feature representations within scanpath images as they may heavily affect classification accuracy. To
illustrate this point, we create thirteen sets of scanpath designs incorporating different eye-tracking feature
representations from data recorded during a task-based viewing experiment. We evaluate each scanpath design
by passing the sets of images through a standard pre-trained deep learning model as well as a SVM image
classifier. Results from our primary experiment show an average accuracy improvement of 25 percentage
points between the best-performing set and one baseline set.

CCS Concepts: • Human-centered computing→ Human computer interaction (HCI); • Computing
methodologies → Feature selection; Computer vision representations; • Applied computing → Psychology.

Additional KeyWords and Phrases: Scanpaths, Feature engineering, Computer vision, Image processing, Signal
processing, Eye movements and cognition, Visual search behavior, Machine learning
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1 INTRODUCTION
Eye-tracking research involves high level abstraction of complex cognitive processes from the eye
movement events. The scanpath – the patterns of the eye movements evoked by specific tasks
– offers further insight into these complex strategies by providing a more detailed depiction of
either temporal, spatial, or both characteristics. Comparing scanpaths can create groupings based
on sequence similarity, transition frequencies, etc. However, classification based on the scanpath
features can predict which group or task a scanpath belongs to based on the learned patterns
attributed to specific groups. Scanpath classification has been used to successfully determine
experts from novices [11, 34, 35], neurological disorders [18, 72, 75, 76], and cognitive states [8, 50].
These are only a small facet of what scanpath classification can be used for. Thus, there is still a
growing demand for novel approaches to scanpath classification.

The research on scanpath classification models has evolved over the past years in order to keep
up with the state of the art from a number of fields. For instance, perspectives from computer
vision (i.e., saliency models) and bioinformatics (i.e., Needleman-Wunsch algorithm) promoted
new insights into how the the gaze behavior is represented in a model. More recently, scanpath
classification has benefited greatly from advancements in machine learning and deep learning.
These models have promoted scanpath classification so that they can handle high dimensional data
and are able to easily recognize patterns [2]. However, with these models, the concept of scanpath
representation becomes even more crucial. One ever-growing perspective that is gaining traction in
scanpath classification is image classification. This work takes an in-depth look into how scanpaths
can be represented as images for the most optimal feature input into image classification models.

Supervised image classification models have enjoyed a rise in popularity for a little over a decade
now. This can be attributed to a variety of factors such as the creation of new machine learning
frameworks such as Keras[14] designed to empower people from non-technical backgrounds
with the ability to implement these models. In addition, advances in training regimes such as
the introduction of transfer learning and fine-tuning strategies overcome both the problems of
limited data, which prevented the use of these models in many domains, and the time-consuming
task of configuring a network from scratch [22, 52, 53, 82]. Taken together, these factors have
encouraged the implementation of image classification algorithms across a variety of different
domains as wide-ranging as medical applications to cybersecurity, with results often outperforming
traditional methods of analyses [4, 65]. The expanded use of image classification models has led
to the rather interesting phenomenon of researchers devising innovative and creative methods to
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represent features of their recorded data as an image in order to take advantage of the power of
image classification models. Examples of this practice include, music classification tasks where
the frequencies of the music are transformed into spectrograms and used as model input for a
convolutional neural network (CNN)[15], electrocardiogram (ECG) arrhythmia classification where
researchers transformed the recorded signal into an image[41], and algorithms designed to convert
tabular data into images [86], opening the potential of image classification models to many more
domains of science.
The idea of representing the scanpath data as an image conforms to 2D spatial understanding.

Where some other approaches reshape the scanpath to an array (Needleman-Wunsch and other
string comparison approaches), the 2D approaches normalize the scanpath to align with the com-
mon visualization methods. For instance, heatmaps and other attention distribution visualizations
have been a prominent metric for scanpath assessment [7, 10, 28, 29, 32, 33, 37, 61, 84]. Moreover, in-
corporating saliency models1 offers another layer of semantic information (e.g. scene understanding
and perceivability) [12, 24, 29, 30, 47, 55, 63, 79]. This harmony of scene semantics and attentional
effects provides input for deep learning that works towards human perception [69]. The recent
literature on deep learning for image understanding (w.r.t. segmentation, classification, etc.) has
also contributed a higher level of automated semantic extraction for scanpath analysis [5, 46, 74, 83].
However, using image classification models on the scanpath rather than the image, bring the focus
back to attentional models not confined to specific images or features.
The field of eye-tracking has seen a development of image classification models that achieve

state-of-the-art performance across both free-viewing and task-based viewing experiments. We
refer the readers to the related work section for further details on image classification models.
While these models produce competitive results compared to more traditional approaches, we aim
to showcase a gap in the literature regarding the construction of the input feature space when
using gaze data as input to image classification algorithms. To address this gap in the literature, we
run a series of experiments by first creating sets of scanpath images; all of the images are generated
from the same data, yet differ in how they represent the gaze data. We systematically test the
effects of building three of the most commonly associated features of gaze data into the images,
namely saccades, fixations, and Areas of interest (AOIs). Additionally, we investigate aspects such
as sequential coloring of saccadic information or aggregating fixations, which make these features
more salient to a kernel-based model. Then, we test the impact of adding these features to the
input and report model accuracy and other metrics. We conduct a series of model tests using a
pre-trained VGG-16 and a simple SVM model and compare metrics such as Accuracy, F1-score, and
AUC to assess performance differences across the different sets of scanpath images.

We explore this scanpath feature engineering and model assessment on data published by Mar-
chiori et al.. This data consists of a task-based viewing experiment where participants play normal-
form matrix games against a computer employing a strategy based on the Nash Equilibrium. The
Nash Equilibrium is a game theoretical concept where, in a given game, no player has anything
to gain by changing their own strategy w.r.t the known strategy of the counterpart [26]. We
transformed this task into a binary classification task attempting to classify only if the participant
selects the Nash Equilibrium or not. Further details of the dataset are found in section 3.1. We
chose this experiment as the environment is sparse, meaning that the scanpaths are relatively
simple. Also, the relationship between choices and gaze behavior is well established in the literature
[20, 48, 49, 58, 59]. We provide access to the code at the following data used at the following links
https://github.com/vbmaq/ImageMaker & https://osf.io/fhmjy .

1Computer vision based models that reflect biological processes of how humans visually process a scene.
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2 RELATEDWORK
2.1 Scanpath as an Image for Classification
As deep learning models for image classification covers a vast range of literature in scanpath
prediction and generation, we restrict our literature review classification of human scanpaths.
Defining saliency as an attention representation, fixations maps created from the whole scanpath
were used as input for a CNN and clustering of scanpath behaviors related to autism spectrum
disorder (ASD) [23, 60]. Heatmaps have also been used as input into multiple deep learning models
for robust schizophrenia classification [42] and task classification [78]. To incorporate temporal
information, CNN-LSTM networks using scanpath-based patches from a saliency-predicted map
could accurately classify autism spectrum disorder [13, 75]. [25] created collective snapshots of
the gaze based on group attention at time windows as input for an LSTM. Somewhat similar,
gaze coupled with activation maps fed into a neural network was able to reconstruct the image
from semantic features extracted from the scanpath [66, 73]. These attention map approaches
often employ techniques, such as Gaussian blurring, to the raw data. This approach offers well
supported means of normalizing noisy signals. Whereas others have employed different creations
of scanpaths images for CNN classifications: For instance, Markov Transition Fields [78, 81], graphs-
based [17, 30, 77], and PCA [42, 45].

Another representation alternative is to create images from the raw scanpath data. This approach
avoids pre-processing, which could remove potentially relevant information for the model [42].
[71] created scanpath images from the raw gaze (also, lines connecting x,y coordinates together)
for the whole duration and for five second intervals and used them for input for a CNN and
RNN, respectively for combined classification of confusion.[1] created grayscale scanpath images
by connecting saccades and using a an intensity weighting based on the fixation densities were
able to classify ASD gaze using a CNN. Researchers developed a generative model for scanpath
classification that transformed gaze data into emojis and then used the emojis to classify scanpaths
[27]. Initially, it encodes gaze data as a compact image with the spatial, temporal, and connectivity
represented as pixel values in the red, green, and blue channels, respectively. Recently, [3] looked
at different representations of scanpaths for ASD classification. They employed temporal coloring
to represent saccade velocities and fed this input into neural networks to achieve high classification
accuracy. In a similar vein to our experiment, [6] represented the scanpath as an image using
symbols to encode different fixation durations (e.g. circle for less than 200ms, star for around
300ms). Their model achieved up to 80% accuracy in predicting text relevancy via eye movement
behavior.
To date, there is only one scientific report that delves into feature engineering of scanpath

data. [85] examine different scanpath feature engineering approaches for CNN input. They tested
multiple models including a VGG model pre-trained on Imagenet, where they found that the VGG
model and training regime works well for scanpath classification. Our work differs from their
approach as we examine features such as saccades and fixations that are more familiar and therefore
more accessible to the wider eye-tracking audience, while [85] use more data driven methods.

2.2 Eye tracking in Economic Games
For decades, economists have conducted eye-tracking studies to use the gaze data as a proxy mea-
surement for cognition. Numerous classification methods have been used to establish a relationship
between gaze patterns and the cognitive process of individuals while attempting to classify their
decision strategy in economic games[20, 43, 44, 48, 51]. Early attempts have used techniques such as
logistic regression or cluster analysis of fixation points[59]. More recently, these studies have taken
advantage of machine learning models. For example, [48] attempted to use a Salience Attentive

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 161. Publication date: May 2023.



Exploring Scanpath Feature Engineering 161:5

Model (SAM) with saliency maps as input trying to classify the equilibrium choice in two by
two normal-form games. In a separate study, [44] used a Multilayer Perceptron (MLP) to detect
whether a single game played by a participant was either of the "predictable" or "unpredictable"
type. Scanpaths have also been used to model gaze behavior in matrix games by Byrne et al. [9],
who transformed subsequences of the gaze data into scanpath images to predict choice behavior in
matrix games.

3 PROPOSED APPROACH
Our contribution highlights how eye-tracking features commonly found in the literature can
greatly improve classification accuracy when using supervised image classification models. The
findings detailed seek to democratize the use of these classification models and support eye-
tracking researchers, regardless of machine learning experience, by demonstrating the effectiveness
of using the most standard model architectures combined with a feature engineering strategy
based on domain knowledge of scanpaths. As scanpath features are well understood by the eye-
tracking community, we feel that the presented strategies used to improve model accuracy can
offer explainability of these models. Our contributions are as follows:
(1) We demonstrate that easy to implement transfer learning strategies can be applied successfully

to gaze data. This finding is important because it shows that high classification accuracies
can still be achieved without complex, specialized training regimes or custom architectures.

(2) We suggest that the traditional features in the eye-tracking literature are useful priors in the
realm machine learning based scanpath classification.

(3) Our results hold for both deep learning and machine learning methods suggesting robustness
in our scanpath design approach.

(4) The feature engineering strategy we employ can be easily understood and replicated across
many other datasets and experiments by eye-tracking researchers wishing to use image
classification models.

3.1 The Dataset

Fig. 2. An example of a gameboard used in the experiment by [51]. The payoffs of the participant are in blue,
the payoffs of the other player, which is a computer algorithm, are in red. As the participants are made aware
that the computer will always select a choice consistent with the Nash Equilibrium, it stands that any choice
the participant makes that is not consistent with the Nash Equilibrium will lead to a sub-optimal outcome. In
order for the participants to maximise their payoff, they must perform a complex visual search across the
gameboard to find the Nash Equilibrium which is located at position [Row 2, Column 3].

To test the effects of using different scanpath designs, we use data from [51]. The data was
recorded during a behavioral experiment where the eye movements of participants are captured
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while playing a set of economic games. The data contains 243 participants (81 males, mean age
= 24.1, SD age = 4.6). The participants played a set of two-person 3x3 matrix games presented
in normal-form against a computer programmed to always play the action consistent with an
optimal strategy that in game theory is named the Nash Equilibrium strategy [54]. Participants
were informed that the computer would always play rationally and try to maximize its own payoff.
The payoffs of both player and computer in the game matrix were presented in different colors to
facilitate comprehension. To identify the Nash Equilibrium in the selected games, participants must
use what is known in behavioral game theory as strategic sophistication [59], which is the attempt
to predict the other’s decisions by taking their own incentives into account and best respond to
it [16]. The Nash Equilibrium action was randomized across the games in an effort to avoid any
patterns which could be identified by the participants.

During the experiment, the participants played 15 independent games. For the current study, we
model scanpaths using ten of these games to generate a total of 2430 scanpaths. We did not consider
the other five games because they did not require strategic sophistication and the participants
could play optimally without considering the other player’s incentives. As this is a supervised
classification task, the physical choices made by the participant using a keyboard are used as the
labels in our experiments. The participants used the keyboard to select one of the three rows each
game knowing that the payoff they would receive would depend on the selection made by the
computer. For instance, in Figure 2 the highest payoff for the participant is located in row three.
However, this payoff should be seen as unattainable by the participant as they know that a rational
opponent will never select the first column. In order to best respond to the actions of the computer
knowing that it will play rationally, the participant should choose row two under the assumption
that the computer will choose column three. In this experiment, only one Nash Equilibrium exists in
each game. To frame this experiment as a binary classification problem, we label if the participant
selects the Nash Equilibrium choice as one class and any other choice as the second class. The
experiment was conducted at the Experimental Psychology Laboratory of the University of Trento
(Italy) and lasted around one hour.

3.2 Gaze Data and Scanpath Creation
The gaze data was recorded at a sampling rate of 1000 HZ using an Eyelink 1000 tower mount
(SR research, Ontario, Canada). We transformed the recorded gaze data into scanpath images
using the PyGaze library[19]. We created the scanpath sets as systematically as possible with the
strategy of integrating different combinations of commonly used eye-tracking features - namely
saccades, fixations, and AOIs - into the image with each iteration. We followed the hypothesis that
the more gaze information we represented as features in the image, the higher the classification
accuracy[9]. Subsequently, we investigated strategies to make the gaze features more salient for
image classification models by using different coloring and fixation aggregation strategies. The
following subsections detail how we represent saccades and fixations in the images along with our
investigation of how to make these features more salient to image classification models. Broadly
speaking, the tests fall into four categories.
The first category consists of the the baseline cases (see Fig. 3, Category 1). We compare our

results against our two baseline cases, both of which involve simply plotting each recorded gaze-
point. For one baseline set, we plot the raw gaze data as white colored dots onto a black background
(Fig. 3 ii.). For the other baseline set, we test the effect of the game environment by illustrating the
gaze as green colored dots over the gameboard (Fig. 3 iii.); we chose green as it does not occur
anywhere on the background. To avoid running too many redundant experiments, we exclude
the gameboards from all other scanpath design except in one test where we remodel the best
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Category 1:
Baseline

cases and best
performer

Category 2:
Saliency map

Category 3:
Saccadic
information

Category 4:
Fixations
and AOIs

i.         ii.          iii.        iv. 

x.         xi.         xii.         xiii.             xiv.

vii.       viii.          ix.         

v.         vi.

Fig. 3. Scanpath sets arranged by incorporated visual data. Category 1 (from left to right): the empty game-
board serving as the stimulus in the experiment, the raw gaze data, the raw gaze data overlayed on the
gameboard image, the best performing scanpath set overlayed on the gameboard image. Category 2: a
saliency map overlayed on the gameboard image, a simple saliency map with a black background. Category
3: saccadic information, sequentially-colored saccadic information, non-sequentially-colored saccadic infor-
mation. Category 4: Non-aggregated fixations with saccades (with uniform shape and color), non-aggregated
fixations with sequentially-colored saccades, sequentially-colored saccades over AOIs, sequentially-colored
saccades with aggregated fixations, sequentially-colored saccades and aggregated fixations over AOIs.

performing scanpath design with the gameboard background included. It should be noted that we
changed the opacity of the scanpath so that the gameboard is visible in this trial.
In our second category, we tested different ways of representing the fixation data as saliency

maps. While saliency maps are not scanpaths, as they do not contain any temporal dimension
regarding the gaze data, they have been used in the past to represent gaze behavior as an image
[29, 48]. Saliency maps are created by plotting the density of fixations across an image. Since they
are technically a different class of image, we decided to plot them with and without the game
background for completeness (Fig. 3 v.-vi.).
In the third category, we tested different methods of representing saccadic information. In all

cases, the saccadic information was plotted using linear saccades that occur between two fixations.
In our first saccade design, we plotted the saccades in a single green color against a black background
(Fig. 3 vii.). Next, we attempted to make the temporal dynamics of the saccades salient to the model
by plotting the saccades using a sequential colormap from the matplotlib library [36](Fig. 3 viii.).
Using this colormap, the lightness value increases monotonically, saccades formed at the start of
the recording are plotted in a dark blue color and with later saccades being plotted in a light green
color. To implement a counterfactual test, we also tested a scanpath design plotting the saccades
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using a qualitative or non-sequential colormap where the colors have no order or relationship (Fig.
3 ix.).

In the fourth category, we experimented with the representation of fixations and AOIs centered
on the 18 payoffs. First, we plotted all of the fixations using a single color and shape (Fig. 3 x.), then
added sequential colormapping on the saccades (Fig. 3 xi.). We also displayed saccades with temporal
information where we colored just the AOIs depending on if they belonged to the participants or
the computers payoffs (Fig. 3 xii.) Next, to try and control overcrowding and overlapping fixations
in the scanpath design, we plotted a single shape located in the center of the AOI where the fixations
occurred (Fig. 3 xiii.-xiv.). We use a triangle if the participant was fixating on a payoff that he could
receive and diamond for when the participant gazes at the counterpart’s payoff. In this design, we
again made use of sequential colormapping; this time to count the number of times an AOI was
visited. Fixations that occur outside of the AOIs are represented by fuchsia dots that are 57% the
size of the fixation shapes within an AOI.

3.3 Model Selection and Training Regime
To compare the effects of feature engineering in the scanpath images, we passed the datasets
through a VGG-16 model pre-trained on the Imagenet dataset[70]. We chose this model due to both
its popularity and ease to implement, making it natural choice for many researchers, regardless of
their level of deep learning experience. The VGG-16 model was created using the Pytorch library
[56], which makes the Imagenet weights available for VGG models as well as many other standard
architectures. We choose Stochastic Gradient Descent (SDG) as the optimiser with a momentum of
0.9. As we are interested in comparing the impact of different representations of the input data -
rather than optimising the model, we opted to train the model using a simple transfer learning
strategy, freezing all of the layers of the network up to the classification layer, which we replaced
to solve a binary classification problem. We choose this very vanilla training regime as it is easy to
reproduce and one of the most commonly deployed training regimes for transfer learning and also
produced good results in the previous eye-tracking studies [9, 11, 85].
To reduce the the possibility of a chance result, our primary experiment consists of running

the VGG-16 model using 5-fold cross-validation with a 80:20 split. We set the model to run for 10
epochs each fold. We also balance the training set by under-sampling the majority class, removing
a total of 28 images from the majority class. We report both the the average result across the 5-fold
and the best fold for each model. We set the learning rate of 1 × 10−3 with a decay factor of 0.1. We
report both the average result across folds and the best performing fold for each dataset.
As a second experiment, we split the data using a 70-20-10 train-validate-test split and ran the

VGG-16 model on each set to see how it would perform on a holdout set. We split the data at the
participant level to avoid any contamination leaking from the training set. Meaning, the scanpaths
recorded from a given participant could only appear in a single split. During these experiments, we
did not drop any of the recorded data, thus keeping a slight class imbalance, which is more indicative
of real-world problems [40, 80]. Additionally, we incorporated an early-stopping mechanism into
the model with a patience of 3 and set the maximum amount of epochs the model could run for to
15. However, no model reached this number of epochs before the early stopping halted the training.
We used the same optimiser and learning rate as in the primary experiment.

For the final stage of analysis, we compared the results of the VGG-16 model to a Support
Vector Machine (SVM) image classifier. The model is created using the popular SKlearn library [57].
Similar to its VGG-16 counterpart above, we used a 5-fold cross-validation and focused our attention
on its average results. For each scanpath set, we apply an exhaustive parameter grid search to
select the values of the hyperparameters from the following options: Regularization parameter:
𝐶 = {0.1, 10, 100}, Kernel coefficient: 𝑔𝑎𝑚𝑚𝑎 = {10, 0.1, 0.0001}, and a default 𝐾𝑒𝑟𝑛𝑒𝑙 = {𝑟𝑏 𝑓 }. Out
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of the thirteen scanpath datasets, the majority resulted in parameters 𝐶 = 10, 𝑔𝑎𝑚𝑚𝑎 = 0.0001, but
the two variants that include only the raw gazepoints (gazeraw, gazeraw_wimg) only deviated at
parameter𝐶 = 100. While the primary focus of our paper is not to compare various CNN models or
training methods, but rather to investigate the impact of utilizing feature engineering on input data,
we employed a ResNet-50 model on the best performing scanpath design to see if our results hold
across another variety of deep learning model. We conducted a small ablation study comparing
our favored transfer learning approach with frozen weights to the one with unfrozen weights and
a random weight initialization. Our findings revealed that the frozen weights transfer learning
approach produced comparable results to the unfrozen weights and random weight initialization
approaches, while necessitating considerably less computational resources and much easier to
devise and implement training regimes. Consequently, we elected to emphasize models with frozen
weights from Imagenet and a transfer learning approach in this study. This approach strikes an
ideal balance between computational efficiency and performance, is straightforward to set up,
and may surprise many readers since the target dataset of scanpaths differs substantially from
the domain dataset of Imagenet. Similar findings have been documented in the medical imaging
domain in [62], which demonstrated that models trained on Imagenet perform similarly to custom
lightweight models. We argue that this approach will serve the eye-tracking community better since
deploying pre-trained models necessitates less computational expertise than creating a custom
model, although future research could investigate scanpath feature engineering in the context of
these lightweight models.

4 EVALUATION
We evaluated our experiment using the following metrics: Accuracy, F1-score, and Area Under
the Curve (AUC) in Tables 1, 2 , 3 and 4. True Positive/ False Positive Rates are also reported
in the form of confusion matrices, which can be seen in Figure 4. When considering all model
tests across both classifiers, the scanpath design containing sequentially colored saccades and
aggregated fixations stands out as the best-performing. However, the scanpath design containing
sequentially colored saccades and AOIs proved to be a competitive adversary throughout all the
tests, with almost equivalent scores across all models and, in some tests, even outperforming the
scanpath with sequentially colored saccades and aggregated fixations. We chose the former to
insert a gameboard underlay, as it made for a less crowded and crisper image compared to the
scanpath design which includes AOIs. The colored saccades/aggregated fixations design performed
second best in our primary experiment (the VGG-16 configured for k-fold cross-validation) in terms
of average accuracy, with a score of 75.98%, narrowly missing out on first place to the sequentially
colored saccades with AOIs design by a margin of 0.75% . Further, it achieved an average F1-score
of 75.19% and AUC of 83.62%. In terms of best performing fold in our cross-validated model, this
design scored third place, losing again to colored saccades with AOIs by a narrow margin of 0.37%.
The first place is won by colored saccades/aggregated fixations with a gameboard underlay by a
margin of 0.83%. This design also landed on the top three when using the SVM image classifier
and scored the best in terms of average accuracy across the folds with a score of 73.94%, and again
landed in third place in terms of the best-performing fold, losing against saliency maps with a
gameboard underlay and sequentially colored saccades with non-aggregated fixations.

In terms of incorporating the gameboard image into the design of the baseline case, it performed
the worst across all tests using the pre-trained VGG-16 model with a score of 51.16% in average
accuracy, 54.89% in best accuracy and 70.40% in test accuracy in the model with a train-validate-test
split. Regarding the SVM, it outperformed the raw gaze data plotted on a black background, but
only marginally with both sets in the bottom five worst performers. Indeed in all tests, the baseline
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Category 1:
Baseline

cases and best
performer

Category 2:
Saliency map

Category 3:
Saccadic
information

Category 4:
Fixations
and AOIs

Fig. 4. Confusion matrices representing the average performance of each scanpath dataset on a 5-fold cross-
validated pre-trained VGG-16 model. Each row and figure number corresponds to the four categories and
numbering as defined in Figure 3 excluding the simple gameboard (i) as it is not used as input for the models.

cases of plotting the raw gaze data on a black background or gameboard always performed badly
and placed within the bottom five results.

Dataset Accuracy AUC F1-Score

Saccades_Temporal_AOIΔ★ 0.7674 0.8423 0.7568
Saccades_Temporal_FixationsΔ 0.7598 0.8362 0.7519
Saccades_TemporalΔ 0.7589 0.8361 0.7510
Saccades_Temporal_Fixations_with_BackgroundΔ 0.7585 0.8292 0.7480
Saccades_Temporal_Fixations_AOIΔ★ 0.7456 0.8242 0.7343
Saccades_Temporal_Non-Aggregated_FixationsΔ 0.7435 0.8131 0.7336
Saccades 0.7369 0.8126 0.7273
Saliency_Map_with_Background ⋄ 0.7361 0.8064 0.7282
Raw_Gaze 0.7223 0.7952 0.7112
Saccades_Fixations_Single_Shape_Single_Color 0.7173 0.7956 0.7015
Saccades_Temporal_NonSequential_Colormap 0.7090 0.7916 0.6993
Saliency_Map 0.7049 0.7732 0.7154
Raw_Gaze_with_Background ⋄ 0.5116 0.4964 0.0036

Table 1. Average results of a five-fold cross validation on a VGG-16 model with pre-trained weights sorted
from highest to lowest accuracy. Δ denotes temporal information via a sequential color map.★AOI is included.
⋄With gameboard image placed under the scanpath

The results for the trial’s saliency maps were most surprising, as they performed much better
than expected in the tests with the VGG-16. In all cases, the saliency maps with the background
outperformed the ones on a black background. The saliency maps with the gameboard as a back-
ground scored an average accuracy of 73.61% and best accuracy of 75.88% when using the k-fold
cross-validation VGG-16 model. We found this result so noteworthy, since comparable research [48]
did not find a statistically significant results when attempting to resolve whether salience affects
how often people choose the equilibrium strategy in two-by-two matrix games with a similar
experimental structure. They used saliency maps plotted onto a game background as input to

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. ETRA, Article 161. Publication date: May 2023.



Exploring Scanpath Feature Engineering 161:11

Dataset Accuracy AUC F1-Score

Saccades_Temporal_Fixations_with_BackgroundΔ 0.7879 0.8590 0.7661
Saccades_Temporal_AOIΔ★ 0.7833 0.8582 0.7792
Saccades_Temporal_FixationsΔ 0.7796 0.8564 0.7730
Saccades_TemporalΔ 0.7771 0.8533 0.7757
Saccades_Temporal_Fixations_AOIΔ★ 0.7713 0.8470 0.7727
Saccades_Temporal_Non-Aggregated_FixationsΔ 0.7692 0.8287 0.7589
Saccades 0.7651 0.8299 0.7490
Saliency_Map_with_Background ⋄ 0.7588 0.8231 0.7495
Saliency_Map 0.7542 0.8098 0.7511
Raw_Gaze 0.7354 0.8014 0.7406
Saccades_Fixations_Single_Shape_Single_Color 0.7277 0.8074 0.7265
Saccades_Temporal_NonSequential_Colormap 0.7256 0.8126 0.7295
Raw_Gaze_with_Background ⋄ 0.5489 0.5174 0.0181

Table 2. Best results of a five-fold cross validation on a VGG-16 model with pre-trained weights sorted from
highest to lowest accuracy. Δ denotes temporal information via a sequential color map. ★ AOI is included. ⋄
With gameboard image placed under the scanpath

a Salience Attentive Model (SAM), As SAMs are usually pre-trained models that fine-tuned on
open-access salience datasets such as SALICON [39] this raises questions over how specific training
regimes impact model performance when analysing eye-tracking data.
In our primary experiment, we compare the average accuracy across each fold of the VGG-16

configured for k-fold cross-validation model with each different scanpath set as input. The top four
performing scanpaths all scored within one percent of each other, with the best score of 76.72%,
which outperforms the baseline case of the raw gaze data with the gameboard as a background by
over 25%. All top four scanpath designs contain saccades created with the temporal colormap. In
all cases, a scanpath design that incorporated some fixation features in combination with temporal
saccades became the best-performing model. However, it remains unclear from this experiment how
to best represent these fixations because, depending on the experiment, the AOIs with aggregated
and non-aggregated fixations all exhibited the highest accuracy. The full results can be seen in
Table 1. Our hypothesis that using sequential colouring to helps form meaningful representation
for the model is supported because the performance becomes worse when saccadic information
is encoded using non-sequential colormaps. These scanpaths performed worse than the baseline
raw gaze data in every test using the VGG-16 model, suggesting that convolutional filter extracts
meaning from the colorschemes. However, further research is needed to confirm these findings.

Figure 4 shows the confusionmatrices based on the average results of all 13 scanpath sets from the
primary experiment. Here, it is clear to see that raw gaze data with background image (See Figure 3
iii.) performed the worst with TPR only at 0.18%. While the raw gaze (ii), non-sequentially colored
saccades (ix) and single-colored saccades with non-aggregated fixations (x) performed relatively
better, they still rank lower compared to scanpath sets containing meaningful representation.

In a second experiment, we trained the VGG-16 model and tested it on a holdout set the design
with temporal saccades, aggregated fixations and AOIs scored highest with an accuracy of 78.80%,
AUC 87.93%, and an F1-score of 76.23%, making it an excellent classifier by all standards. The
results are largely equivalent with the best result for each set from the VGG-16 model using K-fold
cross-validation, as seen in Table 3, and Table 2, with the exception being the raw gaze data with a
gameboard background, where we see over a 15% decrease in accuracy dropping from 70.40% to
51.16%.
The 5-fold cross-validated SVM model generally yielded comparatively worse results than the

VGG-16 variant as well as with a train-validation-test split evaluated on the VGG-16 model. The
SVM shows a maximum average accuracy of 73.94% from the scanpath set that includes sequen-
tially colored saccades and aggregated fixations and the maximum best accuracy of 76.79% from
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Dataset Accuracy AUC F1-Score

Saccades_Temporal_Fixations_AOI 0.7880 0.8792 0.7623
Saccades_TemporalΔ 0.7880 0.8582 0.7535
Saccades_Temporal_AOIΔ★ 0.7760 0.8583 0.7407
Saccades_Temporal_Fixations_with_BackgroundΔ 0.7680 0.8612 0.7563
saccades 0.7560 0.8317 0.7382
Saliency_Map_with_Background ⋄ 0.7440 0.8336 0.7168
Saccades_Temporal_Non-Aggregated_FixationsΔ 0.7400 0.8596 0.7368
Saccades_Temporal_FixationsΔ 0.7400 0.8719 0.7410
Saccades_Fixations_Single_Shape_Single_Color 0.7400 0.8387 0.7257
Saliency_Map 0.7360 0.7971 0.7402
Saccades_Temporal_NonSequential_Colormap 0.7280 0.8291 0.7302
Raw_Gaze 0.7160 0.7968 0.7102
Raw_Gaze_with_Background ⋄ 0.7040 0.8501 0.7176

Table 3. Results of a VGG-16 model with pre-trained weights tested on a hold-out set sorted from highest
to lowest accuracy. Δ denotes temporal information via a sequential color map. ★ AOI is included. ⋄With
gameboard image placed under the scanpath

sequentially colored saccades with non-aggregated fixations. In comparison, the cross-validated
VGG-16, achieved a higher average accuracy by about 3% and a marginally higher best accuracy of
about 2%.

Comparing the k-fold cross-validation on the VGG-16 model and SVM in terms of the F1-score,
the scanpath set with sequentially colored saccades and AOIs is on top for VGG-16 with an average
accuracy of 75.68% and best accuracy off 77.92% and remains in the top five for both the average and
best results of the SVM. The dataset with sequentially colored saccades, aggregated fixations, and a
gameboard background takes first place in the SVM results with an average accuracy of 73.63% and
best accuracy of 76.41% while similarly still remaining in the top five from the VGG-16 results. The
dataset containing sequential saccades, aggregated fixations as well as AOIs also consistently place
in the top 5 for both SVM and VGG-16 tests.

Additionally, we performed a small ablation analysis on the best performing scanpath design. We
used the scanpath design that was the sequentially colored saccades and aggregated fixations, to
test a VGG-16 and a ResNet-50 model under various initialization conditions, such as random initial-
ization and models starting with Imagenet weights with frozen and unfrozen layers. We followed
the methodology of our second experiment, training each model and evaluating its performance
on a holdout set. Although our paper primarily focuses on the impact of feature engineering on
performance, we conducted this additional analysis to emphasize that our transfer learning strategy,
can be an effective training regime for scanpath images. The VGG model pretrained on Imagenet
with frozen layers returned an accuracy of 0.7880. The model with random weight initialization
performs almost equivalently with a score of 0.7800. When running the model with unfrozen layers
meaning that model can adjust the weights and biases, we see a drop of performance decrease of
6% to 0.7280. Moving to the ResNet-50 – another popular architecture, we see less stable results,
especially when moving to random weights hence further supporting our strategy choice. The
following accuracies can be reported for the Resnet-50 Model 0.7680 (unfrozen), 0.6840 (frozen)
and 0.6280 (random initialization). Our findings are in line with previous research, for instance,
[6] used scanpaths with a comparable design and from a similar-sized dataset into multiple CNN
architectures and found that the VGG architecture slightly outperformed the rest.

5 DISCUSSION
In this paper, we demonstrate that transforming the raw gaze data into saccades and fixations can
greatly boost the performance of machine learning models. While this result is not surprising as
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Dataset Accuracy AUC F1-Score

Saccades_Temporal_Fixations 0.7394 0.7390 0.7300
Saliency_Map_with_Background⋄ 0.7385 0.7398 0.7354
Saccades_Temporal_Fixations_AOIΔ★ 0.7381 0.7383 0.7336
Saccades_Temporal_NonAggregated_FixationsΔ 0.7369 0.7370 0.7318
Saccades_Fixations_Single_Shape_Single_Color 0.7369 0.7371 0.7315
Saccades_Temporal_Fixations_with_BackgroundΔ 0.7294 0.7304 0.7363
Saccades_Temporal_AOIΔ★ 0.7273 0.7274 0.7156
Saccades_TemporalΔ 0.7156 0.7161 0.7027
Saccades 0.7140 0.7144 0.7051
Raw_Gaze_with_Background⋄ 0.7115 0.7109 0.6894
Saccades_Temporal_NonSequential_ColormapΔ 0.7086 0.7085 0.6990
Saliency_Map 0.7073 0.7070 0.7001
Raw_Gaze 0.7069 0.7062 0.6870

Table 4. Average results of a five-fold cross validation on a simple SVM model sorted from highest to lowest
accuracy. Δ denotes temporal information via a sequential color map. ★ AOI is included. ⋄With gameboard
image placed under the scanpath

feature engineering has been shown to boost model performance in other domains [38, 64, 67], it
highly supports how traditional eye-tracking metrics for feature processing impacts the results
of our model experiments. Our results suggested that a combination of carefully thought-out
representations of saccades and fixations that fit the experimental task produce the best classification
results.

Using image classifiers to analyse eye-tracking data has many potential benefits when compared
to more common approaches such as processing the gaze data as a sequence. For instance, it avoids
any issues surrounding sequence padding to handle uneven sequences, and allows the context that
the subject is viewing to be easily integrated into the analyses. Deep learning image classifiers
come with the benefit that there exists many standard architectures such as VGG [70], Resnets[31]
and Vision Transformers [21], allowing researches to try a plethora of different architectures in
order to find which one best suits their needs. Another rather counter-intuitive benefit of using
image classifiers is that it has now been shown multiple times that pre-training networks on large
datasets such as Imagenet can be a successful strategy when classifying scanpaths [9, 85]. This result
has quite an impact, yet is not entirely unexpected. A similar phenomenon is well documented
across the medical imaging domain where the source and target datasets also greatly differ [68].
Thus employing this type of training regime can provide a good starting point for eye tracking
researchers looking to apply deep learning methods to analyse scanpaths.
Eye tracking research is a multidisciplinary pursuit with researchers from diverse fields as

psychology and linguistics to computer science and physics. This brings a large variance in the
technical abilities of researchers operating in this field. We do not intend for this paper to be viewed
as an exhaustive list of how to build scanpaths for image classification models, or to take away
from the merits of using a well-defined model architecture, but rather to demonstrate a strategy of
iterating through scanpath features with a combination of knowledge on the task that may help less
technically inclined researchers in eye-tracking reap the benefits of image classification models.

6 LIMITATIONS AND FUTURE RESEARCH
Our study has limitations. First, the dataset we used for this study was handpicked as it provides a
much sparser environment than most eye-tracking datasets meaning that the constructed features
are more pronounced than they may be in a dataset that contains natural images. This sparseness
may contribute to the improvements in accuracy as the image becomes fuller so to speak, as we
include more eye-tracking features. Second, our list of engineered features is not exhaustive and
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there may well be scanpath configurations that yields better results. In future studies, we aim to test
the effects of feature engineering in the design of scanpath images on multiple datasets for both free
and task-based viewing in order to come up with some guiding principles as currently this work
only provides the reader with an example case. Third, we did not explore all of the many different
types of image classifiers such as Vision Transformers that may perform better without any feature
engineering. Finally, another avenue that needs to be explored in future research involves how
to best optimise a training regime that could impact the model performance on any of the given
scanpath sets containing engineered features.

7 CONCLUSION
In this paper we demonstrated that by using feature engineering techniques stemming from domain
knowledge of general eye-tracking research and task specific knowledge, we were able to create
scanpath images that outperformed the baseline cases in terms of accuracy, F1-score, and AUC.
Furthermore, we showcase feature engineering strategies, such as using sequential coloring and
aggregation techniques, that can further boost performance. Additionally, the results from our
experiments illustrate that sub-optimal feature engineering strategies, such as the non-sequential
coloring of saccades can lead to a performance decrease compared to plotting the raw data onto
an image. As image classification models and machine learning becomes more prevalent in eye-
tracking research, we demonstrate how domain knowledge can greatly complement these models,
as they become more accessible to everyone in the field.
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