
Tensor Normalization and Full Distribution Training

Wolfgang Fuhl,1 Enkelejda Kasneci, 1

1 Human Computer Interaction, University Tübingen
wolfgang.fuhl@uni-tuebingen.de, enkelejda.kasneci@uni-tuebingen.de

Abstract

In this work, we introduce pixel wise tensor normalization,
which is inserted after rectifier linear units and, together with
batch normalization, provides a significant improvement in
the accuracy of modern deep neural networks. In addition,
this work deals with the robustness of networks. We show that
the factorized superposition of images from the training set
and the reformulation of the multi class problem into a multi-
label problem yields significantly more robust networks. The
reformulation and the adjustment of the multi class log loss
also improves the results compared to the overlay with only
one class as label. LinkToCodeBlind

Introduction
Deep neural networks are the state of the art in many ar-
eas of image processing. The application fields are image
classification, semantic segmentation, landmark regression,
object detection, and many more. In the real world, this
concerns autonomous driving, human-machine interaction,
eye tracking, robot control, facial recognition, medical di-
agnostic systems, and many other areas. In all these areas,
the accuracy, reliability, and provability of the networks is
very important and thus a focus of current research in ma-
chine learning. The improvement of accuracy is achieved, on
the one hand, by new layers that improve internal processes
through normalizations (Ioffe and Szegedy 2015; Salimans
and Kingma 2016; Huang et al. 2017; Qiao et al. 2019;
Wu and He 2018; Ulyanov, Vedaldi, and Lempitsky 2016;
Huang and Belongie 2017) or focusing on specific areas ei-
ther on the input image or in the internal tensors (Wang et al.
2017; Hu, Shen, and Sun 2018; Hochreiter and Schmidhu-
ber 1997). Another optimization focus are the architectures
of the models, through this considerable success has been
achieved in recent years via ResidualNets (He et al. 2016),
MobileNets (Sandler et al. 2018), WideResnets (Zagoruyko
and Komodakis 2016), PyramidNets (Han, Kim, and Kim
2017), VisonTransformers (Dosovitskiy et al. 2020), and
many more. In the area of robustness and reliability of neural
networks, there has been considerable progress in the area of
attack possibilities on the models (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017; Carlini and Wagner 2017;

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kurakin et al. 2016) as well as in their defense (Papernot
et al. 2016; Strauss et al. 2017; Pang et al. 2019; He et al.
2017; Tramèr et al. 2017; Sen, Ravindran, and Raghunathan
2020).

Contribution of this work:
• A novel pixel wise tensor normalization layer which does

not require any parameter and boosts the performance of
deep neuronal networks.

• The factorized superposition of training images, which
boosts the robustness of deep neural networks.

• Using a multi label loss softmax formulation to boost the
accuracy of the robust models trained with the factorized
superposition of training images.

Related Work
Since this work deals with two subsets of modern DNNs, we
have divided the related work into three subareas. The first
subarea is internal normalization in DNNs, the second sub-
area is training with multiple label as targets, and the third
subarea is adversarial robustness. In the following, we ex-
plain the related work from all subareas.

Normalization in DNNs
Normalization of the output is the most common use of in-
ternal manipulation in DNNs today. The most famous repre-
sentative is the batch normalization(BN) (Ioffe and Szegedy
2015). This approach subtracts the mean and divides the out-
put with the standard deviation, both are computed over sev-
eral batches. In addition, the output is scaled and shifted by
an offset. Those two values are also computed over sev-
eral batches. Another type of output normalization is the
group normalization GN (Wu and He 2018). In this ap-
proach, groups are formed to compute the mean and stan-
dard deviation, which are used to normalize the group. The
advantage of GN in comparison to BN is that it does not re-
quire large batches. Other types of output normalization are
instance normalization IN (Ulyanov, Vedaldi, and Lempit-
sky 2016; Huang and Belongie 2017) and layer normaliza-
tion LN (Ba, Kiros, and Hinton 2016). LN uses the layers to
compute the mean and the standard deviation, and IN uses
only each instance individually. IN and LN are used in re-
current neural networks (RNN) (Schuster and Paliwal 1997)

or vision transformers (Dosovitskiy et al. 2020). The pro-
posed tensor normalization belongs to this group, since we
normalize the output of the rectifier linear units.

Another group of normalization modifies the weights of
the model. As for the output normalization, there are several
approaches in this domain. The first is the weight normaliza-
tion (WN) (Salimans and Kingma 2016; Huang et al. 2017).
In WN the weights of a network are multiplied by a constant
and divided by the Euclidean distance of the weight vec-
tor of a neuron. WN is extended by weight standardization
(WS) (Qiao et al. 2019). WS does not use a constant, but
instead computes the mean and the standard deviation of the
weights. The normalization is computed by subtracting the
mean and dividing by the standard deviation. Another ex-
tension to WN is the weight centralization (WC) (Fuhl and
Kasneci 2021) which computes a two dimensional mean ma-
trix and subtracts it from the weight tensor. This improves
the stability during training and improves the results of the
final model. The normalization of the weights have the ad-
vantage, that they do not have to be applied after the training
of the network.

The last group of normalization only affects the gradients
of the models. The two most famous approaches are the us-
age of the first (Qian 1999) and second momentum (Kingma
and Ba 2014). Those two approaches are standard in mod-
ern neural network training, since they stabilize the gradi-
ents with the updated momentum and lead to a faster train-
ing process. The main impact of the first momentum is that
it prevents exploding gradients. For the second momentum,
the main impact is a faster generalization. These moments
are moving averages which are updated in each weight up-
date step. Another approach from this domain is the gradient
clipping (Pascanu, Mikolov, and Bengio 2012, 2013). In gra-
dient clipping, random gradients are set to zero or modified
by a small number. Other approaches map the gradients to
subspaces like the Riemannian manifold (Gupta et al. 2018;
Larsson et al. 2017; Cho and Lee 2017). The computed map-
ping is afterwards used to update the gradients. The last ap-
proach from the gradient normalization is the gradient cen-
tralization (GC) (Yong et al. 2020) which computes a mean
over the current gradient tensor and subtracts it.

Multi label image classification (MLIC)
In multi label image classification the task is to classify mul-
tiple labels correctly based on a given image. Since this is an
old computer vision problem various approaches have been
proposed here. The most common approach is ranking the
labels based on the output distribution. This pairwise rank-
ing loss was first used in (Usunier, Buffoni, and Gallinari
2009) and extended by weights to the weighted approximate
ranking (WARP) (Gong et al. 2013; Weston, Bengio, and
Usunier 2011). WARP was further extended by the multi
label positive and unlabeled method (Kanehira and Harada
2016). This approach mainly focuses on the positive labels
which have a high probability to be correct. This of course
has the disadvantage that noisy labels have a high negative
impact on the approach. To overcome this issue the top-k
loss (Lapin, Hein, and Schiele 2015, 2016, 2017) was devel-
oped. For the top-k loss there are two representatives namely

smooth top-k hinge loss and top-k softmax loss.
Another approach treats the multi label image classifi-

cation problem as an object detection problem. The fol-
low the two-step approach of the R-CNN object detection
method (Girshick et al. 2014) which first detects possible
good candidate areas and afterwards classifies them. The
first approach in multi label image classification following
this object detection approach is (Wei et al. 2015). A re-
finement of this approach is proposed in (Zhang et al. 2018;
Nguyen et al. 2019) which uses an RNN on the candidate re-
gions to predict label dependencies. The general disadvan-
tage of the object detection based approach is the require-
ment of bounding box annotations. Similar to (Zhang et al.
2018; Nguyen et al. 2019) the authors in (Wang et al. 2016;
Jin and Nakayama 2016) use a CNN for region proposal but
instead of using only the candidate region, the authors use
the entire output of the CNN in the RNN to model the label
dependencies. Another approach which exploits semantic
and spatial relations between labels only using image-level
supervision is proposed in (Zhu et al. 2017). Another ap-
proach following the object detection problem concept uses
a dual-stream neural network (Yu et al. 2019). The advan-
tage is that the model can utilize local features and global
image pairs. This approach was further extended by (Zhang
et al. 2020) to also detect novel classes.

In the context of large scale image retrieval (Zhao
et al. 2015; Lai et al. 2015) and dimensionality reduction
(Mikalsen et al. 2019) the multi label classification prob-
lem also has an important share to the success. In (Zhao
et al. 2015; Lai et al. 2015) deep neural networks are pro-
posed to compute feature representations and compact hash
codes. While these methods work effectively on multi class
datasets like CIFAR 10 (Krizhevsky, Hinton et al. 2009) they
are significantly outperformed on challenging multi-label
datasets (Gordo et al. 2016). (Cevikalp, Elmas, and Ozkan
2016, 2018) proposed a hashing method which is robust to
noisy labels and capable of handling the multi label problem.
In (Kumar et al. 2019) a dimensionality reduction method
was proposed which embeds the features and labels onto a
low-dimensional space vector. (Mikalsen et al. 2019) pro-
posed a semi-supervised dimension reduction method which
can handle noisy labels and multi-labeled images.

Adversarial Robustness
The most common defense strategies against adversarial at-
tacks are adversarial training, defensive distillation and in-
put gradient regularization. Adversarial training uses adver-
sarial attacks during the training procedure or modify the
loss function to compensate for input perturbations (Good-
fellow, Shlens, and Szegedy 2014; Madry et al. 2017). The
defensive distillation (Papernot et al. 2016) trains models on
output probabilities and not on hard labels, as it is done in
common multi class image classification.

Another strategy to train robust models is the use of en-
sembles of models (Strauss et al. 2017; Pang et al. 2019;
He et al. 2017; Tramèr et al. 2017; Sen, Ravindran, and
Raghunathan 2020). In (Strauss et al. 2017) for example, 10
models are trained and used in an ensemble. While those
ensembles are very robust, they have a high compute and

memory consumption, which limits them to smaller mod-
els. To overcome the issue of high compute and memory
consumption, the idea of ensembles of low-precision and
quantized models has been proposed (Galloway, Taylor, and
Moussa 2017). Those low-precision and quantized models
alone have shown a higher adversarial robustness than their
full-precision counterparts (Galloway, Taylor, and Moussa
2017; Panda, Chakraborty, and Roy 2019). The disadvan-
tage of the low-precision and quantized models is the lower
accuracy, which is increased by forming ensembles (Sen,
Ravindran, and Raghunathan 2020). An alternative approach
is presented in (Rakin et al. 2018), where stochastic quanti-
zation is used to compute low-precision models out of full-
precision models with a higher accuracy and a high adver-
sarial robustness.

Method
In this paper, we present two optimizations for deep neural
networks. One is the 2D tensor normalization and the other
is the training of the full classification distribution and adap-
tation of the loss function. For this reason, we have divided
the method part into two subgroups, in which both methods
are described separately.

Tensor Normalization
The idea behind the tensor normalization is to compensate
the shifted value distribution after a rectifier linear unit.
Since convolutions are computed locally, it is necessary that
this normalization is computed for each (x, y) coordinate
separately. This results in a 2D matrix of mean values, which
is subtracted from the tensor along the z dimension.

TNMeanx,y(A) =

∑Z
z=1Ax,y,z
Z

(1)

Equation 1 describes the mean computation for the ten-
sor normalization after the activation function. The tensor A
with the size X,Y, Z is used online to compute the current
2D mean matrix TNMeanx,y with the dimension X,Y, 1.
Afterwards, this mean is subtracted from each z position of
the tensor and therefore, the entire tensor has a zero mean
and a less skewed value distribution.

Algorithm 1: Algorithmic workflow of the tensor normal-
ization in the forward pass. For the backward pass, the error
values are simply passed backwards, since the subtraction
equation in the derivative becomes 1.
Data: Activation tensor A
Result: Normalized activation tensor A∗
M = TNMean(A)
for i = 1; i < Z; i = i+ 1 do
A∗i = Ai −M

end

Algorithm 1 describes the computation of the tensor nor-
malization in a neural network forward pass. As can be seen
it is a simple online computation of the 2D mean matrix of
the activation tensor and a subtraction along the depth of the

tensor. For the backward pass the error values have just to be
passed to the previous layer since the subtraction equation is
one in the derivative. Due to this properties, it can be directly
computed in the rectifier linear unit. This means it does not
require any additional GPU memory.

Our formal justification of ”Why Tensor Normalization
Improves Generalization of Neural Networks” is based on
numerics and properties of large numbers. Mathematically,
a neuron is a linear combination P = D ∗ W + B with
P =Output, D =Input data, W =Model weights, and
B =Bias term. If we now normalize our input data A∗ =
(A − M) we get the formula P = D∗ ∗ W + B with
M =MeanofD. If we now simply defineB∗ = B+M∗W ,
it follows that the normalization should have no effect on the
neuron, since it can learn the same function even without the
normalization. However, this changes when we consider the
numerics and the computation of the derivatives in a neural
network.
Suppose we have a one-dimensional input D which is larger
or equal than the normalized input D∗ = D − M . The
derivative for the weights is given by δL

δW = δL
δP ∗

δP
δW =

(P − GT) ∗ D with L =Squared loss error function and
GT =Ground truth. As can be seen the data D is included
into the gradient computation of the weights which leads to
larger steps in the error hyperplane. In addition, a large D
also results in smaller weightsW sinceW = (P−B)∗D−1.
This means a large D produces large gradient updates and
searches for a smaller global optima W . With a smaller
D∗ = D−M we look for a larger optimaW and use smaller
gradient updates for this. In addition, the numerical stability
of W is higher since computers can only represent a certain
accuracy for real numbers.
Proof that |D∗| ≤ |D|: Since we apply the tensor normaliza-
tion only after rectifier linear units D ∈ R+

0 and therefore
|D| ≥ 0, |M | ≥ 0, and |D∗| ≥ 0. Now we have to con-
sider three cases |D| = 0, |M | = 0, |D| > 0, |M | = 0,
and |D| > 0, |M | > 0. For the first case |D| = 0, |M | = 0,
|D∗|would also be zero and therefore |D∗| ≤ |D| holds. The
second case |D| > 0, |M | = 0 leads to D∗ = D −M =
D−0 = D for which |D∗| ≤ |D| also holds. In the last case
|D| > 0, |M | > 0 we can simply shift M to the other side
D∗ +M = D which shows that |D∗| ≤ |D| holds again.

Full Distribution Training

Figure 1: Exemplary illustration of the proposed full distri-
bution training. In orange, the normal approach with one im-
age to one class is shown. In pink, the combination of mul-
tiple images to one and the ground truth adaption is shown.

The idea behind the full distribution training is to not re-
strict the input to correspond to one class only. We com-
bine multiple images using a weighting scheme and use this
weighting as corresponding class labels. An example can
be seen in Figure 1. For the computation of the weighting
scheme, we use the harmonic series and select the amount
of combined images randomly up to the amount of differ-
ent classes. This makes it easier to reproduce our results and
since the harmonic series is connected to the coupon col-
lector’s problem or picture collector’s problem we thought
it would be a superb fit. The purpose of the full distribu-
tion training is a cheap way to train robust models without
any additional training time or specialized augmentation and
maintaining the accuracy of the model.

Fi =
1
i∑max(C,RND)

j=1 Fj
(2)

Equation 2 is the harmonic series (1i) normalized by the sum
(
∑max(C,RND)
j=1 Fj). We had to normalize the series because

the harmonic series is divergent even though the harmonic
series is a zero sequence. In Equation 2 C represents the
amount of classes of the used dataset and RND a randomly
chosen number.

D =

max(C,RND)∑
i=1

Ij=RND ∗ Fi | C(j) /∈ C(D) (3)

With the factors from Equation 2 we can compute the new
input images using Equation 3. Therefore, we multiply a ran-
domly selected image Ij=RND with the corresponding fac-
tor Fi and combine all images by summing them up. How-
ever, there is a special restriction that only one example is
allowed for each class (C(j) /∈ C(D)). This means, that
each class in C(D) can only have one or no representative.

GT =

max(C,RND)∑
i=1

Lj=RND ∗ Fi | C(j) /∈ C(GT) (4)

For the computation of the ground truth distribution GT
in Equation 4 we follow the same concept as for the images
in Equation 3. We select the label Lj=RND corresponding
to the randomly selected image Ij=RND and multiply it by
the factor Fi. The combination is again done by summing all
factorized labels together. As for the images, we allow only
one example per class or none if the amount of combined
images is less than the amount of classes.

The algorithmic description of the combination and
weighting can be seen in Algorithm 2. In the first for loop
we compute the factors, and in the second for loop we com-
bine the images and the labels.

Softmaxi(P) =
ePi∑Y
y=1 e

Py

(5)

For the multi class classification, the softmax function has
prevailed. The softmax function can be seen in Equation 5

Algorithm 2: The creation of a multi label example based
on Equations 2, 3, and 4. In the first for loop the factors are
computed and normalized. The second loop selects unique
class examples and combines them based on the factors.
Data: Labels L, Images I , Classes C
Result: Ground Truth GT , Data D
F = 0;
GT = 0;
D = 0;
Sum = 0
Amount = max(C,RND)
for i = 1; i < Amount; i = i+ 1 do
Fi = 1/i
Sum = Sum+ Fi

end
F = F/Sum

for i = 1; i < Amount; i = i+ 1 do
j = RND(L) | C(j) /∈ C(GT)
GT = GT + Lj ∗ Fi
D = D + Ij ∗ Fi

end

and is used to compute an exponentially weighted distribu-
tion out of the predicted values. This distribution decouples
the numeric values from the loss function so that only the
relative value among the values is important, which stabi-
lizes training and leads to a better generalization.

For the computation of the loss value and the back prop-
agated error, Algorithm 3 is used in normal multi class
classification. As can be seen in the first if statement, this
is not sufficient for a multi label problem since we have
multiple target values and those are not one (PS(yi, bi) =
Scale ∗ (PS(yi, bi)− 1)).

Therefore, we modified Algorithm 3 to Algorithm 4
which allows multiple labels with different values. This can
be seen in the if condition (GT (yi, bi) > ε) which han-
dles all values greater ε and in the if branch (PS(yi, bi) =
Scale ∗ (PS(yi, bi) − GT (yi, bi))) which uses the ground
truth value for gradient computation.

Our formal justification that the full distribution training
generates more robust networks: A common strategy to train
more robust networks is the usage of Projected Gradient De-
scent (PGD), which for the sake of completeness is described
in Section ”Projected Gradient Descent (PGD)”, during
training. PGD computes the gradient of the current image
and uses the sign of the gradient sign(δf(xt) to compute
a new modified image xt+1. This is done using an iterative
scheme and an modification factor α. The general equation
for PGD is xt+1 = xt+α∗δf(xt) whereby the sign() func-
tion in Equation 6 is used to avoid that very small gradient
values block the attack and feign robustness and also called
l∞ norm. Our approach in contrast uses another image
I == x0 (or multiple images) from another class to mod-
ify the current image collection D == xt+1. This means,
that the gradient to shift one image into the direction of an-
other class is gifted by the dataset itself through an image of
another class. The modification equation for our approach

Algorithm 3: The calculation of the softmax multi class log
function, or also known as entropy loss. It first converts the
predictions into a probability distribution using the softmax
function. Afterwards, the desired class per batch gets the er-
ror based on its distance to 1 (if branch). All other values
should be zero, which is why they receive their probability
as error (else branch).
Data: Ground truth GT , predictions P , Batch size B
Result: Error E, Loss L
PS = Softmax(P);
Scale = 1

B ;
L = 0
for bi = 1; bi < B; bi = bi + 1 do

for yi = 1; yi < Y ; yi = yi + 1 do
if if yi == GT (1, bi) then

L = L+ Scale ∗ −log(PS(yi, bi))
PS(yi, bi) = Scale ∗ (PS(yi, bi)− 1)

else
PS(yi, bi) = Scale ∗ (PS(yi, bi))

end
end

end

is
∑max(C,RND)
i=1 Ij=RND ∗ Fi | C(j) /∈ C(D) based on

Equation 3. If we set max(C,RND) == 2 we can remove
the sum and get Ij1 ∗ F1 + Ij2 ∗ F2 | C(j1) 6= C(j2). Now
setting F1 == 1 and F2 == αwe get Ij1+α∗Ij2 |C(j1) 6=
C(j2). Since the class of j1 is different to the class of j2 we
can interpret Ij2 as the gradient to another class and there-
fore write Ij2 = δf(Ij1). With this gradient formulation we
get Ij1 + α ∗ δf(Ij1) which is the same as the PGD formu-
lation. This means, that we can get our gradients to another
class directly from the dataset and do not have to perform
multiple iterations of forward and backward propagation to
compute them. In addition, our approach can compute gra-
dients into the direction of multiple classes.

Evaluation
In this section we show the numerical evaluation of the pro-
posed approaches and describe the used datasets as well as
the robust accuracy and PGD attack. For training and evalu-
ation, we used multiple servers with multiple RTX2080ti or
RTX3090 and cuda version 11.2. For the initialization of all
networks, we use (He et al. 2015).

Datasets
In this subsection all used datasets are described.

CIFAR10 (Krizhevsky, Hinton et al. 2009) (C10) is a
dataset consisting of 60,000 color images. Each image has
a resolution of 32×32 and belongs to one of ten classes. For
training, 50,000 images are provided and for training 10,000
images. Each class in the training set has 5,000 representa-
tives and 1,000 in the validation set. Therefore, this dataset
is balanced. Data augmentation: Shifting by up to 4 pixels
in each direction (padding with zeros) and horizontal flip-
ping. Mean (Red=122, Green=117, Blue=104) subtraction
as well as division by 256.

Algorithm 4: The calculation of the softmax multi label log
function, which we use for the full distribution training.
It first converts the predictions into a probability distribu-
tion using the softmax function, as it is done in the soft-
max multi class log function. Afterwards, we use the ground
truth distribution to select all classes in the current image
(GT (yi, bi) > ε) where ε is a small number greater zero.
Based on the ground truth distribution value, we compute
the error (PS(yi, bi)−GT (yi, bi)). For all other values, we
use the same procedure as in the softmax multi class log
function (else branch).
Data: Ground truth GT , predictions P , Batch size B
Result: Error E, Loss L
PS = Softmax(P);
Scale = 1

B ;
L = 0
for bi = 1; bi < B; bi = bi + 1 do

for yi = 1; yi < Y ; yi = yi + 1 do
if if GT (yi, bi) > ε then

L = L+ Scale ∗ −log(PS(yi, bi))
PS(yi, bi) = Scale ∗ (PS(yi, bi)−GT (yi, bi))

else
PS(yi, bi) = Scale ∗ (PS(yi, bi))

end
end

end

CIFAR100 (Krizhevsky, Hinton et al. 2009) (C100) is a
similar dataset in comparison to CIFAR10 but with the dif-
ference that it has one hundred classes. As in CIFAR10 each
image has a resolution of 32 × 32 and three color channels.
The amount of images in the training and validation set is
identical to CIFAR10 which means that the training set has
50,000 images with 500 images per class. The training set
has 10,000 images, with 100 images per class. Therefore, it
is also a balanced dataset. Data augmentation: Shifting by up
to 4 pixels in each direction (padding with zeros) and hor-
izontal flipping. Mean (Red=122, Green=117, Blue=104)
subtraction as well as division by 256.

SVHN (Netzer et al. 2011) consists of 630,420 images
with a resolution of 32 × 32 and RGB colors. The dataset
has 10 classes and is not balanced as the other datasets.
The training set consists of 73,257 images, the validation set
has 26,032 images, and there are also 531,131 images with-
out label for unsupervised training. In our evaluation, we
only used the training and validation set. Data augmenta-
tion: Mean (Red=122, Green=117, Blue=104) subtraction
as well as division by 256.

FashionMnist (Xiao, Rasul, and Vollgraf 2017) (F-
MNIST) is a dataset inspired by the famous MNIST (Le-
Cun et al. 1998) dataset. It consists of 60,000 images with
a resolution of 28 × 28 each. For training 50,000 images
and for validation, 10,000 images are provided. Each im-
age is provided as gray scale image, the dataset has 10
classes and is balanced as the original MNIST dataset.
Data augmentation: Shifting by up to 4 pixels in each di-
rection (padding with zeros) and horizontal flipping. Mean

Table 1: Comparison of the proposed approaches on multiple public datasets with the same preprocessing and learning param-
eters. OV represents the image manipulation of the full distribution training without the use of the adapted loss function (OV
uses Algorithm 3). FDT is the full distribution training with the loss function from Algorithm 4. TN is the tensor normalization.
Baseline is the accuracy without PGD, and ε represents the used clipping region for PGD. All results are the average over three
runs, and ± indicates the standard deviation.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=0.1, Batch size=100, Training
time=150 epochs, Learning rate reduction after each 30 epochs by 0.1
Data augmentation: As statet in the dataset description section.

Dataset Model Baseline ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

C10

ResNet-34 92.52± 0.25 6.28 54.90 91.93 92.51
ResNet-34 & OV 92.13± 0.37 7.98 65.92 92.12 92.13
ResNet-34 & FDT 93.13± 0.19 13.81 66.48 92.73 93.13
ResNet-34 & TN 93.69± 0.12 5.85 54.75 91.72 93.69
ResNet-34 & TN & FDT 93.77± 0.20 14.75 68.53 93.01 93.76

C100

ResNet-34 73.16± 0.61 3.07 29.37 70.79 73.11
ResNet-34 & OV 67.57± 0.59 3.89 36.17 66.39 67.57
ResNet-34 & FDT 73.06± 0.45 6.06 42.69 72.12 73.06
ResNet-34 & TN 74.80± 0.22 3.90 33.64 70.81 74.72
ResNet-34 & TN & FDT 74.37± 0.27 9.91 46.92 72.38 74.37

F-MNIST

ResNet-34 96.1± 0.23 7.13 67.80 93.31 94.64
ResNet-34 & OV 94.43± 0.30 34.16 87.87 93.82 94.43
ResNet-34 & FDT 96.01± 0.26 36.48 88.51 94.50 95.92
ResNet-34 & TN 96.46± 0.14 9.50 74.90 93.76 94.70
ResNet-34 & TN & FDT 96.13± 0.22 39.03 86.54 94.93 95.94

SVHN

ResNet-34 94.83± 0.22 18.64 82.77 91.01 94.79
ResNet-34 & OV 94.13± 0.35 5.82 50.23 93.14 94.13
ResNet-34 & FDT 95.01± 0.21 12.87 77.62 92.09 95.01
ResNet-34 & TN 95.21± 0.18 17.02 83.73 95.21 95.21
ResNet-34 & TN & FDT 95.16± 0.16 18.05 82.04 94.73 95.16

(Red=122, Green=117, Blue=104) subtraction as well as
division by 256.

Projected Gradient Descent (PGD)

To evaluate the robustness of the models, we use the widely
used PGD (Madry et al. 2017) method. Here, the gradient
is calculated for the current image and iteratively applied to
the image to manipulate it and cause misclassification.

xt+1 = Clip−ε,ε(x
t + α ∗ sign(δf(xt))) (6)

Equation 6 shows the general equation of PGD and x0 is
the original input image. xt+1 is the computed input image
for this iteration, Clip−ε,ε is a function to keep the image
manipulation per pixel in the range −ε to ε, xt is the im-
age from the last iteration, α is the factor which controls the
strength of the applied gradient, and sign(δf(xt)) is the gra-
dient sign per pixel of the current input image xt. The sign()
function corresponds to the l∞ norm and is the strongest
PGD based attack since the value of the gradient has no in-
fluence to the perturbation but only the sign.

In our evaluation we set the maximum amount of itera-
tions T = 40, α was initialized with α = ε ∗ 0,01

0,3 as it is
done in Foolbox (Rauber, Brendel, and Bethge 2017) and
evaluated the ε in the range of 0.1 to 0.0001.

Accuracy =

∑X0

x0
i

∑T
t=1 C(f(x

t
i)) == C(x0i)

|X0| ∗ T
(7)

Equation 7 shows the computation of the robust accuracy
in this paper with the dataset X0, the single images x0i , the
amount of iterations T , the model f(), and the ground truth
class C(). This is the same computation as it is done for the
normal image classification task, but with the difference that
each perturbation of the input image is counted separately.

Evaluation of the Tensor Normalization (TN) and
Full Distribution Training (FDT)
All results with a ResNet-34 on the CIFAR 10, CIFAR 100,
Fashion Mnist, and SVHN datasets can be seen in Table 1.
Comparing the baseline results, it is evident that tensor nor-
malization (TN) outperforms all other combinations. How-
ever, the full distribution training (FDT) also improves the
results, which is mainly due to the multi label variant of the
loss function and the reformulation to a multi label problem
(Uses Algorithm 4). This is especially obvious by the com-
parison of FDT to OV (Uses Algorithm 3). If OV is consid-
ered, it can be seen that the superposition of multiple images
improves the robustness, but also has a negative impact on
the accuracy of the model. Comparing the robustness of the
models for ε = 10−1, one can clearly see that FDT increases

Table 2: Evaluation of the proposed methods on larger DNN model in comparison to the vanilla version. Baseline is the accuracy
without PGD and ε represents the used clipping region for PGD.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=0.1, Batch size=100, Training
time=150 epochs, Learning rate reduction after each 30 epochs by 0.1
Data augmentation: As statet in the dataset description section.

Dataset Model Baseline ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

C100

ResNet-152 76.09 3.13 28.97 71.05 75.96
ResNet-152 & FDT & TN 77.11 10.28 50.09 74.12 77.01
WideResNet-28-10 78.23 4.57 32.50 73.58 77.91
WideResNet-28-10 & FDT & TN 79.06 13.59 54.34 75.68 78.98

the robustness significantly as well as the combination of TN
and FDT brings a further improvement. What is also no-
table are the results for SVHN, here FDT does not seem
to have a positive impact on the robustness of the mod-
els. This is due to the fact that the images in SVHN al-
ready contain several classes (house numbers) and only
the middle one is searched. Therefore, the multi label
reformulation is not entirely valid since gradients from
multiple classes are already present, which can be seen
in the results of the robust accuracy. Looking at the re-
sult for ε = 10−1 of the vanilla ResNet-34 for the dataset
SVHN, one sees directly that this is already very robust.
Since there are multiple house numbers in each image,
this follows the approach of OV. Since this is only true
for the SVHN dataset and all other datasets become sig-
nificantly more robust using FDT, this confirms the basic
idea of our approach of using single images from differ-
ent classes to generate gradients pointing to other classes.
The fact that OV does not become more robust for SVHN
can be explained by the fact that it represents an exaggerated
data augmentation, which can be seen in the worst overall
accuracy as well as the susceptibility to PGD.

For all models, we used the same parameters as well as
the same number of epochs for training. It is interesting to
note here that FDT and TN can thus be used in the same time
and with the same number of learnable parameters. For TN,
however, it is important to note that this operation represents
an additional computational cost, whereas the calculation of
the 2D mean matrix and the subtraction do not represent a
significant difference in execution time, nor an increase in
the complexity of the model.

Table 2 shows the results of full distribution training
and tensor normalization on CIFAR 100 with large mod-
els compared to the vanilla version. As can be seen, both
approaches improve the accuracy of the model and the ro-
bust accuracy by more than twice of the vanilla version for
epsilon = 10−1. Considering that no further parameters and
no further training time are needed, this is a significant im-
provement, as seen by the authors.

Conclusion
In this paper, we have presented a novel approach to train
deep neural networks that converts the multi-class problem
into a multi-label problem and thereby generates more ro-
bust models. We name this approach full distribution train-
ing and used the harmonic series for the generation of the

labels as well as for the image combination. This series can
be replaced by any other series or just by random factor se-
lection but would require an immense amount of evaluations
which is out of the scope of this paper as well as incredi-
bly harmful to nature since GPUs require a large amount of
energy. Additionally, we have algorithmically presented the
reformulation of the multi class loss function into a multi la-
bel loss function and formally justified the functionality of
this reformulation. In addition to the reformulation, we in-
troduced and formally described tensor normalization and
formally showed that it will improve the results. All theoret-
ical conjectures were confirmed by evaluations on multiple
publicly available datasets for small ResNet-34 as well as
two large DNNs (WideResNet-28-10 and ResNet-152).

References
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
malization. arXiv preprint arXiv:1607.06450.
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), 39–57. IEEE.
Cevikalp, H.; Elmas, M.; and Ozkan, S. 2016. Towards cat-
egory based large-scale image retrieval using transductive
support vector machines. In European conference on com-
puter vision, 621–637. Springer.
Cevikalp, H.; Elmas, M.; and Ozkan, S. 2018. Large-scale
image retrieval using transductive support vector machines.
Computer Vision and Image Understanding, 173: 2–12.
Cho, M.; and Lee, J. 2017. Riemannian approach to batch
normalization. In Advances in Neural Information Process-
ing Systems, 5225–5235.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Fuhl, W.; and Kasneci, E. 2021. Weight and Gradient Cen-
tralization in Deep Neural Networks. In Proceedings of
IEEE International Joint Conference on Neural Networks.
Galloway, A.; Taylor, G. W.; and Moussa, M. 2017.
Attacking binarized neural networks. arXiv preprint
arXiv:1711.00449.
Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 580–587.
Gong, Y.; Jia, Y.; Leung, T.; Toshev, A.; and Ioffe, S. 2013.
Deep convolutional ranking for multilabel image annotation.
arXiv preprint arXiv:1312.4894.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Gordo, A.; Almazán, J.; Revaud, J.; and Larlus, D. 2016.
Deep image retrieval: Learning global representations for
image search. In European conference on computer vision,
241–257. Springer.
Gupta, H.; Jin, K. H.; Nguyen, H. Q.; McCann, M. T.; and
Unser, M. 2018. CNN-based projected gradient descent for
consistent CT image reconstruction. IEEE transactions on
medical imaging, 37(6): 1440–1453.
Han, D.; Kim, J.; and Kim, J. 2017. Deep pyramidal residual
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 5927–5935.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on im-
agenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, 1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
He, W.; Wei, J.; Chen, X.; Carlini, N.; and Song, D. 2017.
Adversarial example defense: Ensembles of weak defenses
are not strong. In 11th {USENIX} workshop on offensive
technologies ({WOOT} 17).
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 7132–7141.
Huang, L.; Liu, X.; Liu, Y.; Lang, B.; and Tao, D. 2017. Cen-
tered weight normalization in accelerating training of deep
neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, 2803–2811.
Huang, X.; and Belongie, S. 2017. Arbitrary style transfer
in real-time with adaptive instance normalization. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, 1501–1510.
Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.
Jin, J.; and Nakayama, H. 2016. Annotation order matters:
Recurrent image annotator for arbitrary length image tag-
ging. In 2016 23rd International Conference on Pattern
Recognition (ICPR), 2452–2457. IEEE.
Kanehira, A.; and Harada, T. 2016. Multi-label ranking from
positive and unlabeled data. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 5138–
5146.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Kumar, V.; Pujari, A. K.; Padmanabhan, V.; and Kagita,
V. R. 2019. Group preserving label embedding for multi-
label classification. Pattern Recognition, 90: 23–34.
Kurakin, A.; Goodfellow, I.; Bengio, S.; et al. 2016. Adver-
sarial examples in the physical world.
Lai, H.; Pan, Y.; Liu, Y.; and Yan, S. 2015. Simultaneous
feature learning and hash coding with deep neural networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 3270–3278.
Lapin, M.; Hein, M.; and Schiele, B. 2015. Top-k multiclass
SVM. arXiv preprint arXiv:1511.06683.
Lapin, M.; Hein, M.; and Schiele, B. 2016. Loss functions
for top-k error: Analysis and insights. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 1468–1477.
Lapin, M.; Hein, M.; and Schiele, B. 2017. Analysis and op-
timization of loss functions for multiclass, top-k, and multi-
label classification. IEEE transactions on pattern analysis
and machine intelligence, 40(7): 1533–1554.
Larsson, M.; Arnab, A.; Kahl, F.; Zheng, S.; and Torr, P.
2017. A projected gradient descent method for CRF infer-
ence allowing end-to-end training of arbitrary pairwise po-
tentials. In International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition, 564–
579. Springer.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Mikalsen, K. Ø.; Soguero-Ruiz, C.; Bianchi, F. M.; and
Jenssen, R. 2019. Noisy multi-label semi-supervised dimen-
sionality reduction. Pattern Recognition, 90: 257–270.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with unsu-
pervised feature learning.
Nguyen, T. T.; Nguyen, T. T. T.; Luong, A. V.; Nguyen, Q.
V. H.; Liew, A. W.-C.; and Stantic, B. 2019. Multi-label
classification via label correlation and first order feature de-
pendance in a data stream. Pattern recognition, 90: 35–51.
Panda, P.; Chakraborty, I.; and Roy, K. 2019. Discretization
based solutions for secure machine learning against adver-
sarial attacks. IEEE Access, 7: 70157–70168.
Pang, T.; Xu, K.; Du, C.; Chen, N.; and Zhu, J. 2019. Im-
proving adversarial robustness via promoting ensemble di-
versity. In International Conference on Machine Learning,
4970–4979. PMLR.
Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A.
2016. Distillation as a defense to adversarial perturbations
against deep neural networks. In 2016 IEEE symposium on
security and privacy (SP), 582–597. IEEE.

Pascanu, R.; Mikolov, T.; and Bengio, Y. 2012. Understand-
ing the exploding gradient problem. CoRR, abs/1211.5063,
2: 417.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the diffi-
culty of training recurrent neural networks. In International
conference on machine learning, 1310–1318.
Qian, N. 1999. On the momentum term in gradient descent
learning algorithms. Neural networks, 12(1): 145–151.
Qiao, S.; Wang, H.; Liu, C.; Shen, W.; and Yuille, A. 2019.
Weight standardization. arXiv preprint arXiv:1903.10520.
Rakin, A. S.; Yi, J.; Gong, B.; and Fan, D. 2018. Defend
deep neural networks against adversarial examples via fixed
and dynamic quantized activation functions. arXiv preprint
arXiv:1807.06714.
Rauber, J.; Brendel, W.; and Bethge, M. 2017. Foolbox:
A python toolbox to benchmark the robustness of machine
learning models. arXiv preprint arXiv:1707.04131.
Salimans, T.; and Kingma, D. P. 2016. Weight normaliza-
tion: A simple reparameterization to accelerate training of
deep neural networks. In Advances in neural information
processing systems, 901–909.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4510–4520.
Schuster, M.; and Paliwal, K. K. 1997. Bidirectional recur-
rent neural networks. IEEE transactions on Signal Process-
ing, 45(11): 2673–2681.
Sen, S.; Ravindran, B.; and Raghunathan, A. 2020. Empir:
Ensembles of mixed precision deep networks for increased
robustness against adversarial attacks. arXiv preprint
arXiv:2004.10162.
Strauss, T.; Hanselmann, M.; Junginger, A.; and Ulmer, H.
2017. Ensemble methods as a defense to adversarial per-
turbations against deep neural networks. arXiv preprint
arXiv:1709.03423.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2017. Ensemble adver-
sarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204.
Ulyanov, D.; Vedaldi, A.; and Lempitsky, V. 2016. Instance
normalization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022.
Usunier, N.; Buffoni, D.; and Gallinari, P. 2009. Ranking
with ordered weighted pairwise classification. In Proceed-
ings of the 26th annual international conference on machine
learning, 1057–1064.
Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.;
Wang, X.; and Tang, X. 2017. Residual attention network for
image classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 3156–3164.
Wang, J.; Yang, Y.; Mao, J.; Huang, Z.; Huang, C.; and Xu,
W. 2016. Cnn-rnn: A unified framework for multi-label im-
age classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2285–2294.

Wei, Y.; Xia, W.; Lin, M.; Huang, J.; Ni, B.; Dong, J.; Zhao,
Y.; and Yan, S. 2015. HCP: A flexible CNN framework for
multi-label image classification. IEEE transactions on pat-
tern analysis and machine intelligence, 38(9): 1901–1907.
Weston, J.; Bengio, S.; and Usunier, N. 2011. Wsabie: Scal-
ing up to large vocabulary image annotation. In Twenty-
Second International Joint Conference on Artificial Intelli-
gence.
Wu, Y.; and He, K. 2018. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), 3–19.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. .
Yong, H.; Huang, J.; Hua, X.; and Zhang, L. 2020. Gradi-
ent Centralization: A New Optimization Technique for Deep
Neural Networks. arXiv preprint arXiv:2004.01461.
Yu, W.-J.; Chen, Z.-D.; Luo, X.; Liu, W.; and Xu, X.-S.
2019. DELTA: A deep dual-stream network for multi-label
image classification. Pattern Recognition, 91: 322–331.
Zagoruyko, S.; and Komodakis, N. 2016. Wide residual net-
works. arXiv preprint arXiv:1605.07146.
Zhang, J.; Wu, Q.; Shen, C.; Zhang, J.; and Lu, J. 2018.
Multilabel image classification with regional latent semantic
dependencies. IEEE Transactions on Multimedia, 20(10):
2801–2813.
Zhang, Y.; Wang, Y.; Liu, X.-Y.; Mi, S.; and Zhang, M.-L.
2020. Large-scale multi-label classification using unknown
streaming images. Pattern Recognition, 99: 107100.
Zhao, F.; Huang, Y.; Wang, L.; and Tan, T. 2015. Deep
semantic ranking based hashing for multi-label image re-
trieval. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 1556–1564.
Zhu, F.; Li, H.; Ouyang, W.; Yu, N.; and Wang, X. 2017.
Learning spatial regularization with image-level supervi-
sions for multi-label image classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 5513–5522.

