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ABSTRACT
Eye tracking is handled as one of the key technologies for appli-

cations that assess and evaluate human attention, behavior, and

biometrics, especially using gaze, pupillary, and blink behaviors.

One of the challenges with regard to the social acceptance of eye

tracking technology is however the preserving of sensitive and per-

sonal information. To tackle this challenge, we employ a privacy-

preserving framework based on randomized encoding to train a

Support Vector Regression model using synthetic eye images pri-

vately to estimate the human gaze. During the computation, none

of the parties learn about the data or the result that any other party

has. Furthermore, the party that trains themodel cannot reconstruct

pupil, blinks or visual scanpath. The experimental results show that

our privacy-preserving framework is capable of working in real-

time, with the same accuracy as compared to non-private version

and could be extended to other eye tracking related problems.
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1 INTRODUCTION
Recent advances in the fields of Head-Mounted-Display (HMD)

technology, computer graphics, augmented reality (AR), and eye

tracking enabled numerous novel applications. One of the most

natural and non-intrusive ways of interaction with HMDs or smart

glasses is achieved by gaze-aware interfaces using eye tracking.

However, it is possible to derive a lot of sensitive and personal

information from eye tracking data such as intentions, behaviors,

or fatigue since eyes are not fully controlled in a conscious way.

It has been shown that cognitive load [Appel et al. 2018; Chen and

Epps 2014], visual attention [Bozkir et al. 2019], stress [Kübler et al.

2014], task identification [Borji and Itti 2014], skill level assessment

and expertise [Castner et al. 2018; Eivazi et al. 2017; Liu et al. 2009],

human activities [Braunagel et al. 2017; Steil and Bulling 2015],

biometric information and authentication [Abdrabou et al. 2019;

Kinnunen et al. 2010; Komogortsev and Holland 2013; Komogort-

sev et al. 2010; Zhang et al. 2018], or personality traits [Berkovsky

et al. 2019] can be obtained using eye tracking data. Since highly

sensitive information can be derived from eye tracking data, it is

not surprising that HMDs or smart glasses have not been adopted

by large communities yet. According to a recent survey [Steil et al.

2019a], people agree to share their eye tracking data only when

it is co-owned by a governmental health-agency or is used for re-

search purposes. This indicates that people are hesitant about shar-

ing their eye tracking data in commercial applications. Therefore,

there is a likelihood that larger communities could adopt HMDs

or smart glasses if privacy-preserving techniques are applied in

the eye tracking applications. The reasons why privacy preserv-

ing schemes are needed for eye tracking are discussed in [Liebling

and Preibusch 2014] extensively. However, until now, there are

not many studies in privacy-preserving eye tracking. Recently, a

method to detect privacy sensitive everyday situations [Steil et al.

2019b], an approach to degrade iris authentication while keeping

the gaze tracking utility in an acceptable accuracy [John et al. 2019],

and differential privacy based techniques to protect personal infor-

mation on heatmaps and eye movements [Liu et al. 2019; Steil et al.

2019a] are introduced. While differential privacy can be applied to

eye tracking data for various tasks, it introduces additional noise on

the data which causes decrease in the utility [Liu et al. 2019; Steil
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et al. 2019a], and it might lead to less accurate results in computer

vision tasks, such as gaze estimation or activity recognition.

In light of the above, function-specific privacy models are re-

quired. In this work, we focus on the gaze estimation problem

as a proof-of-concept by using synthetic data including eye land-

marks and ground truth gaze vectors. However, the same privacy-

preserving approach can be extended to any feature-based, eye

tracking problem such as intention, fatigue, or activity detection,

in HMD or unconstrained setups due to the demonstrated real-

time working capabilities. In our study, the gaze estimation task

is solved by using Support Vector Regression (SVR) models in a

privacy-preserving manner by computing the dot product of eye

landmark vectors to obtain the kernel matrix of the SVR for a sce-

nario, where two parties have the eye landmark data, each of which

we call input-party, and one function-party that trains a prediction

model on the data of the input-parties. This scenario is relevant

when the input-parties use eye tracking data to improve the accu-

racy of their models and do not share the data due to the privacy

concerns. To this end, we utilize a framework employing random-

ized encoding [Ünal et al. 2019]. In the computation, neither the eye

images nor the extracted features are revealed to the function-party

directly. Furthermore, the input-parties do not infer the raw eye

tracking data or result of the computation. Eye images that are

used for training and testing are rendered using UnityEyes [Wood

et al. 2016] synthetically and 36 landmark-based features [Park et al.

2018] are used. To the best of our knowledge, this is the first work

that applies a privacy-preserving scheme based on function-specific

privacy models on an eye tracking problem.

2 THREAT MODEL
We assume that the input-parties are semi-honest (honest but curi-

ous) that are not allowed to deviate from the protocol description

while they try to infer some valuable information about other par-

ties’ private inputs using their views of the protocol execution.

We also assume that the function-party is malicious and the input-

parties and the function-party do not collude.

3 METHODOLOGY
In this section, we discuss the data generation, randomized encod-

ing, and privacy-preserving gaze estimation framework.

3.1 Data Generation
To train and evaluate the gaze estimator, we generate eye images

and gaze vectors. As our work is a proof-of-concept and requires

high amount of data, synthetic images from UnityEyes [Wood et al.

2016], which is based on the Unity3D, are used. Camera parameters
and Eye parameters are chosen as (0, 0, 0, 0) (fixed camera) and

(0, 0, 30, 30) (eyeball pose range parameters in degrees), respectively.

20, 000 images are rendered in Fantastic quality setting and 512×384
screen resolution. Then, processing and normalization pipeline

from [Park et al. 2018] is employed. In the end, we obtain 128 × 96

sized eye images, 18 eye landmarks including eight iris edge, eight

eyelid, one iris center, and one iris-center-eyeball-center vector

normalized according to Euclidean distance between eye corners,

and gaze vectors using pitch and yaw angles. Final feature vectors

consist of 36 elements. Figure 1 shows an example illustration.

(a) Landmarks. (b) Gaze.

Figure 1: Eye landmarks and gaze on a synthetic image.

3.2 Randomized Encoding
The utilized framework employs randomized encoding (RE) [Ap-

plebaum et al. 2006a,b] to compute the dot product of the landmark

vectors. The dot product is needed to compute kernel matrix of

the SVR which is later used for training the gaze estimator and

validation of the framework.

In the randomized encoding, the computation of a function 𝑓 (𝑥)
is performed by a randomized function

ˆ𝑓 (𝑥 ; 𝑟 ) where 𝑥 is the input

value, which corresponds to eye landmarks in our setup, and 𝑟 is the

random value. The idea is to encode the original function by using

random value(s) such that the combination of the components of

the encoding reveals only the output of the original function. In the

framework, the computation of the dot product is accomplished by

utilizing the decomposable and affine randomized encoding (DARE)

of addition and multiplication [Applebaum 2017]. The encoding of

multiplication is as follows.

Definition 1 (Perfect RE for Multiplication [Applebaum 2017]). A

multiplication function is defined as 𝑓𝑚 (𝑥1, 𝑥2) = 𝑥1 · 𝑥2 over a

ring R. One can perfectly encode the 𝑓𝑚 by employing the DARE

ˆ𝑓𝑚 (𝑥1, 𝑥2; 𝑟1, 𝑟2, 𝑟3):

ˆ𝑓𝑚 (𝑥1, 𝑥2; 𝑟1, 𝑟2, 𝑟3) = (𝑥1 + 𝑟1, 𝑥2 + 𝑟2,
𝑟2𝑥1 + 𝑟3, 𝑟1𝑥2 + 𝑟1𝑟2 − 𝑟3),

where 𝑟1, 𝑟2 and 𝑟3 are uniformly chosen random values. The recov-

ery of 𝑓𝑚 (𝑥1, 𝑥2) can be accomplished by computing 𝑐1 ·𝑐2 −𝑐3 −𝑐4
where 𝑐1 = 𝑥1 +𝑟1, 𝑐2 = 𝑥2 +𝑟2, 𝑐3 = 𝑟2𝑥1 +𝑟3 and 𝑐4 = 𝑟1𝑥2 +𝑟1𝑟2−
𝑟3. The simulation of

ˆ𝑓𝑚 can be done perfectly by the simulator

Sim(𝑦;𝑎1, 𝑎2, 𝑎3) := (𝑎1, 𝑎2, 𝑎3, 𝑎1𝑎2 − 𝑦 − 𝑎3) where 𝑎1, 𝑎2 𝑎3 are
random values.

3.3 Framework
To perform the private gaze estimation task in our scenario, we in-

spire from the framework as in [Ünal et al. 2019] due to its efficiency

compared to other approaches in the literature. The framework is

proposed to compute the addition or multiplication of the input

values of two input-parties in the function-party by utilizing ran-

domized encoding. We utilize the multiplication operation over the

eye landmark vectors to compute the dot product of these vectors

to obtain kernel matrix of the SVR in a privacy-preserving way.

We have two input-parties as Alice and Bob, having the eye land-

mark data as 𝑋 ∈ R𝑛𝑓 ×𝑛𝑎
and 𝑌 ∈ R𝑛𝑓 ×𝑛𝑏

where 𝑛𝑎 and 𝑛𝑏 repre-

sent the number of samples in Alice and Bob, respectively, and 𝑛𝑓 is

the number of features. In addition to the input-parties, there exists

a server that trains a model on the data of the input-parties. 𝐴. 𝑗 for
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Figure 2: Overall protocol execution.

any matrix 𝐴 represents the 𝑗-th column of the corresponding ma-

trix and ”⊙“ represents the element-wise multiplication of the vec-

tors. As a first step, Alice creates a uniformly chosen random value

𝑟3 ∈ R and two vectors 𝑟1, 𝑟2 ∈ R𝑛𝑓
with uniformly chosen random

values, which are used to encode the element-wise multiplication

of the vectors and shares them with Bob. Afterwards, Bob computes

𝐶2

. 𝑗
= 𝑌. 𝑗+𝑟2 and𝐶4

𝑗
=

∑𝑛𝑓

𝑑=1
(𝑟1⊙𝑌. 𝑗+𝑟1⊙𝑟2)𝑑−𝑟3,∀𝑗 ∈ {1, · · · , 𝑛𝑏 }

where 𝐶2 ∈ R𝑛𝑓 ×𝑛𝑏
and 𝐶4 ∈ R𝑛𝑏 . Meanwhile, Alice computes

𝐶1

.𝑖
= 𝑋.𝑖 +𝑟1 and𝐶3

𝑖
=

∑𝑛𝑓

𝑑=1
(𝑟2⊙𝑋.𝑖 )𝑑 +𝑟3, ∀𝑖 ∈ {1, · · · , 𝑛𝑎} where

𝐶1 ∈ R𝑛𝑓 ×𝑛𝑎
and 𝐶3 ∈ R𝑛𝑎 . Input-parties send their share of the

encoding to the server with the grammatrix of their samples, which

is the dot product among their samples. Then, the server computes

the dot product between samples of Alice and Bob to complete the

missing part of the gram matrix of all samples. To achieve this, the

server computes 𝑘𝑖 𝑗 =
∑𝑛𝑓

𝑑=1
(𝐶1

.𝑖
⊙𝐶2

. 𝑗
)𝑑 −𝐶3

𝑖
−𝐶4

𝑗
, ∀𝑖 ∈ {1, · · · , 𝑛𝑎}

and ∀𝑗 ∈ {1, · · · , 𝑛𝑏 } where 𝑘𝑖 𝑗 is the 𝑖-th row 𝑗-th column entry

of the gram matrix between the samples of the input-parties. Once

the server has all components of the gram matrix, it constructs

the complete gram matrix 𝐾 by simply concatenating the parts of

it. In our solution, Alice and Bob send to the server (𝐶1,𝐶3) and
(𝐶2,𝐶4) tuples, respectively. These components reveal nothing but

only the gram matrix of the samples after decoding. Furthermore,

the input-parties shuffle their raw data before the computation to

avoid the possibility of private information leakage such as the

behavior of the person due to the nature of the visual sequence

information. The overall flow is summarized in Figure 2.

After having the complete gram matrix for all samples that Alice

and Bob have, the server uses it as a kernel matrix as if it was

computed by the linear kernel function on pooled data. Additionally,

it is also possible to compute a kernel matrix as if it was computed

by the polynomial or radial basis kernel function (RBF) by utilizing

the resulting gram matrix. As an example, the calculation of RBF

from the gram matrix is as follows.

𝐾 (𝑥,𝑦) = exp

(
− ∥𝑥 · 𝑥 − 2𝑥 · 𝑦 + 𝑦 · 𝑦∥2

2𝜎2

)
,

where “·” represents the dot product of vectors, which is possible

to obtain from the gram matrix, and 𝜎 is the parameter utilized

to adjust the similarity level. Once the desired kernel matrix is

computed, it is possible to train an SVR model by employing the

computed kernel matrix to estimate the gaze. In the process of the

computation of the dot product, the amount of data transferred

among parties is (𝑛𝑓 𝑛𝑎 + 𝑛𝑓 𝑛𝑏 + 𝑛𝑎 + 𝑛𝑏 + 2𝑛𝑓 ) × 𝑑 bytes where 𝑑

is the size of one data unit.

4 SECURITY ANALYSIS
A semi-honest adversary who corrupts any of the input-parties

cannot learn anything about the private inputs of the other input-

party. During the protocol execution, two vectors of random values

and a single random value are sent from Alice to Bob. The views

of the input-parties consist only of vectors with random values.

Using these random values, it is not possible for one party to infer

something about the other party’s private inputs [Ünal et al. 2019].

Theorem 1. A malicious adversary A corrupting the function-

party learns nothing more than the result of gram matrix. It is

computationally infeasible for A to infer any information about

the input-parties’ data 𝑋 and 𝑌 as long as Perfect RE multiplication

is semantically secure (Definition 1).

Proof. Wefirst show the correctness of our solution.We assume

𝑛𝑓 = 2 and encode the function 𝑓𝑑 (𝑥,𝑦) = 𝑥1𝑦1 + 𝑥2𝑦2 over some

finite ring R by the following DARE:

ˆ𝑓𝑑 (𝑥,𝑦; 𝑟 ) = (𝑥1 + 𝑟11, 𝑦1 + 𝑟12, 𝑥2 + 𝑟21, 𝑦2 + 𝑟22,
𝑟12𝑥1 + 𝑟22𝑥2 + 𝑟3,
𝑟11𝑦1 + 𝑟11𝑟12 + 𝑟21𝑦2 + 𝑟21𝑟22 − 𝑟3)

Given an encoding (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6), 𝑓𝑑 (𝑥,𝑦) is recovered by

computing 𝑐1𝑐2 + 𝑐2𝑐4 + 𝑐5 + 𝑐6.
By the concatenation lemma in [Applebaum 2017], we can divide

𝑐5 and 𝑐6 into 𝑛𝑓 shares by using 𝑛𝑓 random values instead of a

single 𝑟3 value.

ˆ𝑓𝑑 (𝑥,𝑦; 𝑟 ) = (𝑥1 + 𝑟11, 𝑦1 + 𝑟12, 𝑟12𝑥1 + 𝑟13, 𝑟11𝑦1 + 𝑟11𝑟12 − 𝑟13,
𝑥2 + 𝑟21, 𝑦2 + 𝑟22, 𝑟22𝑥2 + 𝑟23, 𝑟21𝑦2 + 𝑟21𝑟22 − 𝑟23)

Given an encoding (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8),

ˆ𝑓𝑚 (𝑥1, 𝑦1; 𝑟 ) = (𝑐1, 𝑐2, 𝑐3, 𝑐4)
ˆ𝑓𝑚 (𝑥2, 𝑦2; 𝑟 ) = (𝑐5, 𝑐6, 𝑐7, 𝑐8)

By the concatenation lemma in [Applebaum 2017],
ˆ𝑓𝑑 (𝑥,𝑦; 𝑟 ) =

( ˆ𝑓𝑚 (𝑥1, 𝑦1; 𝑟 ), ˆ𝑓𝑚 (𝑥2, 𝑦2; 𝑟 )) perfectly encodes the function 𝑓𝑑 (𝑥,𝑦)
if Perfect RE multiplication is semantically secure.

After showing the correctness, we analyze the security with

the simulation paradigm. In the simulation paradigm, there is a

simulator who generates the view of a party in the execution. A

party’s input and output must be given to the simulator to generate

its view. Thus, security is formalized by saying that a party’s view

can be simulatable given its input and output and the parties learn
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(d) Prediction time of Server.

Figure 3: The execution time of (a) Alice, (b) Bob and (c) the server are given. We also demonstrate (d) the time required for
the prediction of the test samples, which are 20% of the total number of samples in each case.

nothing more than what they can derive from their input and

prescribed output.

The function-party F does not have any input and output. A

simulator S can generate the views of incoming messages received

by F . S creates four vectors 𝐶1
′
,𝐶2

′
,𝐶3

′
,𝐶4

′
with uniformly dis-

tributed random values using a pseudorandom number generator

𝐺 ′
. Finally, S outputs {𝐶1

′
,𝐶2

′
,𝐶3

′
,𝐶4

′}.
In the execution of the protocol 𝜋 , A receives four messages

which are masked with uniformly random values generated using

a pseudorandom number generator 𝐺 . The view of A includes

{𝐶1
,𝐶2

,𝐶3
,𝐶4}. The distribution over 𝐺 is statistically close to the

distribution over 𝐺 ′
. This implies that

{S(𝐶1
′
,𝐶2

′
,𝐶3

′
,𝐶4

′
)} 𝑐≡ {𝑣𝑖𝑒𝑤𝜋

A (𝐶1,𝐶2,𝐶3,𝐶4)}
□

5 RESULTS
To demonstrate the performance, we conduct experiments on a PC

equipped with Intel Core i7-7500U with 2.70 GHz processor and

16 GB memory RAM. We employ varying sizes of eye landmark

data, that are 5, 000, 10, 000 and 20, 000 samples of which one-fifth

is the test data and we split the data between the input-parties

equally. The framework allows us to optimize the parameters of

the model in the server without further communicating with the

input-parties. Thanks to this, we utilize 5-fold cross-validation

to optimize the parameters, which are the similarity adjustment

parameter 𝛾 ∈ {2−3, 2−2, · · · , 24} of the Gaussian RBF kernel, the

misclassification penalty parameter𝐶 ∈ {2−3, 2−2, · · · , 23}, and the
tolerance parameter 𝜖 ∈ {0.005, 0.01, 0.05, 0.1, 0.5, 1} of SVR. After
parameter optimization, we repeat the experiment on varying sizes

of eye landmark data with the optimal parameter set 10 times to

assess the execution time. To evaluate the gaze estimation results,

we employ mean angular error in the same way as in [Park et al.

2018]. Table 1 demonstrates the relationship between the dataset

size and the resulting mean angular error. Since no additional noise

is introduced during the computation of the kernel matrix, the

results from our privacy-preserving framework are the same with

the non-private ones. The mean angular errors are lower compared

to the state-of-the-art gaze estimation techniques since we use

synthetic data and fixed camera position during image rendering.

The amount of time to train and test the models increases as the

sample sizes increase since computation requirements get larger.

Table 1: The mean angular errors for varying dataset sizes.

# of samples Mean angular error

5k 0.21

10k 0.18

20k 0.17

The increment in the dataset size increases the communication cost

among parties. The execution times of all parties for 10 runs with

the optimal parameters are shown in Figure 3. We also demonstrate

the amount of time to predict the test samples, which corresponds

to one-fifth of the total number of samples to emphasize the real-

time working capabilities. In the experiment with 20, 000 samples,

for instance, we spend ≈ 4.5 seconds to predict 4, 000 test samples,

which corresponds to 1.125 ms per sample. When the current sam-

pling frequencies of eye trackers are taken into consideration, it

is possible to deploy and use the framework to estimate gaze if an

optimized communication between the parties is established.

6 CONCLUSION
In this work, we utilized a framework based on randomized encod-

ing to estimate human gaze in a privacy-preserving way and in

real-time. Our solution can provide improved gaze estimation if

input-parties want to use each other’s data for different reasons

such as to account for genetic structural differences in the eye re-

gion. None of the input-parties has the access to the eye landmark

data of the others or the result of the computation in the function

party, while the function-party cannot infer anything about the data

of the input-parties. Temporal information of the visual scanpath,

pupillary, or blinks cannot be reconstructed due to the shuffling of

the data, and lack of sensory information and direct access to the

eye landmarks. Our solution works in real-time, hence it could be

deployed along with HMDs for different use-cases and extended to

similar eye tracking related problems if similar amount of features

is used. To the best of our knowledge, this is the first work based on

function-specific privacy models in the eye tracking domain. The

number of parties is a limitation of our solution. Thus, as future

work we will extend our work to a larger number of parties.
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