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Tübingen, Germany

daniel.weber@uni-tuebingen.de

Enkelejda Kasneci
University of Tübingen
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Abstract—For sensible human-robot interaction, it is crucial
for the robot to have an awareness of its physical surroundings.
In practical applications, however, the environment is manifold
and possible objects for interaction are innumerable. Due to
this fact, the use of robots in variable situations surrounded by
unknown interaction entities is challenging and the inclusion of
pre-trained object-detection neural networks not always feasible.
In this work, we propose deploying augmented reality and eye
tracking to flexibilize robots in non-predefined scenarios. To this
end, we present and evaluate a method for extrinsic calibration
of robot sensors, specifically a camera in our case, that is both
fast and user-friendly, achieving competitive accuracy compared
to classical approaches. By incorporating human gaze into the
robot’s segmentation process, we enable the 3D detection and
localization of unknown objects without any training. Such an
approach can facilitate interaction with objects for which training
data is not available. At the same time, a visualization of the
resulting 3D bounding boxes in the human’s augmented reality
leads to exceedingly direct feedback, providing insight into the
robot’s state of knowledge. Our approach thus opens the door
to additional interaction possibilities, such as the subsequent
initialization of actions like grasping.

Index Terms—augmented reality; eye tracking; human-robot
collaboration; object detection; robot calibration

I. INTRODUCTION

More and more robots are being used in environments
within a close proximity to humans. The possible applications
of robots are diverse and possible interactions with humans are
multifaceted. Whether as a tour guide in museums [1] or as
an assistant in supermarkets [2], each interaction scenario in-
volving robots has its own challenges. Furthermore, successful
technical advances in augmented reality (AR) have promoted
the interaction and collaboration between humans and robots.
Consequently, AR has found application in factories [3] and in
imitating assembly processes that a human demonstrates [4].

The long list of possible use cases results in at least as
many tasks that need to be solved. Among these tasks, the
conveyance of the interaction context, such as the specification
of an object to interact with, is particularly challenging. Many
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tasks, especially object detection, can be accomplished through
the benefit of machine learning methods, such as neural
networks. While advances in machine learning have had a
major impact on the development of human-robot interaction,
there are also some drawbacks. Typically, many of these ap-
proaches require a sufficient amount of available training data,
which cannot always be guaranteed. This data dependency ties
the deployment of robots to predefined scenarios and limits
interaction with the environment, e.g. with unknown objects
that cannot be detected. For example, if a supermarket changes
its assortment of products, the robot can usually only interact
with the new items if it has learned them beforehand. Our goal
is to enable data-independent object detection for cases where
no training data is available.

Another even more fundamental problem is the calibration
of the robot. In order for a robot to perceive a scene, its
sensors, such as a fixed, but adjustable camera, must be
properly targeted and its position relative to the robot base
must be known. Therefore, the scene or the purpose of the
operation needs to be identified in advance, at least to a certain
degree. In addition, calibration of extrinsic robot parameters
is often laborious [5] since, in most cases, either the existence
of a second sensor in the form of a laser scanner or another
camera is assumed, or expensive external tools are used.
Both make subsequent adjustments in response to changing
circumstances difficult. On top of that, the authors of [6]
noted that robots in public attract the curiosity of people,
especially children. In particular, children tend to touch the
robot or exhibit abusive behavior when unobserved. This, in
turn, can often lead to misalignments of the robot’s sensors
and require frequent recalibrations. A less time-consuming
calibration method is beneficial in this case.

In this work, we attempt to fill this gap at the intersection
of research fields of human-robot interaction, eye tracking,
and augmented reality. More specifically, we aim at a flexible
deployment of robots, detached from predefined scenarios by
leveraging collaboration with humans instead of training data.
Our contribution with this work is twofold:

On the one hand, we present a convenient method for
determining the transformations between the robot and a



sensor, in our case a camera, as well as between the human
and the robot. With our method, time does not have to be spent
repeatedly for each calibration run, but only once during the
initial setup. Subsequent calibrations can then be performed in
a matter of seconds, making the method particularly suitable
for situations where frequent recalibrations are required. The
calibration can be executed at any time during runtime and
allows both the human and the robot to move freely.

On the other hand, after utilizing said calibration, we fuse
existing point cloud clustering methods with eye-tracking
information to showcase the 3D detection of unknown objects.
More precisely, the robot and the human collaborate so that
the robot detects which object the human is looking at without
knowing the interaction context in advance. Based on our
calibration, we can establish a connection for continuous
exchange of interaction information. The human continually
provides the robot with gaze data and the robot responds with
the bounding box of the target object. The human’s perception
is augmented by integrating the robot’s feedback directly into
the human’s reality. All of this without training and in an
online fashion, not after the fact.

In summary, our most important contributions are as fol-
lows:

1) We show and evaluate a calibration method via an aug-
mented reality interface that is suitable for the deploy-
ment of robots in ever-changing scenarios and allows the
robot’s capabilities to be further extended by providing
it with a new, additional real-time information channel
— the human gaze.

2) We are the first to use augmented reality in a human-
robot collaboration scenario to segment unknown objects
in three-dimensional space without the use of neural
networks. We also provide direct feedback to the human,
enabling subsequent interactions.

The remaining part of this paper is structured as follows.
After a discussion of the related work, in Section III we
describe and formalize our approach in detail. Our results and
the limitations of our approach are discussed in Section IV.
Section V concludes this work and gives an outlook on our
future activities.

II. RELATED WORK

Employing gaze information to achieve human-robot inter-
action with unknown objects requires significant multidisci-
plinary efforts, which we will discuss in this section. From how
1) robots collaborate with humans, to 2) augmented reality
in robotics, 3) robot calibration and 4) 3D object detection,
to 5) mapping human gaze to a known frame of reference
and 6) previous applications of eye tracking in the context of
computer vision.

A. Collaborative Settings

In recent years, scenarios in which humans and robots
work together side by side have gained attention. Interaction
with robots invites interesting possibilities for beneficial col-
laboration in human everyday life [7]. In [8] a system was

presented, that enables a robot to perform cooperative search
with a human teammate, where the robot assists the human
teammate in navigation to the search target. Collaboration
between human and robot is also widespread in industrial
environments, such as in assembly tasks [9], surface finishing
applications [10] or welding work [11]. In addition to the
application in industry, robots have more and more of a social
purpose. Due to the lack of medical personnel and rising costs
in the health sector, social robots are increasingly being used
in the health care system [12]. They are typically deployed for
surgical assistance [13], rehabilitation [14], elderly care [15],
and as companion robots [16].

B. Augmented Reality in Robotics

With the increasing availability of various augmented reality
glasses, the impact of AR in research and industry has also
grown. In [17], head orientation and pointing gestures were
used to control an industrial robot arm for pick-and-place
tasks. However, the arm was fixed in the room to facilitate
coordinated transformation by means of a marker attached to
the wall and the set of interaction objects was fixed. An AR
device was also used by [18] in a multimodal communication
setup to help a robot decide which object a human pointed
to using gestures, gaze, and speech. In this setup, again, the
objects were predefined and their positions were additionally
measured accordingly in advance. The authors of [19] visual-
ized sensor data from a robot using AR glasses. All sensors,
though, were already calibrated, which additionally allowed
for the utilization of a localization algorithm. Following on
from this, the same authors recently used a deep learning-
based approach in [20] to determine the mutual position of the
robot and AR device. Nevertheless, this approach was not suit-
able for real time scenarios due to the limited computational
capacity of the AR glasses. Within a manipulation frame, [21]
used pre-trained 2D object detectors to determine 3D bounding
boxes. This required a fiducial marker to be in the field of view
at all times and was limited to a single object per pass. Such
problems of ambiguity we will solve with gaze.

C. Extrinsic Robot Calibration

Modern robots are usually equipped with a large number
of sensors, most frequently RGB-D cameras. Ensuring their
operability requires the most accurate calibration of extrinsic
parameters, i.e. their position on the robot base. A classical
approach to this is the use of calibration patterns. By observing
the pattern, [22] determined the mutual position between a
camera and a 2D laser range finder. With only one image, but
several markers, [23] succeeded in calibrating a camera with
respect to a second camera or a laser scanner. In both cases,
however, the existence of a second sensor was a prerequisite
and a common field of view of these two was mandatory.

In [24], a framework for parameter estimation using a mo-
tion capture system was built. While such systems, including
Vicon [25] or OptiTrack [26] can be very accurate, they
require careful calibration beforehand. In addition, they are
time-consuming to set up and expensive due to the amount of



hardware involved, such as multiple cameras. We try to close
this gap with a fast and universally applicable method.

D. 3D Object Detection

Due to the higher level of difficulty, many 3D object
detectors are inspired by detection in 2D. This includes the
projection of the point cloud into bird’s eye view [27] or
cropping on frustums based on 2D bounding boxes [28], [29].
Few also operate on the point clouds directly [30]. What
they all have in common, however, is that they rely heavily
on the availability of training data and focus predominantly
on road scenes or furniture pieces. An approach to instance
segmentation of unseen objects was proposed by [31]. While
they did not need real world images, they had to generate a
large amount of synthetic data for which 3D CAD models
were required. As an alternative to neural networks, [32]
used a saliency-driven approach to detect unknown objects.
Nonetheless, the results were influenced to some extent by a
parameter that depended on the size of the objects, and, due
to the long calculation time, the system was not suitable for
real-time applications.

E. Gaze Mapping

Mapping gaze data from a moving eye tracker to another
coordinated frame is still an unsolved challenge and thus
ongoing research [33]. One possible solution to this challenge
is feature matching. For example, [34] achieved promising
results with such a method, however it reaches its limit with
diverging camera perspectives. The authors also found that
better robustness at less computational cost was achieved with
fiducial markers [34]. Such markers were used in recent works
by [33] and [35], among others. One disadvantage of this
approach is that fiducial markers have to be in the field of view
of both cameras, restricting thus movements. With our AR-
based approach, we overcome this problem and ensure stable
gaze mapping despite free movement and thus independent of
the field of view.

F. Eye Tracking and Computer Vision

Although not yet very popular, there are some works
that have tried to solve computer vision problems with eye
tracking. In [36] for example, features in the neighborhood of
human fixations were matched to features of known objects to
determine the class of the respective object. Statements about
its position could not be made in this way. The authors of [37]
reduced the number of superpixels for salient object detection
with gaze data. In contrast to our approach, however, this
required both multiple gaze points and training data. With only
one gaze point, [35] managed to drastically reduce the number
of candidate bounding boxes of a region proposal method, but
this method is only applicable in 2D.

In this work, we build on existing research to improve
human-robot interaction. While speech and gesture are popular
channels for communication, gaze is challenging [38] and
often neglected. In the following, we link eye tracking and
augmented reality to address classical calibration problems as

well as data-independent 3D object detection in a collaborative
manner.

III. METHODS

In this work, we propose finding 3D positions of unknown
objects by incorporating human gaze into the robot’s segmen-
tation process. For this purpose, we first introduce the interface
used to communicate with the robot. Subsequently, we present
an extrinsic robot calibration method, which is particularly
characterized by its flexibility and ease of execution. In our
case, we calibrate a camera’s position relative to the robot’s
base, but in principle the method can be applied to any sensors.
Finally, we explain the segmentation process that applies said
methods.

A. Augmented Reality Interface

All interaction with the robot is guided via an augmented re-
ality interface and serves as a two-way communication channel
between human and robot. In this way, we can, for example,
control the movement of the robot, access the robot’s camera
feed, or perform the extrinsic calibration between robot and its
camera. In addition, we can provide the robot with the human
gaze data and display the results of the object detection. We
use the HoloLens 2 from Microsoft, a head-mounted pair of
mixed reality glasses with a built-in eye tracker. For the devel-
opment of AR applications, Microsoft provides an open-source
cross-platform toolkit called Mixed Reality Toolkit (MRTK).
The creation and development of our interface takes place
in the game development environment Unity. We use the
versions MRTK 2.7.2 and Unity 2019.4.29. For the actual
communication between the HoloLens’ Universal Windows
Platform (UWP) and the robot operating system (ROS), we
resort to the UWP version of ROS# [39], a set of open source
software libraries and tools for communicating with ROS
from Unity applications. On system startup, the robot launches
ROS#’s file server package as well as rosbridge server from
the rosbridge suite. As soon as the AR interface is started on
the HoloLens, it immediately establishes a connection with the
robot via Wi-Fi. Thereupon, ROS# uses the rosbridge protocol
to send JSON based commands via WebSockets, enabling
the deployment of custom publishers and subscribers. During
runtime, the menu of our interface can be opened by looking
at the user’s palm. Created virtual objects can then be selected
by voice or gestures. For example, menu buttons can be simply
pressed with a finger or other virtual objects can be selected
by looking at them and pinching the thumb and index finger
together or saying “select”.

B. Calibration & Gaze Estimation

The incorporation of the human gaze into the robot’s world
requires the estimated gaze to be mapped from the reference
frame of the human, provided by the HoloLens, into the robot’s
frame of reference. For this purpose, the transformation can
be computed either directly, if the pose of one device in the
frame of the other is known, or through indirect co-location by
finding corresponding points in the image of the two associated



cameras [35]. The former is often difficult to realize in prac-
tice, while the latter has some disadvantages, namely limiting
the view of both participants to an overlapping field of view.
Furthermore, for the robot to interact with objects in its field of
view, the position and orientation of the robot’s camera relative
to its base must also be known. The solution comes in the
form of augmented reality, which we can employ as a bridge.
If we create virtual counterparts corresponding to the real
poses of the respective frames, we become acquainted with
the transformation between frames through the transformation
between virtual elements. More precisely, we determine the
mutual position of the robot and the robot’s camera sensor
by aligning them with the corresponding virtual objects and
calculating the transformation occurring in between in the
virtual space of the HoloLens. The authors of [4], [8] and
[19] did something similar to align the coordinate systems of
a robot and that of a HoloLens. However, in their case, all
the necessary robot sensors had been calibrated beforehand.
The advantage of our calibration method is that it splits the
usual time-consuming extrinsic sensor calibration into multiple
parts. In case of frequent calibrations, only the fast part needs
to be repeated.

For us, the approach described means we can intertwine
both of our problems: On the one hand, we can calibrate the
position of the robot and the camera in relation to each other,
and, on the other hand, we can establish a direct transformation
between HoloLens and the robot, which means that the robot
is aware of the gaze point at all times regardless of the field
of view. An overview of the underlying pipeline is shown in
Figure 1.

Fig. 1: The QR codes specify the position of the virtual
versions of the robot and the camera. The intervening trans-
formation can be determined in the virtual world of the
HoloLens 2 and is then published via ROS#.

We start by determining the poses of the two frames of
interest. This is, in our case, the so called base link on the

Fig. 2: The AR interface appears when looking at the open
palm. The QR code on the camera positions the virtual camera
model and the QR code on the robot’s torso defines the robot’s
forward direction and center of rotation (orange).

robot side and the camera base frame on the camera side.
In principle, however, any frame can be used whose origin
is known relative to a point on the housing. To align real
and virtual versions of the robot and its camera, we attach
fiducial markers in the form of QR codes (see Figure 2) as they
allow for robust and inexpensive detection. The HoloLens 2 is
moreover capable of detecting QR codes at the system level
in the driver. However, we have to consider that there will
be an offset between the pose of the markers and the actual
frame. So let {b}, {mb}, {c} and {mc} be the coordinate
frames of the robot’s base (base link), the QR code on the
base, the camera (camera base), and the marker on the camera,
respectively. For two frames f1, f2 ∈ {{b}, {mb}, {c}, {mc}},
let the transformation from f1 to f2 be denoted by f1Tf2 ∈
SE(3). The connection between the frames can be illustrated
by the following transformation graph:

{b} {c}{mb} {mc}.
bT c

mbT b
mcT c

The QR codes on the robot and camera can usually be attached
to their housing so that they are either parallel or perpendicular
to it. Thus, their orientations and, hence, the rotations to the
corresponding frames are known. The same applies to the
translation between {mb} and {b}, since the marker can be
placed on the robot according to existing knowledge about
other robot frames. If, contrary to expectations, this is not
possible, we also managed to approximately estimate the
center of rotation of the robot, i.e. where the base link frame
{b} is located, as the geometric center of the virtual circle
drawn by the marker on the camera as the robot rotates
around its own axis. The translation from {mc} to {c} can be
determined with the help of manufacturer information about
the dimensions of the camera. This means mbT b and mcT c

are known.
We want to determine the transformation bT c. The idea is

to add a frame {h} corresponding to the coordinate system of
the HoloLens to close the transformation graph:



{b} {c}{mb} {mc}

{h}

bT c
mbT b

mcT c

hTmb

hTmc

After the two QR codes have been detected by the HoloLens,
they can be selected via our AR interface and hTmb

and hTmc

can be estimated. Finally, the transformation bT c from the base
of the robot to the camera is given by the following equation:

bT c =
mbT−1

b
hT−1

mb

hTmc

mcT c.

The result can be published from the HoloLens using ROS# to
the transformation topic /tf, making it available to the robot.

Furthermore, we can use {h} as a parent frame in which the
robot’s odometry frame is embedded. This gives us a reference
point for the gaze information that we can access via MRTK.
Associated with {h}, we can publish this data on a separate
topic. This includes the gaze vector and the hit point of the
eye gaze ray with the target.

It should be noted that the fiducial markers are only needed
while performing the calibration. Once they have been detected
and selected, the user is free from restrictions on the field
of view. In addition, contrary to the usual procedure, we do
not determine the calibration parameters externally and then
store them in configuration files. This means that we can make
changes to the camera, such as the tilt, even during runtime.
This is a great advantage for use under changing scenarios.

C. Segmentation

We now address the problem of detecting unknown objects
in the three-dimensional environment. We tackle this task
by enhancing existing segmentation methods on the robot
side with gaze information from the human collaborator.
The segmentation process can be triggered either on demand
by multimodal interaction, such as gestures or speech, or
– empowered by the calibration method – continuously in
real time. The assistance that the robot receives from the
human should be limited solely to the provision of the gaze
information. Apart from that, the segmentation should only
take place on the robot’s side. This makes sense due to the
robot’s higher resources and computing power compared to
head-mounted devices like the HoloLens.

The segmentation process starts with a pass through filter
where we assume that all relevant objects are between zero and
three meters away from the camera, followed by a voxel grid
filter with a leaf size of 0.03 along each axis that downsamples
the point cloud we acquire from the robot’s camera. This is
not mandatory, but it reduces the computation time drastically
and allows a segmentation in real time. In most cases, we can
assume that the objects to be detected lie on a surface that is
reasonably flat. This could be, for example, a table, a shelf,
or the floor itself. We can take advantage of the parallelism
between all these surfaces. Due to our calibration, we know the
orientation of the camera with respect to the robot standing on
the floor. This means that we can transform the upward vector

from the HoloLens world frame into the camera frame and thus
obtain the normal vector of the surface, that is parallel to the
floor and on which the objects are located, in the frame of the
camera. We can then use RANSAC to search for the largest
plane in the robot’s field of view, namely the said surface,
that is perpendicular to the given normal vector. Thereby, we
set the maximum allowed deviation from the normal vector
to 30 degrees. All points belonging to this plane are finally
removed from the point cloud. In the next step, we let the gaze
information flow in. Since the human is looking at the object
of interest, we know at least one point on its surface. Starting
from this point, we can cluster the point cloud using simple
euclidean clustering. That is, we first use a k-d tree to find
the point in the point cloud that is closest to the gaze point.
Then we cluster the point cloud with respect to the Euclidean
distance, a tolerance of 5mm, and a minimum cluster size of
500. All points that belong to the same cluster as the nearest
neighbor of the initial point result in the searched object. Note
that without the gaze information we would not be able to
distinguish between clusters belonging to objects, clusters of
parts of the environment, or noise. This subtle gaze interaction
resolves ambiguities and brings us closer to a natural learning
process.

Finally, we do not only obtain an instance segmentation of
an object, but we can also calculate a 3D bounding box from
it. The box can be aligned properly in space again due to
our calibration and the robot can share the result directly with
the human via our AR interface. Thus, the bounding box can
be displayed in the human’s field of view, providing direct
feedback and enabling a natural two-way communication
component, as well as an initialization of further interactions
of the robot with the object.

IV. EVALUATION

In our experiments, a Scitos G5 from MetraLabs [40] was
employed as a robotic counterpart. It has been equipped with
an Azure Kinect DK, whose relative position to the robot we
want to calibrate. The camera also provides image data such
as the point cloud on which we perform the object detection.
All components communicate with each other using ROS [41].

A. Qualitative Analysis

One of the advantages of our method is already evident
when performing a single calibration run. Whereas calibration
methods based on data collection are time-consuming and
difficult to automate [5], the entire procedure with our variant
takes less than a minute. Depending on the user’s experience, a
single run usually takes only between 15 and 40 seconds. This
is especially apparent when the camera needs to be adjusted
more frequently, either because it has been unintentionally
moved or because the setting has changed.

After calibration, the whole system, including gaze mapping
and the object segmentation, runs in real time. Figure 3 shows
a visualization in RVIZ. The gaze ray vector as well as
the coordinate of the hit point on the target are published
with 59Hz. Using the default configuration, the Azure Kinect



Fig. 3: The robot model with the camera positioned relative
to it. The human gaze vector is shown as a green arrow and
the gaze hit point as a purple sphere.

provides the point cloud at 4 frames per second. Subsequently,
segmentation reduces the rate of the outgoing segmented cloud
and thus also that of the bounding box to 2 frames per
second. Since the minimal fixation duration is, in most cases,
at least 200ms [42] and the recommended feedback delay
time for manual pointing actions is approximately between
350ms and 600ms [43], an update every 0.5 seconds is
sufficient. Consequently, our method is suitable for human-
robot interaction in real time.

Some final example results of segmented objects and the
respective bounding box can be seen in Figure 4. For sim-

Fig. 4: The segmentation with the gaze point (left) and the
resulting bounding box as seen from the human (right). The
box is given in world coordinates, therefore tracking of already
detected objects during movements of the robot is superfluous.

TABLE I: The translation in meters determined by the cali-
bration with OptiTrack as well as our AR interface.

Vertical Horizontal Inclined
Axis OptiTrack mARCa OptiTrack mARC OptiTrack mARC

xb -0.081 -0.080 -0.079 -0.079 -0.077 -0.079
y -0.295 -0.295 -0.324 -0.327 -0.331 -0.332
z 0.973 0.973 1.072 1.071 1.033 1.035

ØDist.c 0.003 0.004 0.003
a Average value of our AR-based calibration
b Coordinate axes refer to the ROS coordinate system
c Average spatial distance of all runs calculated with the euclidean norm

plicity, we have chosen common household objects and office
utensils, which we have placed on a table in front of the
robot. In principle, both humans and robots can move freely
around the table, since the position of both is known in the
HoloLens based parent frame. However, to ensure that the
robot’s movements are tracked as precisely as possible, an
additional localization procedure is required, which is beyond
the scope of this work, as solving such a problem has already
been extensively researched, and possible solutions can be
found in the literature [44], [45]. Naturally, the current position
can be manually repositioned at any time via our interface.

B. Quantitative Analysis

First we start with the evaluation of the calibration part. To
establish a reference ground truth, we utilize the OptiTrack
motion capture system [26]. We place multiple reflective
markers on both the robot and the camera. These can be
tracked by the Optitrack system with an accuracy of 1mm.
Given these point observations, we can calculate the robot and
the camera poses with respect to the coordinate system of the
motion capture system, and then compute the camera pose of
interest relative to the coordinate system of the robot. Based
on the deviations we have observed in several test trials, we
estimate that this post-processing decreases the accuracy to
about 3mm. In this way, we determine the ground truth of
the transformations from the robot frame to the camera frame
for three different poses of the camera. Once horizontally, i.e.
parallel to the floor, once vertically, i.e. perpendicular to the
floor, and once in an inclined position at about 45 degrees.
Without moving the camera in between, one of the system’s
designers performed the calibration 20 times per tilt using the
method we presented in Section III. For each tilt, we evaluate
the translation and rotation components separately.

Table I shows the result of the translation part of our AR-
based calibration compared to the calibration using OptiTrack.
In the table, the translation in each direction is given with
respect to the ROS coordinate system. The difference between
the result of the OptiTrack system and the mean result from
our calibration varies, but is not noticeably pronounced with
respect to any direction. The largest difference is observed with
3mm in the direction of the y-axis in the case of horizontal
orientation. All other values do not differ at all or only 1 to
2mm. Our analyses have shown that the same is true for the
average of all individual differences to the ground truth.



Since the deviation in individual directions is less relevant
than the spatial distance, we also want to take this into account.
We measured the euclidean distance of the translation of each
individual calibration run from the ground truth translation.
The results are reported in the last row of Table I. One can
see that the spatial error does not exceed 4mm on average.
This is comparable to the accuracy of the extrinsic calibrations
evaluated in [22] and [46]. The distribution of the individual
euclidean distances to the ground truth are shown in the box
plot in Figure 5. Although the error in the vertical setting is

Fig. 5: The box plot represents the distribution of the transla-
tion errors with respect to the euclidean norm.

generally the smallest, there were also some outliers. Basically,
in all three scenarios the vast majority of errors were below
5mm. The medians lie between 2mm and 4.5mm. Note that
this is only slightly above the accuracy range of the reference
ground truth estimated via OptiTrack.

We now examine the rotational error of the transformation.
In general, each rotation can be expressed by an axis of
rotation and an angle of rotation. This rotation angle can be
considered a measurement of the similarity of two orientations.
This means that for each rotation component determined by
our calibration, we calculate the difference rotation, which
transforms the obtained rotation into the ground truth rotation.
The smaller the angle of rotation, the more similar the two
rotations. The angles of all difference rotations are plotted
in Figure 6. Although there are, again, a few outliers, most
values are below 2 degrees with medians ranging from 1.6 to
1.9 degrees. The same applies to the average rotation error.
Thus, the rotation error is of the same order of magnitude as
that of classical approaches like [22]. All in all, the accuracy
meets the requirements of most applications, including our
gaze segmentation, while being flexible and fast.

Let us now have a closer look at the evaluation of the
segmentation part. Although the performance of current 3D
object detectors lags behind the state of the art in 2D object
detection, there are 3D object detectors that promise good
results on indoor datasets such as SUN RGB-D [47]. However,

Fig. 6: The rotation errors displayed in a box blot.

our experiments have shown that the claimed results are
difficult to achieve in practical applications. One possible
reason could be that, due to comparability, the evaluations are
usually conducted on the same few categories [28], [29], [30].
As a result, performance on other classes is often significantly
worse or remains unknown.

We trained several neural networks, such as VoteNet [30]
and Frustum ConvNet [29] on the classes book, bottle, bowl,
cup, keyboard, laptop, mouse, paper, plant, and telephone from
the Sun RGB-D dataset. These objects were more appropriate
for our setup although smaller than the furniture used in the
original papers. It turned out that all state-of-the-art networks
performed very poorly on our set of objects and could not
serve as reasonable reference ground truth. To put this in
numbers: Whereas the mean average precision with a 3D
Intersection over Union (IoU) threshold of 0.25 was only
27.8% for Frustum ConvNet, this value was even less than
1% for VoteNet. Thus, almost none of the available test
objects were successfully detected by the neural networks
and a meaningful comparison was therefore not possible. For
this reason, we devised an alternative evaluation strategy and
eventually conducted two different approaches. In the first
one, we labeled the 3D bounding boxes of the objects in the
acquired point cloud of the scene by hand and calculated the
3D IoU (with regard to the volume) for ten test objects. In
the second one, we used a pretrained 2D object detector to
avoid vulnerability regarding a bias in labeling. While modern
3D detectors are still far from being able to serve as ground
truth, 2D detectors certainly are capable of doing so. Hence,
we projected the points segmented by our method onto the
2D image plane and compared the resulting 2D bounding box
with Faster R-CNN [48] (ResNet-101 backbone) trained on
Microsoft COCO [49]. This dataset was also the criterion by
which the ten test objects were selected. The results of both
evaluations are shown in Table II. In the 2D case, all values
are above 0.5 and thus all objects can be considered correctly



TABLE II: The IoU between the bounding boxes obtained by our method and the respective ground truth.

Class name apple backpack book bowl clock cup keyboard mouse remote tennis ball mIoU

2D IoU 0.78 0.78 0.79 0.86 0.68 0.84 0.88 0.79 0.80 0.87 0.81
3D IoU 0.70 0.66 0.72 0.84 0.62 0.73 0.66 0.59 0.64 0.71 0.69

detected [50], [51]. Furthermore, almost all values are even
above 0.7 with a mean IoU of 0.81. In contrast, the 3D IoU
values are naturally smaller. Nevertheless, all objects are again
considered to be detected, using the usual 3D threshold of 0.25
as reference [28], [47]. The mean 3D IoU is 0.69. Figure 7
shows the recall as a function of the IoU threshold at which
a bounding box is classified as true positive. Note that even

Fig. 7: The recall as a function of the IoU threshold at which
the objects are considered to be detected.

with a 3D IoU threshold of 0.5, which is twice as large as
that used by the authors of VoteNet and others [29], [47], the
recall is still 100%.

Overall, our method hints at going far beyond the practical
applicability of state-of-the-art neural network-based 3D ob-
ject detectors, illustrating the importance of diverse solution
strategies along with neural networks.

C. Limitations

Although our method of calibration is remarkably fast and
user-friendly, the initial setup takes some time. While less
in-depth expert knowledge is required compared to other
methods, care must be taken to ensure that the markers are po-
sitioned accurately and that the distances to the corresponding
frames can be determined. However, since this is a one-time
step, this time expenditure is not of any significance compared
to the time saved in each subsequent calibration run.

Furthermore, as with any other existing method, our seg-
mentation and the calculated bounding box strongly depend on
the quality of the original point cloud provided by the depth
sensor. In this regard, the perspective of the robot’s camera on
the object also plays a role and whether the depth sensor can

correctly determine the distance at the edges of the objects.
However, the fact that the image quality has an influence on
the result is in the nature of things and could be resolved by
using multiple cameras or additional angles.

For objects that are too close to each other, it is not
possible to keep them apart by extracting euclidean clusters.
In this case, one could, for instance, resort to a min-cut based
segmentation algorithm, also generally suitable, since a point
must be given in the center of the object, which can be
provided by the gaze point. In our tests, min-cut segmentation
indicated promising results, but also required the approximate
size of the respective object as an additional input argument.

V. CONCLUSION

In this work, we presented a novel method that allows for
the deployment of robots under changing and non-predefined
conditions. In this course, we combined robotics, augmented
reality, and eye tracking to improve human-robot collabora-
tion. Merely by receiving gaze information from its human
partner, the robot was capable of detecting and segmenting
unknown objects.

While most existing methods for extrinsic robot calibration
are time consuming and often quite complicated to conduct,
we have developed a method that is user-friendly, customizable
at runtime, and takes only a few seconds to complete. At
the same time, our evaluation has shown that we still achieve
competitive accuracy compared to classical methods.

In addition, we bridge the two worlds of human and robot
through the use of head mounted augmented reality glasses,
giving the robot access to another persistent information
channel — the human gaze. Just by having a human look at an
object, the robot was able to segment objects it has not seen
before and calculate associated three-dimensional bounding
boxes. This goes beyond the capabilities of some state-of-
the-art 3D object detectors and we found that our method
works in situations where current existing neural networks
have failed. Through direct feedback in the augmented human
reality, the human is continuously informed about the results
and the initialization of further interactions between the robot
and the object is possible. This could be especially relevant
for physically disabled people who are limited to movements
in the head or neck area, in combination with a robotic arm
that helps them grasp or manipulate objects.

In summary, our proposed method is versatile and facili-
tates general human-robot collaboration, as well as unknown
object detection in the context of such scenarios in particular.
However, there remains a significant amount of future work as
we seek to investigate our segmentation in more challenging
scenarios and realize a subsequent interaction between the
robot and the objects.
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