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Abstract

The task of automatically tracking the visual attention in dynamic
visual scenes is highly challenging. To approach it, we propose a
Bayesian online learning algorithm. As the visual scene changes
and new objects appear, based on a mixture model, the algorithm
can identify and tell visual saccades (transitions) from visual fix-
ation clusters (regions of interest). The approach is evaluated on
real-world data, collected from eye-tracking experiments in driving
sessions.
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1 Introduction

During visual perception (although we are mostly unaware of it)
our eyes are constantly moving. Eye movements enable the fovea
– the retinal part of sharpest vision – to fixate different parts of the
scene, thus preventing sensory adaptation in our visual path by re-
freshing our retinal images. These foveal fixations are known as
human Regions-Of-Interest (ROIs) [Privitera and Stark 2005] and
are explained by the scanpath theory by Noton and Stark [Noton
and Stark 1971]. This theory states that a top-down internal cogni-
tive model of what we “see” not only controls our vision, but also
efficiently drives the sequences of rapid eye movements and fixa-
tions over a scene [Privitera and Stark 2005].

Research on visual perception has largely benefited from the devel-
opment of eye-tracking devices and accurate methods for quanti-
fying eye movements; e.g., state-of-the-art eye trackers allow the
recording of eye movements at high sampling rates, up to 500Hz.
The efficient detection of visual fixations or ROIs in eye tracker
data is essential for scanpath analysis and can be modeled as the
problem of identifying clusters in a set of data points. While the an-
notation of such clusters is trivial for us humans, automated cluster-
ing of eye-movement data is still challenging; even more so, when
the visual scene changes in an online fashion, e.g., measuring the
visual scanning behavior of people while driving, watching adver-
tisements, shopping, etc.

A simple group of clustering algorithms is based on a distance-
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threshold; two points are considered to be in the same cluster if they
are closer to each other than a predefined distance threshold [Privit-
era and Stark 2000], [Turano et al. 2003]. Although quite intuitive,
these algorithms fail to identify dense but separate regions of in-
terest, e.g., when two of the fixation cluster points do not meet the
threshold criteria. Other approaches partition the visual scene into a
regular grid and record the time spent inside each square [Salvucci
and Goldberg 2000]. While these algorithms are well suited to cer-
tain applications, such as reading, they do not generalize to sce-
narios with no a priori information about the visual scene. Simi-
larly restricted are techniques that provide visualizations of ROIs by
adapting learned visual models, e.g. [Wooding 2002]. Yet other al-
gorithms are data-driven and typically based on the mean shift pro-
cedure [Santella and DeCarlo 2004]. Such algorithms are not appli-
cable to dynamic visual scenes, as they require a clustering param-
eter as input. Over the last years many of the above proposals have
been implemented in academic and commercial tools and many eye
tracker manufacturers provide software for analyzing recorded eye
movements. Despite several useful features provided by these tools,
their main drawback is that they come as black-box solutions and
cannot be integrated in self-designed applications. Besides, much
of the commercial software in this realm is typically geared towards
offline analysis of eye movements. Academic tools such as the re-
cently published MATLAB-toolbox GazeAlyze [Berger et al. 2011]
based on ILab [Gitelman 2002] or ASTEF [Camilli et al. 2008] can
be easily integrated in self-designed applications but, unfortunately,
only for offline analysis.

Imagine a driving assistance system that records the driver’s eye
movements and analyzes them to warn the driver about entities
(e.g., traffic participants) she might have overlooked. An essential
requirement for such a system is the online analysis of the driver’s
scanpath with respect to the entities that appear on the visual scene.
As a consequence, any algorithm used to cluster fixation points has
to be unparameterized (as new entities may appear on the scene).
Note that the system has to know the driver’s ROIs at any point in
time. Furthermore, as the viewing behavior differs from person to
person, an adaptive algorithm is needed.

We present an unparameterized, adaptive online algorithm for clus-
tering fixation points in scenarios such as the above.

2 Bayesian Online Mixture Model

Imagine a temporally ordered sequence of T two-dimensional
points, S = {si | 1 ≤ i ≤ T}, recorded by an eye tracker. As-
suming that these points reflect the visual scanpath of an observer
over time, a dense region of sequential points (i.e., points that are
close to each-other in terms of Euclidean distance), might reflect
a ROI (or, more specifically, an object that attracts the observer’s
attention).

Assuming that the recorded points are normally distributed around
a ROI, the corresponding distribution could be approximated by
exploiting covariances derived from the coordinates of the fixation
points in the ROI. However, when the number of observation points
is rather moderate, such an approximation typically leads to poor
results. Hence our algorithm is based on the intuition that the dis-
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tances between sequential fixation points in a ROI and the distances
between sequential saccade points come from two different Gaus-
sian distributions. The resulting (reduced) dimensionality allows us
to efficiently deal with a moderate number of observation points.
The parameters of these Gaussians (i.e., means and variances) can
be learned through a generative mixture model. The Bayesian net-
work in Figure 1 depicts a mixture model for the two Gaussian dis-
tributions.

Let D = {di | 1 ≤ i ≤ T − 1} be the set of distance variables
between points si, si−1 ∈ S. Θ = {µ1, β1, µ2, β2 π1, π2} denotes
the complete parameter set of the mixture model in Figure 1. The
mixture component is denoted by the variable zi and the observed
distance by the observed variable di. The simplifying assumption
here is that the distances are generated sequentially in an i.i.d. fash-
ion. More specifically, each distance between two sequential points
is generated independently by the most likely Gaussian distribution.

The joint probability distribution of the model is given by:

p(D, z|Θ) =

T−1∏
i=1

p(zi = z|π)p(di|µz, βz)

=

T−1∏
i=1

πziN(di;µzi , βzi)

where z = {z1, ..., zT−1}, with zi ∈ {1, 2} being the index of
the mixture component chosen for distance di, and π = {π1, π2}
denotes the set of mixture parameters.

We have used Infer.NET1 to specify the model with the following
distributions.

(1) The distribution over the mixture component variables:

p(z|π) =

T−1∏
i−1

πzi

(2) The prior distribution over the model parameters:

p(Θ) = p(π)p(µ)p(β)

(3) The prior over the mixture parts as a symmetric Dirichlet distri-
bution:

p(π) = Dir(π;λ)

(4) The prior distribution over the means as a product of Gaussians:

p(µ) = N(µ1;m, τ)N(µ2;m, τ)

(5) The prior distribution over the precisions as a product of Gam-
mas:

p(β) = Gam(β1;n, γ)Gam(β2;n, γ)

2.1 The online model

The above Bayesian model comes with the great benefit that it can
be easily turned into an online learning model. In general, for given
model parameters Θ and observationsD, after applying Bayes’ rule
follows that the probability of the parameters Θ in light of the data
D is:

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)

More generally, we can write:

p(Θ|D) ∝ p(D|Θ)p(Θ)

1http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

Figure 1: Bayesian Mixture Model for clustering based on the as-
sumption that the distances di between sequential points in a ROI
and saccade points come from two different Gaussian distributions.

The above formula suggests that in an online setting the prior of
the parameters p(Θ) can be iteratively substituted with the poste-
rior p(Θ|D), while the likelihood on the parameters p(D|Θ) helps
readjust the model, as more and more observations are made (see
also [Bishop 2006]).

This insight allows us to readjust the learned parameters µ, β, π as
more and more eye movement data is available. To this end, we de-
fine Gaussian distributions as priors for the means µ1, µ2, Gamma
distributions as priors for the precisions β1, β2, and Dirichlet dis-
tributions as priors for π1, π2. All these distributions are learned
as new data points are observed, and in each iteration, their priors
are updated by their posteriors. The whole model was implemented
in C# and Infer.NET. Also, for the probabilistic inference on the
model, we have used Variational Message Passing as implemented
by Infer.NET. The code can be made available on request.

3 Experimental Results

3.1 Data

To evaluate the proposed Bayesian online mixture model for clus-
tering, we used eye-tracking data, collected from driving sessions
with different human subjects. The scope of the study was much
broader and involved the investigation of visual scanning behavior
(and its impact on the driving performance) of three groups of sub-
jects: (1) subjects suffering from homonymous visual field defects
(loss of the field of vision at the same relative position in both eyes),
(2) subjects suffering from glaucoma (a disease involving the optic
nerve degeneration, thus leading to irreversible loss of vision) and
(3) control subjects. In order to record the eye movements, we used
a Dikablis2 mobile infrared eye tracker, at a sampling rate of 25Hz.
The scene is captured at an image resolution of 768x576px. After
a three-point calibration routine, the gaze and scene information is
synchronized online.

For the evaluation of the model we used the raw data as exported by
the eye-tracking system. It is important to notice that this did not
involve any data cleaning or preprocessing. Gaze points with cor-
rupted position information (e.g., due to unsuccessful pupil detec-
tion by the eye-tracking system or missing scene information) are
not excluded from the data; nor are saccade points. As the detec-
tion of ROIs is performed online, and the gaze points are processed
sequentially, the information used by the algorithm consists only of
the coordinates of the gaze points in the scene image.

The assessment of the visual scanning differences between the
study participants is out of the scope of this paper and will be pre-

2http://www.ergoneers.com/de/products/dlab-dikablis/overview.html
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sented in a later publication. Here we focus only on the clustering
performance of the algorithm.

3.2 Results

Although the algorithm was evaluated on multiple video sequences,
for the sake of space, we report experimental results for three typi-
cal scenes from the driving sessions of two different subjects. The
detected clusters are depicted in Figures 2, 3 and 4. Note that (be-
cause of space restrictions) the figures depict representative frames
from a longer video sequence. The gaze points from the sequences
were used by the algorithm to detect the fixation clusters. The
frames were chosen in such a way that they represent as much
of the sequence information as possible. In order not to overload
these scene images, the detected fixation clusters (in Figure 2 and
Figure 3) or saccade points (in Figure 4) are presented in separate
images above or below the scene. Different colors stand for differ-
ent fixation clusters. Dotted lines connect the detected clusters with
the corresponding objects or traffic participants that were fixated by
the subject in the sequences. The single red points in Figure 4 rep-
resent sequential saccade points. The chronological viewing order
of the entities in the scene is denoted by time stamps ti.

The first 200 gaze points (corresponding to 8 seconds) at the begin-
ning of each driving session were used by the model to learn the
individual viewing behavior of the subject. This way the algorithm
can adapt to a new subject. All the following gaze points were pro-
cessed in an online fashion, as described in Section 2.1.

Figure 2: Regions-of-interest for a driving sequence of 1.76 sec
length (subject 1). During this driving sequence (corresponding
to 44 frames) the model detects 5 fixation clusters time-stamped
according to their chronological order t0 . . . t4. At the beginning
of this sequence the subject was fixating the first car on the right
side of the road (t0). A few frames later the gaze was directed
toward the middle of the road (t1). The ROI in the actual frame
corresponds to the car connected to the t2-cluster. Yet a few frames
later, the subject fixates again the road (t3) and finally, in the last
frames a car (t4) in the rear of the road is fixated.

It is important to note that, depending on the driving speed, the
scene information can change very quickly. Objects and traffic par-

ticipants appear within the driver’s visual field for a very short time
period. Furthermore, for every new entity appearing on the scene,
when the entity is fixated by the subject, the algorithm needs to rec-
ognize a new cluster in an online fashion. This means that the num-
ber of possible clusters is not known beforehand. Consequently,
parameterized clustering algorithms are not applicable to these sce-
narios.

Figure 3: Regions-of-interest for a road junction scene (subject
2). The four clusters (or regions-of-interest) detected here corre-
spond to the entities fixated during a driving sequence of 1.2 sec-
onds. The frame on the top presents the scene at the beginning of
this sequence. First the subject fixates the person crossing the street
(time-stamped by t0). After that, the gaze of the subject is directed
towards the traffic sign on the right side (t1). The lower frame cor-
responds to a scene image captured about 700 ms later. At this
point in time the subject fixates again the person crossing the street
(t2) and moves later his visual attention towards another person
crossing the street (t3).

As we can see, in the depicted figures, the viewing behavior dur-
ing driving is characterized by brief fixations. Hence the algorithm
has to efficiently make sense of very few new gaze points and de-
cide whether they correspond to a fixation cluster or to saccades. In
all experiments the algorithm dealt with the incoming data in real
time. We hypothesize that the performance would be unchanged,
even if the gaze points were sampled at a much higher rate. Fur-
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Figure 4: Fixation cluster and saccade points at a traffic light (sub-
ject 1). The single cluster detected in this sequence corresponds to
the traffic light as fixated by the subject (see upper-most frame) in
the beginning of the sequence (time-stamped by t0). A few frames
later, the subject’s gaze is directed towards the traffic light on the
left side of the road (see lower frame). This happens over two sac-
cades (t1, t2), which were detected correctly by the algorithm. The
latter traffic light though is not fixated by the subject, as one frame
later the subject shifts the gaze back (t3). It is interesting to see that
for the t0-cluster the algorithm has decided that all gaze points be-
long to the same cluster, although there are small distances between
the points. And indeed these points correspond to the same fixated
object. This indicates that the algorithm has correctly adapted to
the subject’s viewing behavior.

thermore, although the raw data is noisy and the viewing behavior
is subject-dependent, the proposed algorithm adapts very quickly to
the individual viewing characteristics of each subject and performs
robustly in detecting regions-of-interest in an online fashion.

Overall, the mentioned strengths allow the application of the algo-
rithm to independent viewing sequences, containing only few gaze
points. This flexibility makes it adequate for broad applications in

vision or HCI research, where the online analysis of gaze-based in-
teraction (e.g., tracking a subject’s attention or detecting overlooked
entities) is crucial.

4 Conclusion

We have presented an unparameterized, adaptive online algorithm
for clustering eye movement data. The experiments conducted so
far have shown that the algorithm performs strongly and in real-
time on raw data collected from eye-tracking experiments in driv-
ing sessions, with different participants. Further experiments are
needed to evaluate the real-time performance of the algorithm at
higher sampling rates. As future work, we have planned to evaluate
its performance on a broader set of online applications and to in-
tegrate it with existing analysis tools, such as Vishnoo [Tafaj et al.
2011]. However, we think that this algorithm already satisfies sev-
eral crucial criteria that would make it a core ingredient for many
online analysis tools of vision research.
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