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ABSTRACT

We present a new loss function for the validation of image landmarks detected via Convolutional Neural Networks
(CNN). The network learns to estimate how accurate its landmark estimation is. This loss function is applicable to all
regression-based location estimations and allows the exclusion of unreliable landmarks from further processing. In addi-
tion, we formulate a novel batch balancing approach which weights the importance of samples based on their produced
loss. This is done by computing a probability distribution mapping on an interval from which samples can be selected using
auniform random selection scheme. We conducted experiments on the 300W, AFLW, and WFLW facial landmark datasets.
In the first experiments, the influence of our batch balancing approach is evaluated by comparing it against uniform sam-
pling. In addition, we evaluated the impact of the validation loss on the landmark accuracy based on uniform sampling.
The last experiments evaluate the correlation of the validation signal with the landmark accuracy. All experiments were
performed for all three datasets.
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1. INTRODUCTION

Landmark localization describes the process of determining the location of characteristic points of an object in an
image. These points are usually characterized by a spatial relationship to each other such as the nose and eyes of a
face. Under pose changes of the object, landmarks cannot change positions randomly but according to their relative
positions towards each other. The problem of landmark localization is common in 2D face alignment, face reconstruction
or gesture recognition [1,2]. These are also preparatory steps for head pose estimation [3, 4], emotion estimation [5, 6]
and face recognition [7,8]. The current state of the art in this area addresses the problems of accurate and robust landmark
detection in real and constrained scenarios. Known challenges are the head pose, facial expressions, illumination changes,
blurring, and occlusion. Deep neural networks [9, 10] are currently in the focus of attention since they outperformed any
other machine learning approach for common computer vision tasks. This includes landmark detection [1, 11] with a
multitude of different network architectures, including convolution neuronal networks [12], auto encoders [13], recurrent
networks [14], residual networks [15, 16] and hourglass networks [1]. Recent developments emphasize the importance
of the loss function as a key element for improving the accuracy and robustness of landmark localization, such as the
newly proposed Wing loss [15]. In addition, data balancing plays an important role in training: challenging poses are
often massively underrepresented in the training data. Therefore, pose-based data balancing using principal component
analysis was proposed by Feng et al. [15] and a cycle generative adversarial network was employed in [16]. Another novel
architecture, a local to global context network proposed in [17], outputs heat map candidates and is therefore capable of
detecting landmarks for multiple persons in an image. In this work, we address the challenge of facial landmark validation
and batch balancing for training. The main contributions of this work are 1: A novel loss function that trains the network
directly to estimate the accuracy alongside with landmark location. The idea behind our validation loss is that we want the
network to guess the reliability in terms of distance to the ground truth position. 2: An online data augmentation strategy
that ranks training samples by their produced loss. This addresses the problem of pose-based data balancing [15] by not
only normalizing for the occurrences of head poses but also for (a priori unknown) challenges in the dataset like occlusion
and illumination.

2. RELATED WORK

State of the art methods employing deep learning for facial landmark detection is based on regression, i.e. the network
estimates the correct landmark positions directly. We categorize those approaches by their employed architecture, data
balancing procedure, cascading, and loss functions. Architecture: A straightforward way to use a CNN for direct 2D
landmark regression was proposed in [12, 15]. The input to such a network is a face image which is extracted based on
preliminary applied face detection. Novel architectures such as residual [15] and recurrent networks [14] have already



improved the state of the art in regression-based landmark detection. Hourglass networks [1] have also led to an increase
in both accuracy and robustness of landmark detection. However, instead of a position vector, its output is a heat map,
where each pixel represents the probability to be a landmark position. Data balancing: Facial landmarks are subject
to extreme pose variations. Head poses present in current datasets are however heavily biased towards frontal images;
extreme orientations are rarely represented in the data. To overcome this limitation, multiview models were proposed,
splitting the problem into frontal and profile faces. Those where already used in traditional approaches, such as ASM [18]
and AAM [19], as well as for cascaded regression-based approaches [20,21]. In [16], a cycle GAN was used to generate
images to handle style variations. The third approach to data balancing is multi-task learning. This means that emotion
classification, pose estimation, 3D face reconstruction, and landmark detection are trained jointly [22,23]. This was found
to boost individual subtasks. Cascaded networks: The aim of these approaches is to use multiple networks stacked upon
each other to refine landmark positions. The straightforward approach is to use a coarse positioning network and refine
the positions with a second network which receives the coarse positions and a higher resolution image as input [15,22].
Another approach is to extract image patches surrounding possible facial landmarks and to refine the position within those
patches. This was done using a recurrent network trained in an end to end fashion [14]. Loss functions: Recently, the
wing loss function was proposed [15]. It is a combination of a log loss function if the error is close to zero and otherwise
an L1 loss. Other approaches also deal with the validation of landmarks, which is additional challenge for real world
applications [24].

3. BATCH BALANCING

Figure 1: Exemplary images which represent a balanced set based on the head pose.

Existing pose-based data balancing approaches [15] are a valuable and effective procedure but have one major draw-
back: the data is balanced only based on the underrepresentation of some head poses with regard to a parameter of his-
togram bins. Figure 1 shows an example where data is already balanced based on the head pose. But additional challenges,
such as reflections (top right) and three different types of occlusions are only represented by one sample each. Our idea
is to use the produced loss of a training image to compute the probability of an image being included in the next training
batch. Thereby, we can make the network learn especially the challenging cases, even if they are not annotated as such.
Using the loss as a criterion will automatically keep a balance between being able to detect the vast majority of data via an
appropriate generalization and at the same time dedicate an adequate amount of training towards the especially challenging
samples. Figure 1 shows such a training set. Each sample, therefore, has an assigned value range which allows to create a
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Equation 1 describes our Loss Probability based Batch Balancing (LPBB). For the selection of the j training sample (S) in
our batch (B) we first select a value in the range [0; >, Loss;| using the uniform distribution P. n is the amount of all
samples in our training set. Afterward, we search for the kth sample which has a greater or equal sum of the loss values
as our randomly selected value. For completeness, it should also be required that k is the smallest sum that satisfies this
condition (Not integrated into the formula for simplification). This sample is than included in the batch. This also means
that samples can be assigned twice in a batch but since we use online data augmentation, there is no limitation (Section 5).
Figure 2 shows the sample selection. First the sum is computed based on which the range for the uniform distribution is
computed. Afterwards, the sample three is selected since it has a greater sum of loss values.

For an exact determination of the probability based on the loss value, all data must be evaluated after each training
batch. Since this represents a considerable effort, two different uses were considered in our evaluation (Section 6). An
exact description can be found in Section 5.
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Figure 3: The used network architecture for the proposed approach.
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4. VALIDATION LOSS FORMULATION

The idea behind our validation loss is that we want the network to guess the expected distance between its prediction
and the ground truth position as a proxy of the reliability of the prediction. This means that the network not only estimates
the landmark position, it also evaluates its accuracy and provides this information in the additional output. Therefore, we
compute the distance between the estimated and annotated position (L2, L1, or any task-specific distance metric) and use
this as a training label for the next training iteration. For landmarks the convetional loss formulation is %(gti — ev;)? for
the ith index of the output neuron where gt is the ground truth and ev the estimated value. The derivative and therefore the
gradient is gt; — ev;. Each landmark position is estimated using two neurons from the last layer as shown in Equation 2.

Lij = Nl = gt, — €V;

LMjy = Nit1 = gtiy1 — evitq

2

LM; . in Equation 2 is the gradient for the x coordinate of the jth landmark and LMj , the gradient for the y coordinate
which are represented by neuron N; and NN, respectively. We extended this formulation by a third value which is the
validation signal. As metric between the ground truth position and the estimated value we used the Manhattan distance.
The computation of the gradients for one landmark position using the validation loss is shown in Equation 3.

Ni = gt; — ev;
Nip1 = gtiy1 — evip 3
Niyo = |gti — ev;| + |gtiy1 — evip1| — evita

As can be seen each landmark receives an additional neuron (/V;2) which learns to evaluate the quality of the z, y position
estimation of the landmark. The higher this signal is, the less accurate is the landmark estimation. The advantages of this
formulation are first than the CNN can learn to estimate the landmark quality end to end and that our formulation is not
bound to a distance metric. The Manhattan distance (|gt; — ev;| + |gt;11 — ev;11]) can also be replaced by the Euclidean
distance (\/ (gt; — ev;)? + (gtit+1 — ev;41)?) or any other distance metric.

5. SYSTEM, TRAINING, AND AUGMENTATION PARAMETERS

For the training of our network, we used DLIB [25]. The training was performed on a POWERS server from IBM with
four Nvidia Tesla P100 GPUs and 1TB of RAM. For the evaluation and measuring the inference runtime, we used a desktop
computer with an NVIDIA GeForce GTX 1050ti, 16GB of RAM and an Intel i5-4570 CPU. The network architecture itself
is shown in Figure 3 and consists of an initial convolution layer followed by a max pooling. Afterward, three residual blocks
are used with 64, 128 and 256 layers, respectively. After each convolution, we used a batch normalization layer followed



by a rectifier linear unit. The end of our architecture consists of two fully connected layers, wherein the last layer has 3 *
outputs with the validation loss and 2 * [ without. [ represents the number of landmarks. This means that for the 300W [3]
dataset with 68 landmarks our output layer has 3 %68 = 204 neurons using the validation loss. These three values represent
Table 1: Results in NME (smaller
is better) for the networks NON and
NOBB trained from scratch without
batch balancing. Bold values are

the x and y coordinate as well as the validation signal per landmark.

Naming convention: For our evaluation we trained four CNNs for each data set
(300W [3], AFLW [26], and WFLW [27]). All CNNs follow the same architecture
as shown in Figure 3. NON: CNN using no validation signal and no batch balancing.
NOBB: CNN using the validation signal and no batch balancing. BBO: CNN using
the validation signal and batch balancing (PLBB) with an online update. BB: CNN
using the validation signal and batch balancing (PLBB) with an update of the loss
value for all training samples every 10% of an epoch.

Data augmentation: For data augmentation, we used randomly added noise of
up to 20%. The face bounding box was randomly shifted by up to 20% of the image
in any direction (corners or between) and rotated between in the range [-1, 1] radian.
Gaussian blur was added to the image in the range =[1.0, 1.3]. Additionally, we
added occlusions which could cover up to 50% of the image. The gray value of the
occlusion was also randomly chosen in the range [0, 30] (dark), [200, 255] (bright) or
randomly between [0, 255]. The last data augmentation was the contrast which was
adjusted with a randomly selected value between [-30, 30]. All the augmentations
are computed online and each augmentation has a chance of 50% to occur in the
image.

Training parameters: Weight decay was set to 5 x 10* and mo-
mentum to 0.9 with a batch size of 10. All images during training

the best results.

Dataset \NON NOBB
300W Full 435 443
300W Common 3.67 3.71
300W Challenging |7.14 7.38
AFLW Full 1.74 1.76
WFLW Full 6.62 6.71
WFLW No challenge| 4.78 5.17
WFLW Blur 6.99 6.94
WFLW Expression |7.18 7.44
WFLW Illumination | 6.26 6.36
WFLW Makeup 6.53 6.39
WFLW Occlusion | 7.49 7.20
WFLW Pose 11.76 11.13

Table 2: Average normalized mean error on the
300W dataset in comparison to the state of the art.

and evaluation were converted to grayscale. For the training of the Method \Common Challenging Full
NOBB, BBO, and BB networks we used the Manhattan distance for REpR [28] 6.18 17.26 835
the validation loss as shown in Equation 3. All models were initialized  ~paN [13] 550 16.78  7.69
with random values and trained in three steps. The first step used the  gpgp [20] 528 17.00  7.58
L2 loss formulation for the x and y coordinate with a learning rate of gy [29] 5.60 1540 7.52
1078, Each model was trained for ~ 2000 epochs with this configura- ERT [30] _ i 6.40
tion. This was done since DLIB ends up in a loss of NaN for random CFSS [31] 4.73 9.98 5.76
initialization networks if the initial learning rate is set too high. After- TCDCN [32] 4.80 8.60 5.54
ward, the learning rate was increased to 10~7 for additional ~ 2000 LBF [33] 4.95 11.98 632
epochs. For the second training step, we changed the loss formula-  3pypHEA (34] 6.15 1059 7.01
tion from L2 to L1 for the coordinate regression. The training was  3pypEA L SDM [34] 553 9.56 6.31
conducted for an additional ~ 2000 epochs. Afterward, the learning N [35] _ i} 5.65
rate was increased to 1076 for all models with the exception of those RAR [36] 4.12 835  4.94
trained on the WFLW [27] dataset. For the WFLW [27] dataset the . pa (37] 5137 938  6.10
learning rate was kept at 1077, The training of all models was contin- TR-DRN [38] 4.36 756  4.99
ued for an additional ~ 2000 epochs also the models which are trained | Ap (8-stack) [38] 342 6.98 4.12
on WFLW. For the last and third part of our training, we changed the CNN-6(Wing) [27] 335 7.20 4.04
loss function to the wing loss [15] for the coordinate regression. The CNN-6/7(Wing) [27]] 3.27 718  4.10
wing loss function is a combination of a log loss and an L1 loss func- SANop [16] 341 755 4.24
tion. For large errors (> w) it behaves like the L1 loss function and SANr [16] 334 6.60 3.08
for small errors (< w) like a log loss function. We used the parameters NON 367 714 435
€ = 2,w = 10 as in the original paper [15] where € is used to limit NOBB 371 7.38 4.43
the curvature of the log function. The training was continued for an BBO 3.34 6.77 3.93
additional 900 epochs where after each 300 epochs the learning rate BB 3.01 6.51 3.69

was decreased by 10! to a minimum of 10~8. For the models trained

on the WFLW [27] dataset the learning rate was decreased to 108 after the first 500 epochs and kept at this value for the

remaining 400 epochs.



6. EVALUATION

In this section, we evaluate the proposed methodology and compare the resulting networks with the state of the art
on the data sets 300W [3], AFLW [26], and WFLW [27]. First, the datasets are described. Afterward, we evaluate the
impact of the validation signal to the landmark accuracy. The second experiment evaluates the impact of the different batch
balancing approaches (BB and BBO) in comparison to the state of the art. In the last experiment, we evaluate the validation
signal quality and its effectiveness to detect inaccurate landmarks. Table 3:  Average normal-

Evaluation data: For the evaluation of our batch balancing approach and the com- ized mean etror on the AFLW
parison to the state of the art we used the 300W [3], AFLW [26], and WFLW [27] facial dataset in comparison to the
landmark dataset [3]. All values are reported with a factor of 102. The datasets are de- state of the art.

scribed in the following. 300W: The dataset is an aggregation of multiple face datasets, = Method \Full
namely LFPW [41], HELEN [42], AFW [3] and XM2VTS [43]. 68 landmarks are an-  CCL [39] 272
notated semi automatically [44]. The evaluation procedure is identical to [15,16,33].  DAC-CSR [40] 227
The training set consists of the annotated images from AFW and the training subset of ~ TR-DRN [38] 2.17

LFPW and HELEN (3,148 images in total). For evaluation three test sets are consid- L AB w/o boundary [27]|1.85
ered. The common test set from LFPW and HELEN (554 images). A challenging test ~ CNN-6 (Wing) [15] 1.83
set consisting of 135 collected iBUG face images. All images together form the full ~ CNN-6/7 (Wing) [15] [1.65

test set (689 images). We report our results in normalized mean errors (NME). This SANar [16] 1.91
corresponds to the pixel distance between detected and annotated landmark, normalized NON 1.74
by the pixel distance between both eye centers (equal to the inter-pupillary distance if NOBB 1.76
pupils are not annotated [15,16,33]). AFLW: In our experiments, we used the AFLW-  BBQO 1.61
Full protocol [39]. The dataset consists of 20,000 training and 4,386 test images. Each BB 1.56

image has 19 manually annotated landmarks and has been widely used for facial land-
mark localization benchmarking since it contains high pose variations(-90°-90°). We report our results in normalized mean
errors (NME) which corresponds to the pixel distance between detected and annotated landmark, normalized by the width
or height of the squared face bounding box. WFLW: The dataset consists of 7,500 images for training and 2,500 images for
testing. Each image has 98 manually annotated facial landmarks. In addition, the test set is split up in different challenges
e.g. occlusion, pose, make-up, illumination, blur, and expression. We followed the original protocol [27] and evaluated
each challenge separately. The results are reported as normalized mean errors (NME). For the original protocol, the pixel
distance between detected and annotated landmark is normalized using the inter-ocular distance.

Impact of validation loss on the accuracy: Table 1 shows Table 4: Average normalized mean error on the WFLW
the comparison of the models NON and NOBB. Both do not dataset in comparison to the state of the art.
use the batch balancing but the model NOBB uses the proposed
validation signal regression. As can be seen for the datasets
300W and AFLW the validation signal reduces the accuracy
of the landmark regression. This due to the competition be-
tween the landmark position and its inaccuracy. For the dataset
WFLW this is slightly different. Overall the model NON is
more accurate but not for all challenges. For blur, makeup,
occlusion, and pose the model NOBB outperforms NON.
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ESR [20] |11.1312.2011.47 10.49 11.05 13.7525.88
SDM [29] [10.29 11.28 11.45 9.32 9.38 13.03 24.10
CFSS [31] |9.07 9.96 10.09 8.30 8.74 11.7621.36
DVLN [45]| 6.08 6.88 6.78 5.73 5.98 7.33 11.54
Impact of PLBB: Table 2 shows the results on the 300W  LAB [27] |5.27 6.32 5.51 523 5.15 6.79 10.24

dataset. Comparing the results of NOBB to BBO and BB it NON 6.62 699 7.18 626 653 7.49 11.76
can be seen that our batch balancing approach improves there- NOQO 6.71 694 744 636 639 7.20 11.13
sults further. For BBO the results are slightly worse compared BBO 586 6.01 628 553 568 6.28 9.67
to BB because the loss distribution is less accurate. However, BB 554 5.71 594 526 537 5.94 9.24

the computational effort for BBO is only one fifth. Comparing
both (BB and BBO) to the state-of the art it can be seen that they are equally or more accurate.

The models CNN-6 [27] and CNN-6/7 [27] where proposed together with the wing loss which we are using too. The
authors additionally proposed a dataset balancing strategy (PDB) which shows to be effective by comparing these two net-
works to our NON and NOBB models which do not use any batch balancing strategy. The comparison of the CNN-6/7 [27]
to our BBO model it can be seen that the main improvement of our batch balancing strategy is in the challenging part of



the 300W dataset. This is due to similar images in the training set produce higher loss values and are more likely to be in a

batch.

For the LAB [38] landmark detection, there are also results using the
ground truth boundary information on the 300W dataset. This combi-
nation together with the pretrained ResNet-50 [27] is compared to our
approach in Table 6 where our model uses the validity signal to rule out
inaccurate landmarks. Table 3 shows the comparison of our approch on
the AFLW dataset. As in Table 2 it can be seen that the batch balancing
approach used for CNN-6/7 [15] is effective in comparison to our mod-
els NON and NOBB. The proposed batch balancing approach used in our
models BBO and BB further improves the results on the AFLW dataset
wherein compared to Table 2, BBO is slightly more accurate than the net-
work CNN-6/7 [15]. The results for LAB [27] with boundary information
on the AFLW dataset will be shown in Table 6 as well as the results for
the pretrained ResNet-50 [15]. Table 4 shows the results of our models in
comparison to the state of the art. It can be seen that overall the LAB [27]
model performs best on the WFLW dataset with which it was published
together. It has to be mentioned that the landmarks on this dataset were
annotated so that they always lie on the boundary of the face. This makes
the LAB [27] model especially effective on this dataset. In comparison to
our models it can be seen that our batch balancing approach proof to be

Table 5: The results of our approach using dif-
ferent amounts of landmark positions based on
the validation signal on the 300W dataset. For
the model NON, we randomly selected 10%,
20% and 30% as a baseline since it has no val-
idation signal.

Discard Method\Common Challenging Full

NON 3.72 7.23 441
10% NOBB | 3.32 6.49 3.94
BBO 291 6.02 3.52
BB 2.72 5.79 3.32
NON 3.72 7.23 4.40
20% NOBB | 299 5.76 3.53
BBO 2.64 540  3.18
BB 248 5.18 3.01
NON 3.71 7.18 4.39
30% NOBB | 2.72 5.17 3.20
BBO 242 4.87 2.90
BB 227 4.66 274

effective especially for the challenging pose dataset. Both models BB and BBO outperform the LAB [27] approach on this
challenge. In addition, blur as well as occlusions show to be more accurate using our batch balancing. This has the same
reason as for the challenging iBUG images from the 300W dataset. For all approaches in the Table 4 it can be seen that
blur, occlusion and pose are the most inaccurate which means that similar images produce the highest loss values.
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Figure 4: Plots for the validation signal (green) to each landmark point error(red) in ascending order of the error(red). The

first, second, and third row are the plots for the 300W, AFLW, and WFLW
for the models BBO and BB from left to right.

data set respectively. Each row shows the results

Validation signal accuracy: Figure 4 shows the normalized error (red) against the normalized validation signal (green)
for all landmarks on the datasets 300W, AFLW, and WFLW. We sorted the values ascending based on the normalized error
(red) for a better visualization. For the models BBO and BB it can be seen that the validation signal correlates with the error



on all datasets. To show the effectiveness of the validity signal to remove inaccurate landmarks, we made an additional
experiment on the 300W and AFLW datasets. Table 5 shows the results for our networks by discarding different amounts
of landmarks based on the validation signal. This was done by ignoring the landmarks per face with the highest validation
signal values. As a baseline we also included the NON model which has no validation signal. Therefore, we selected the
10%, 20%, and 30% of the landmarks per face randomly using a uniform distribution. As can be seen in Table 5 the model
NON has only a slight improvment by discarding 30% of the landmarks. The comparison to the models NOBB, BBO, and
BB, which improve significantly, shows the efficiency of our validation loss which can improve all of the other state of the
art approaches and is applicable to every location based regression using convolution neuronal networks. In addition, it
can be seen that the highest impact is for the most challenging part of the evaluation the iBUG dataset.

Runtime comparison: Table 6 shows the results on the 300W and Table 6: Results in NME (smaller is better) in
AFLW dataset together with runtime. The models ResNet-50 [15] and comparison to the state of the art on 300W and
LAB [27] were pretrained on other data. In addition, the results for the AFLW datasets together with the runtime for each
model LAB [27] on the 300W dataset where obtained using the ground model. * marks models pretrained on other im-
truth boundary which are the reasons why we did not include those ages or using the ground truth boundary. The best
results into the other tables. For our models the runtime was obtained results per row are bold.

on a NVIDIA GeForce GTX 1050ti, for LAB [27], ResNet-50 [15], % A g
CNN-6 [15] and CNN-6/7 [15] on a NVIDIA GeForce GTX Titan X. o X % Z iy
As can be seen in Table 6 the fastest model is the CNN-6 [15] with % > Z Z o ?
400fps directly followed by our architecture (333fps). The best results Dataset o E 2 % @ g
are optained by the model BB discarding 30% of the landmarks per = 5 9 E §
face by using the validation signal. For all landmarks the best result is E — S

obtained by LAB [27] with the usage of the ground truth boundary. 300W Full 3.60 2.99 4.104.04 3.69 2.74

300W Common |3.01 2.57 3.353.27 3.01 2.27

7. CONCLUSION 300W Challenging|6.01 4.72 7.207.18 6.51 4.66

. . AFLW Full 1.47 1.25 1.831.65 1.561.24

We proposed a novel loss formulation that allows regression based Runtime(Tps) 30 16.66 400 170 333 333

point estimation alongside with a reliability estimate of the result. This
improves the usability of the signal as well as the accuracy of subsequent steps that rely on it. Additionally, the signal can
be used for a secondary validation of face detection. To tackle the problem of unbalanced training data in available datasets,
we proposed an approach to automatically balance the training data based on the produced loss of samples. The advantage
of this approach is that it does not account only for the head pose but also for other challenges and imbalances in the data.
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