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Abstract

Areas of interest (AOIs) are a powerful basis for the analysis and visualization of eye-tracking data. They allow to relate eye-

tracking metrics to semantic stimulus regions and to perform further statistics. In this work, we propose a novel method for

the automated generation of AOIs based on saliency maps. In contrast to existing methods from the state-of-the-art, which

generate AOIs based on eye-tracking data, our method generates AOIs based solely on the stimulus saliency, mimicking thus

our natural vision. This way, our method is not only independent of the eye-tracking data, but allows to work AOI-based even

for complex stimuli, such as abstract art, where proper manual definition of AOIs is not trivial. For evaluation, we cross-

validate support vector machine classifiers with the task of separating visual scanpaths of art experts from those of novices.

The motivation for this evaluation is to use AOIs as projection functions and to evaluate their robustness on different feature

spaces. A good AOI separation should result in different feature sets that enable a fast evaluation with a widely automated work-

flow. The proposed method together with the data shown in this paper is available as part of the software http://www.ti.uni-

tuebingen.de/Eyetrace.1751.0.html.

CCS Concepts

• Human-centered computing → Heat maps; Scientific visualization; Information visualization; • Computing methodologies

→ Cross-validation; • Applied computing → Fine arts;

1. Introduction

The raw gaze signal itself does not immediately reveal intentions,
strategies, nor the cognitive state of a person. A recorded fixation
location only suggests perception at a specific location, not percep-
tion of a specific entity. Therefore, to visualize and analyse such
data, we need to add an additional semantic layer on top of the data
in order to make sense of it. We can do so by aggregating gaze to-
wards meaningful subregions of the stimulus, known as areas of
interest. Usually one of the early steps in eye-tracking data pro-
cessing is the identification of fixations, as gaze samples recorded
during a saccade have different implications on perception as fixa-
tion locations [SG00, TKK∗13, SFKK16].

Traditionally, such AOIs (Areas Of Interest) were manually an-
notated by the data analyst. However, this approach has several
flaws associated with the subjective judgment of the data analyst.
Furthermore, even small inaccuracies in the calibration of the eye
tracker might result in fixations being wrongly assigned to a close-
by AOI. Generally, the level of detail of AOI annotation is often un-
clear (e.g., when thinking about a face one might annotate the face
as a whole or specific subregions such as the eyes and the mouth,
depending on the expectations of the data analyst). Some methods

for scanpath comparison therefore suggest a complete renunciation
of AOIs [DNJ∗12].

A partial remedy for the manual, subjective annotation of AOIs
is the automated creation of AOIs based on either the recorded
gaze data, the stimulus material or neither. Figure 1a shows Ja-
copo Robusti, called Jacopo Tintoretto, "The last supper", created
in 1592-âĂŞ94, and is used as stimulus for the participants. In
the simplest form an evenly sized grid is superimposed on the
stimulus (Figure 1b). Data-driven approaches segment the gaze
heatmap [Nys08, FKS∗15] of multiple participants (Figure 1c) or
cluster fixations [PS00, SD04]. These approaches lead to a certain
robustness towards measurement noise and calibration inaccuracies
as these are already contained within the data during AOI creation
(Figure 1d). If for some reason these methods are not applicable,
one can utilize image information [PS98] (Figure 1e) to generate
somewhat meaningful AOIs.

Aggregating gaze data to AOIs allows for a more robust and
meaningful subsequent analysis by inspecting statistical informa-
tion (such as the number of fixations and average fixation dura-
tion) distributed towards each AOI [CMTG10, DNJ∗12]. It is also
possible to analyze the transition matrix between AOIs. This ma-
trix contains the probability of gaze traversing from a specific AOI
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(a) Stimulus image (b) Superimposed 5×5 grid

(c) Heatmap segmentation (d) Fixation clusters (e) Saliency segmentation

Figure 1: a) the stimulus image used. b) AOIs created with a superimposed 5x5 grid. c) AOIs created using a heatmap of fixations. d) AOIs

created using mean shift clustering. e) AOIs resulting from the proposed saliency segmentation.

to another specific AOI. One often uses a string encoding for this
purpose, where a letter is assigned to each fixation based on the
AOI it has been assigned to. The result is a scanpath word. Due
to the inequality in length of eye-tracking recordings and different
sampling rates of eye trackers their comparison is a challenging
task [DDJ∗10, CMTG10, KRS∗17a].

The definition and consistency of AOIs represents a challenge
as well, especially when one strives for scenes and pictures with
no obvious shape or texture present [HKvdBH16]. An example is
abstract art where the AOIs cannot be defined based on objects or
surfaces as it is done for figurative or concrete artwork. We will
address this problem by defining AOIs based on image features of
the stimulus. These are motivated by a computational recreation
of properties of the human visual pathway (saliency maps). We
demonstrate how regions can be extracted from saliency maps by
existing algorithms for heatmap segmentation. Thereby we gener-
ate consistent regions for a given stimulus and can define a consis-
tent level of detail as well via quantifiable parameters of the used
algorithm [HKvdBH16].

For evaluation of the quality of generated AOIs, we cross-
validate support vector machine classifiers with the task of separat-
ing scanpaths of art experts from those of novices. This is done for
different key metrics calculated on the generated AOIs. The com-
parison is based on the overall classifier performance for the differ-
ent AOI generation algorithms. The motivation for this evaluation is
to use AOIs as projection functions and to evaluate their robustness
on different feature spaces. A good AOI separation should result
in different feature sets that enable a fast evaluation with a widely
automated work-flow.

The proposed work-flow can be subdivided in two major steps.

First, we compute a saliency map of the stimulus image. In the
second step, we treat the saliency map like a gaze heatmap and
apply a state-of-the-art algorithm for AOI extraction (an example is
shown in Figure 1e).

The remainder of this paper is organized as follows. Section 2
gives an overview on the state-of-the-art. Our method is presented
in Section 3. Section 4 and 5 present and discuss the collected eye-
tracking data and the evaluation results. Section 6 concludes this
paper.

2. Related work

In this section, we describe existing approaches for creating AOI
in an automated way. Therefore, we group methods into three cate-
gories namely shape, stimulus, and data based. Shape-based meth-
ods are preliminary defined regions that are not related to the im-
age or the data. In the category of stimulus-based methods, only the
stimulus image is used to define the AOIs. The last category con-
tains data-driven algorithms. Hybrid approaches of the aforemen-
tioned categories do exist as well. As the field of saliency maps is
very vivid and hundreds of different approaches do exist, we focus
on the description of the approach utilized in this work and refer
the reader to [BI13] for a broader overview.

2.1. Shape-based AOI generation

Shape-based AOIs are commonly applied for their simplicity. For
stimuli that distribute their content equally over the whole area,
their application can be justified. However, the borders of such
AOIs will not correspond to meaningful objects and the interpre-
tation of results can be difficult. Popular shapes are squares, rect-
angles or ellipses. By the definition of shape sizes the data analyst
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implies some assumptions on the data. These can be quantified by
reporting the shape size, as contrary to manual annotation at differ-
ent detail levels in different stimulus regions.

2.2. Stimulus-based AOI generation

Privitera et al. [PS98] suggested to segment a stimulus image into
coherent regions. Ten different algorithms for image feature ex-
traction and clustering are analyzed and compared against hu-
man fixations. The aim was to improve image compression qual-
ity by compressing aware of regions relevant to a human. Other
approaches for stimulus-based AOIs originate in image segmenta-
tion [SM00,AMFM11]. The main interest here is the exact regions
corresponding to objects or entities like persons or cars. The main
goal is to automate the manual labeling process. As there are stim-
ulus materials that do not contain objects or separated areas, this
approach is not always applicable. Therefore, a more general ex-
traction of features motivated by the low-level processes of human
vision is of interest. Most prominent approaches for such saliency
maps are [IKN98, HZ07].

2.3. Data-based AOI generation

Methods from this realm utilize the semantic information con-
tained within the eye-tracking data itself in order to generate
AOIs. [Woo02, Nys08] proposed thresholding approaches for fix-
ation heatmaps. In [FKS∗15], a gradient-based segmentation is ap-
plied in order to avoid local heatmap maxima that would result in
less viewed AOIs being omitted. A technically different approach
uses mean-shift clustering on fixation locations to achieve simi-
lar results [PS00, SD04]. The advantage of these methods is that
small calibration errors can be compensated as they are contained
within the data during AOI creation. Human knowledge about pos-
sible stimulus segmentations can be extracted from the eye-tracking
data. However, enough data for a fully converged heatmap needs to
be available (usually at least 30 recordings). Furthermore, this ap-
proach cannot cope with spatially overlapping AOIs. In that case,
they might be fused to one large, continuous AOI. As such a dis-
tinction might be relevant for specific stimulus materials.

2.4. Saliency maps

One of the first and most renowned biologically inspired compu-
tational model of human vision was proposed in [IKN98]. It is
based on a bottom-up architecture described in [KU87] and uses
features such as color and edge orientation. However, in [CMH∗15]
the authors showed that the result of this saliency model is gener-
ally blurry and overemphasizes small local features. This can be
problematic for segmentations or detection algorithms using this
saliency map as an input.

Frequency-based approaches Other approaches work in the fre-
quency domain of an image (its Fourier transform [Bra78]). Ex-
amples are the frequency-tuned salient region detection [AHES09]
or spatio-temporal saliency detection [GMZ08]. These approaches
determine the saliency based on the amplitude and phase spectrum.
This preserves the high-level structure of an image with the disad-
vantage that they tend to highlight object boundaries.

Local and global methods For color-based methods it is also pos-
sible to distinguish between local and global computation mod-
els. In local models, the surrounding region of each pixel is in-
vestigated. Based on local color contrast a saliency value for each
pixel is computed [MZ03,IB05]. Local methods produce less blurry
saliency maps but miss global relations between regions and tex-
tures. They are sensitive to edges or noise. Global models in con-
trast include the correlations and juxtapositions of different image
regions [LYS∗11, GZMT12, WKI∗11]. The results of global meth-
ods are consistent in terms of image structures but the computa-
tional cost increases due to the involved combinatorial possibili-
ties. Therefore, those approaches can only be applied to low res-
olution images, resulting in a loss of small but salient content. It
has to be mentioned that the approach in [AHES09] uses both local
and global relations to create a per pixel saliency map. The global
part is the dissimilarity to the average image color, representing a
global color contrast. In addition, the image is blurred to decrease
the influence of noise for the local contrast computation done by
Differential of Gaussian filters.

Conditional random fields (CRF) are a machine learning ap-
proach that can learn to extract local features and to position them
in a global context. A network of nodes is distributed over the im-
age where each node influences its neighboring nodes. This net-
work is structured into layers superimposed on each other. Higher
layers represent global relations, lower layers the local feature ex-
traction. This was used in [Low03] and combines multi-scale and
local contrast together with the regional context and the spatial
color distribution. An extension of this approach was proposed
in [RWKP04, FKR07] where image segmentation is used addition-
ally to group regions more accurately.

3. Method

Modern methods for AOI creation from eye tracking data utilize the
semantic knowledge of the viewer about the stimulus material. Dis-
tinct fixation targets likely correspond to distinct AOIs. However,
there are also cases where this association fails: In case AOI regions
overlap (such as a face partially occluding another face) or in the
case of an overall low tracking accuracy compared to the resolution
of the stimulus material, the blurring operation that is required for
the construction of a smooth heatmap can easily lead to a fusion of
multiple AOIs. This is especially the case, if one of the regions is
very dominant and thereby consumes weaker ones. A similar effect
is associated with the choice of a minimum gaze frequency cutoff
value for heatmap: As we are generally only interested in regions
that are frequently looked at, we have to dispose of a lot of small,
seldom looked at potential AOIs.

Due to those limitations, our idea is to integrate early features of
the human visual system into determining AOI boundaries. Such a
method generally over-segments the image (as can be seen in Fig-
ure 1e by the many spurious AOIs), but thus it is possible to dis-
tinguish AOIs even when one region is very dominant. The over-
segmentation can easily be resolved once we apply the actual eye
tracking data to the AOIs, as many of them will contain only very
few fixations and can therefore be filtered. The two steps of the
method are:

1: Calculate the saliency map based on the stimulus image.
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(a) The Last Supper, Jacopo
Tintoretto

(b) Saliency Itti (c) AOI Itti (d) Saliency Frequency-tuned (e) AOI Frequency-tuned

(f) Paradise, Lukas Cranach (g) Saliency Itti (h) AOI Itti (i) Saliency Frequency-tuned (j) AOI Frequency-tuned

(k) Improvisation 9, Vasilii
Kandinsky

(l) Saliency Itti (m) AOI Itti (n) Saliency Frequency-tuned (o) AOI Frequency-tuned

(p) Shimmering Substance,
Jackson Pollock

(q) Saliency Itti (r) AOI Itti (s) Saliency Frequency-tuned (t) AOI Frequency-tuned

Figure 2: The first column shows the stimulus images, the second column contains the respective generated [IKN98] saliency maps, and the

third column presents the AOIs created based on these. Columns four and five contain the frequency-tuned [AHES09] saliency maps and

their corresponding AOIs.

2: Compute AOIs based on gradients in the saliency map.

Figure 2 shows some stimulus images that we used to generate
AOIs from. The first artwork (Figure 2a) is the famous "The Last
Supper" by Jacopo Tintoretto. It illustrates a complex dark scene
with bright spots at the gloriole and the hanging oil lamp. Those
two regions are the most salient areas for both algorithms but due
to the gradient-based AOI generation other parts are extracted as
well (shown in Figure 2c and 2e). The second representative for

artworks is "Paradise" by Lukas Cranach shown in Figure 2f. The
generated AOIs (Figure 2h and 2j) of both algorithms separate
the persons in the center of the image well. The regions extracted
by [IKN98] are less detailed caused by a downscaling of the origi-
nal image during the computation of the saliency map.

In addition to these classical paintings, some examples for ab-
stract art are shown in (Figure 2k and 2p)), namely "Improvisation
9" by Vasilii Kandinsky and "Shimmering Substance" by Jackson
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Pollock. Figure 2m, 2o), 2r and 2t) show that the AOI generation
based on the saliency over-segments the scene.

In the following we will compare the proposed approach with the
following methods: Fixation mean-shift clustering [PS00, SD04],
generating AOIs from a gaze heatmap based on its gradient
[FKS∗15] and based on thresholding [Woo02, Nys08].

4. Data description

For evaluation we used eye-tracking data recorded by [Ros14] at
the University of Vienna. It consists of 40 participants, 20 experts in
art and 20 novices. Data was recorded with an IViewX RED 120 eye
tracker on a 30-inch monitor with 2560×1600 pixels. Participants
viewed the artwork for 2 minutes from a distance of 0.9 meters.

AOIs were generated jointly on data of all participants. A gaze
heatmap of all participants is shown in Figure 3a. A visual com-
parison of Figures 3b and 3c show a strong overall similarity with
only subtle differences. For the evaluation we calculated the follow-
ing eye tracking key metrics for each AOI and participant (where
a gaze point corresponds to a single eye tracker sample and a fix-
ation to one physiological eye movement event): time to first gaze

(S1), amount of gaze points (S2), gaze points per minute (S3), share

of gaze points (S4), total time of gaze points (S5), minimal consec-

utive time of gaze points (S6), maximal consecutive time of gaze

points (S7), average consecutive time of gaze points (S8), time of

first fixation (S9), amount of fixations (S10), fixations per minute

(S11), percentage of fixations (S12), total time of fixations (S13),

minimal consecutive time of fixations (S14), maximal consecutive

time of fixations (S15), average consecutive time of fixations (S16).
Power of the following classification step could be increased by us-
ing transition features between the AOIs, which we omitted in this
evaluation. Transitions would increase the number of features ex-
ponentially since they are also applicable in different kinds (global,
relative to AOI, incoming or outgoing, transitions as saccade or
scan path etc.). All statistics were collected based on the average

eye, an average gaze position of the left and right eye. In addition,
the average eye contains only data where both eyes have been de-
tected by the tracker, resulting in good data quality.

In Figure 3d, 3e, 3f, 3g and 3h the generated AOIs for all com-
pared methods are shown. As can be seen in Figure 3d, 3e and 3f,
clustering and generating AOIs from the heatmap produces similar
results for the most prominent AOIs. Figure 3g and 3h show the
results of the two saliency maps.

5. Evaluation and Results

For evaluation of the quality of generated AOIs, we cross-validate
support vector machine classifiers with the task of separating scan-
paths of art experts from those of novices. We employed MAT-
LAB 2015b’s support vector machine (SVM) configured as ’Stan-

dardize’=false, ’KernelFunction’=’linear’, ’KernelScale’=’auto’,

’OutlierFraction’=0.0, ’Nu’=0.5, 100 as initial random seed, and
a 20-fold cross-validation (20 experts and 20 novices). The fea-
tures {S1, . . . ,S16} were evaluated in different combinations, where
k represents the amount of combined features. This means that for
k = 3 all possible triple combinations of features are evaluated. For
automatic AOI generation five methods where analyzed:

Table 1: Maximal classification result per k for each AOI gener-

ation algorithm (using all AOIs). Bold numbers represent the best

performers per k.

k CLU HEATG HEATT SALI SALFT

1 0.60 0.5500 0.7500 0.6750 0.6250
2 0.6750 0.5750 0.7500 0.6750 0.6250
3 0.6750 0.5500 0.7500 0.6750 0.6250
4 0.6750 0.5500 0.7500 0.6750 0.5750
5 0.6750 0.5500 0.6750 0.6750 0.5750
6 0.6750 0.5250 0.6500 0.6750 0.5250

CLU Fixation mean-shift clustering [PS00, SD04].
HEAT_G Heatmap Gradient [FKS∗15].
HEAT_T Heatmap Threshold [Woo02, Nys08].
SAL_I The proposed method using the saliency maps generated

with Itti et al.’s method [IKN98].
SAL_FT The proposed method using the saliency maps generated

with the Frequency-Tuned method [AHES09].

The simplest and most intuitive approach would be the compar-
ison based on the best classification results. Those are shown in ta-
ble 1. HEATT has the best linear classification result for k = 1−−4
mainly due to feature S12 (share of fixations) with the tightly fitted
AOIs (shown in Figure 3f).

While the heatmap threshold method reaches superior perfor-
mance in Table 1, it should be noted that the saliency-based meth-
ods can keep up with the other data-driven methods. Instead of
looking at the overall best classification accuracy, we could also
investigate the robustness of the classification for different feature
sets. This is an important consideration, as we want AOIs that show
us as many inter-group effects as possible, not only the strongest
ones.

Another way to evaluate the quality of the AOIs is therefore their
stability across different feature sets. This means that we analyze
the capability of the AOIs to extract information out of the statis-
tical values. Therefore, we use the entire set of combinations pos-
sibilities per k and compute the mean and standard deviation. We
evaluated all combination possibilities up to a maximum of k = 6.
This was done to reduce the amount of evaluations which increase
exponentially. The mean score for a method is then given by

Sµ(AOIm,CS,k) =
∑
(|S|

k )
i=1 CV S(AOIm,CSi)

(|S|
k

)

, (1)

Where m represents the AOI generation method, |S| is the amount
of statistical values, CSi the Combination Set of statistical val-

ues,
(|S|

k

)

the binomial coefficient and CV S() the Cross-Validation
Score for the classification. With the mean Sµ(AOIm,CS,k) we can
define the standard deviation as in equation 2.

√

√

√

√

√

∑
(|S|

k )
i=1 (CV S(AOIm,CSi)−Sµ(AOIm,CS,k))

(|S|
k

)

−1
(2)

The best result for one feature (S1) using Equation 1 is reached
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(a) Fixation heatmap all (b) Fixation heatmap experts (c) Fixation heatmap novices

(d) AOIs from clusters (e) AOIs from heatmap gradi-
ent

(f) AOIs heatmap threshold (g) AOIs from Itti (h) AOIs frequency-tuned

Figure 3: The first row shows fixation heatmaps. a) all participants, b) only the experts and c) only novices. Determining differences in

these heatmaps is non-trivial. The second row shows the generated AOIs for d) the fixation clustering, e) gradient heatmap segmentation, f)

threshold heatmap segmentation, g) Itti saliency map and h) frequency-tuned saliency map.

Table 2: The calculated score (mean) for each method using equa-

tion 1 (using all AOIs). Bold numbers represent the highest mean

value per k.

k CLU HEATG HEATT SALI SALFT

1 0.4328 0.4516 0.5391 0.5016 0.4438
2 0.4290 0.4525 0.5073 0.5198 0.4148
3 0.4250 0.4508 0.4885 0.5283 0.4085
4 0.4252 0.4505 0.4780 0.5375 0.4072
5 0.4284 0.4502 0.4696 0.5470 0.4068
6 0.4335 0.4500 0.4608 0.5564 0.4060

Table 3: The calculated standard deviation for each method us-

ing equation 2 (using all AOIs). Bold numbers represent the lowest

standard deviation per k.

k CLU HEATG HEATT SALI SALFT

1 0.0884 0.0716 0.1208 0.1192 0.0892
2 0.0849 0.0645 0.1077 0.1002 0.0520

3 0.0820 0.0531 0.0925 0.0837 0.0328

4 0.0790 0.0454 0.0835 0.0716 0.0227

5 0.0769 0.0413 0.0791 0.0641 0.0189

6 0.0753 0.0394 0.0764 0.0603 0.0182

by HEATT which are the most restrictive AOIs (first row Table 2).
For the other feature combinations (S2−−16) it is outperformed by
SALI . It can also be observed in Table 2 that the only method con-
tinuously improving its score is SALI while the others decrease in
linear classification performance. This means that SALI is the over-
all most robust AOI set and constantly over chance level. In Table 3

the standard deviations are shown. Those values hold information
about the reliability of the results from Table 2 which is indicated
by a hardly fluctuating value and therefore a low standard deviation.
As can be seen the reliability for higher feature combination in-
creases for all AOI generation algorithms. In addition the Whisker
plot for all feature combinations (k = 1−−6) are shown in Fig-
ure 4. Here the higher feature combinations dominate the result.
This is because more features allow more combination possibilities
and are therefore evaluated more often.

Again it can be seen that SALI outperforms the other approaches
especially if the 25% and 75% percentiles are considered.

These results indicate that AOIs generated on the saliency map
proposed by [IKN98] can be applied to art viewing experiments.
As they can be computed even before the data is recorded, they
could be used for online classification scenarios without the need
of recording large amounts of data per piece of art.

6. Conclusion

We proposed a procedure for generating AOIs based on saliency
maps. In addition, we showed that our approach is also applicable
to scenes and images where it is not possible to manually annotate
AOIs. This means that our approach is applicable to abstract art.
In such artworks, it is impossible for a human to define objects or
areas (Figure 5).

Our evaluation showed that saliency AOIs can reach maximal
classification accuracy similar to data-driven AOIs. The data-driven
approach needs large amounts of data to generate generalized AOIs.
For the saliency-based AOI generation, this limitation does not ap-
ply. In addition, the proposed evaluation procedure does not only

c© 2018 The Author(s)
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Figure 4: Whisker plot over all feature combinations S1−−16. The

red line is the median. The blue box represents the 25% and 75%

percentiles. Black horizontal lines are the minimum and maximum

of the evaluated data and the red crosses represent outliers. It has

to be mentioned that higher feature set combinations are over-

represented due to the higher combination possibilities.

Figure 5: Wassily Kandinskys "Untitled", dated 1910, is one of the

first abstract artworks.

account for the best possible result but also investigates the qual-
ity and stability of key metrics. In case of this stability the saliency
model from Itti outperforms the frequency based approach and the
data-driven models. In practice, this stability over different input
combinations is important as the evaluation of all possibilities is
too costly for large amounts of data. This applies in particular if
the parameters for the AOI generation algorithm have to be esti-
mated too (no parameters for [FKS∗15]). In our evaluation only
statistical features are used. Modern feature extractors like Subs-
Match [KRS∗17b] or ScanGraph [DP16] consider also the graph
of the scan path and sequences of fixations. Therefore, the obtain-
able classification results using those approaches are higher. In this
paper we evaluated the stability of AOIs computed on saliency
maps which allows a completely automatic extraction which is
the basis for the aforementioned algorithms to be applicable on-
line. Along with image features (SIFT [Low99], ORB [RRKB11],

MSER [MCUP04]) to assign AOIs from different images, Saliency
based AOIs are even applicable for dynamic scenes like videos.

Future research will go into the usability of our approach for
online classification scenarios on abstract, figurative and concrete
art. This will give further insight into the composition of museum
visitors and may help with the arrangement of art and their presen-
tation. Additionally, this insight could indicate how art or in general
images can be grouped by human attention. This is only one sce-
nario which is strongly related to art. Other scenarios like expertise
level prediction or attention level are also applicable by preliminary
and automatically defined AOIs. A combinatorial approach where
the AOIs adapt to the new data with the saliency-based AOIs as
initial estimates is also conceivable to improve online classification
further.
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7. Appendix

Table 4: Used parameters for calculations.

Fixation
Method: Standard
Minimum duration: 50ms
Maximum radius: 100px
Outliers allowed: 2

Cluster
Method: Mean-Shift
Minimum fixations: 80
Search radius: 50px

Heatmap Input: Gaze points
Gauss σ: 50

AOI gradient Prethreshold: 15%
Min region size: 50px

AOI threshold
Prethreshold: 20%
Threshold: 50%
Min region size: 50px
Window size: 200px

Saliency map [IKN98]
Local maxima: 14
Gabor size: 14
Gabor σ: 100

Saliency map [AHES09] Gauss size: 250px
Gauss σ: 90
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