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Abstract

Algorithms for eye movement classification are separated into
threshold-based and probabilistic methods. While the parameters
of static threshold-based algorithms usually need to be chosen for
the particular task (task-individual), the probabilistic methods were
introduced to meet the challenge of adjusting automatically to mul-
tiple individuals with different viewing behaviors (inter-individual).
In the context of conditionally automated driving, especially while
the driver is performing various secondary tasks, these two require-
ments of task- and inter-individuality fuse to an even greater chal-
lenge. This paper shows how the combination of task- and inter-
individual differences influences the viewing behavior of a driver
during conditionally automated drives and that state-of-the-art al-
gorithms are not able to sufficiently adapt to these variances. To
approach this challenge, an extended version of a Bayesian online
learning algorithm is introduced, which is not only able to adapt
its parameters to upcoming variances in the viewing behavior, but
also has real-time capability and lower computational overhead.
The proposed approach is applied to a large-scale driving simulator
study with 74 subjects performing secondary tasks while driving in
an automated setting. The results show that the eye movement be-
havior of drivers performing different secondary tasks varies signif-
icantly while remaining approximately consistent for idle drivers.
Furthermore, the data shows that only a few of the parameters used
for describing the eye movement behavior are responsible for these
significant variations indicating that it is not necessary to learn all
parameters in an online-fashion.

Keywords: Automated analysis methods, Eye movements and
cognition, Machine learning methods and algorithms

Concepts: •Computing methodologies → Activity recognition
and understanding; Mixture modeling; Model verification and
validation;

1 Introduction

Of the six primary eye movement types, namely fixation, saccade,
smooth pursuit, vergence, optokinetic and vestibulo-ocular reflex,
saccades and fixations occur most frequently in daily life [Leigh
and Zee 2015]. In brief, fixations keep the gaze stable on a station-
ary target while saccades enable the eye to switch between differ-
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ent fixation targets [Holmqvist et al. 2011]. Because the automated
classification of these two eye movement types is a crucial topic
for many applications such as the diagnosis of pathologies [Isotalo
et al. 2009], human-machine interaction (HMI) [Barea et al. 2003;
Gandhi et al. 2010], human activity recognition [Bulling et al. 2011;
Banerjee et al. 2014], and hazard perception during driving [Kas-
neci et al. 2015], the literature provides various methods for this
purpose [Salvucci and Goldberg 2000; Tafaj et al. 2012]. An espe-
cially complex environment for eye movement classification algo-
rithms is represented by conditionally automated driving scenarios
[International 2014]. This automation level is characterized by an
autonomous driving function able to take over the driving task and
the responsibility for a specific time interval. However, such sys-
tems will experience situations, which are difficult to handle and,
therefore, the driver is requested to take over in a limited amount of
time. While the vehicle is in control, the driver is enabled to per-
form various secondary tasks like reading, writing a mail, or just
relaxing. By switching between such tasks, the driver shows task-
individual eye movements such as large saccades while scanning
the environment or small saccades while reading. Furthermore, due
to different drivers or different driver seat settings, inter-individual
viewing behavior occurs. Therefore, a robust and reliable detection
of eye movements is indispensable for in-vehicle systems based on
eye movement detection such as driver-activity recognition [Brau-
nagel et al. 2015]. Such systems are necessary for classifying the
driver’s current take-over readiness.

However, current algorithms for eye movement classification are
suited and evaluated for either task- or inter-individual differences
in the viewing behavior. A thorough examination of how significant
the effect of combined task- and inter-individual differences on the
viewing behavior is as well as an evaluation of the performance
of existing methods under these circumstances does not exist up
to now. Furthermore, to the best of the author’s knowledge, there
exists no literature on the viewing behavior and the individual eye
movements of the driver in conditionally automated driving situa-
tions. Hence, in this paper we investigate how the task- and inter-
individual differences in conditionally automated drives influence
the eye movements. Furthermore, we introduce a novel approach
for an adaptive eye movement classification based on a Bayesian
Mixture Model [Tafaj et al. 2012] and suitable for common rapid
control prototyping (RCP) and hardware in the loop (HIL) tools in
the vehicle.

2 Related Work

The automated classification of fixations and saccades is a well-
studied topic resulting in a variety of algorithms using different
ways for detecting these basic eye movements. Despite several re-
lated work in this context, two questions are still open: (1) how
significantly is the viewing behavior influenced by individual dif-
ferences among various tasks and (2) to which extent the parame-
ters of such classification algorithms need to be adaptively adjusted.
This work focusses on the inter- and task-individual differences in
the viewing behavior during conditionally automated driving while
performing secondary tasks.
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For a better overview of the different classification methods, a new
taxonomy consisting of a minimal set of three spatial and two tem-
poral criteria was first introduced in [Salvucci and Goldberg 2000].
Furthermore, by means of five different representative algorithms,
the particular advantages and disadvantages of the chosen cate-
gories were evaluated. One of these categories describes velocity-
based algorithms, which separate saccades and fixations by analyz-
ing the velocity of the sequential data points. As representatives,
an adaptive as well as a threshold-based method is introduced, but
there is no further distinction of these types in the taxonomy. In-
stead, it is suggested that fixed thresholds are usually sufficient for
the classification, since the velocity profiles are assumed to be phys-
iologically stable [Salvucci and Goldberg 2000].

However, how this fixed threshold has to be chosen depends on
the respective task. As an example, with a fixed velocity threshold
of 15◦s−1 the trajectories of self-paced saccades were examined
in [Erkelens and Vogels 1995], while in [Sen and Megaw 1984]
a threshold value of 20◦s−1 is used to detect effects on saccades
while working on visual display units. A summary of further set-
tings for this threshold is given in [Rötting 2001].

For an appropriate threshold selection for eye movement classifi-
cation algorithms, a logic based on novel standardized scores was
discussed in [Komogortsev et al. 2010]. Furthermore, how signif-
icantly the classification performance of well-known algorithms is
influenced by different choices of the threshold parameter was an-
alyzed in detail. However, the calculation of these metrics is based
on the assumption that the stimuli were specified by the examiner.
In case of real-world eye-tracking data, a ground truth for the eval-
uation of eye movement classification algorithms is typically pro-
vided by a tedious and time-consuming manual classification. Note
that all settings summarized in [Rötting 2001] and the two exam-
ples mentioned above were applied to eye-tracking data recorded in
a static lab environment, too.

Driving scenarios can doubtlessly be considered as far more dy-
namic environments than lab environments. Therefore, an addi-
tional distinction of algorithms for eye movement classification in
threshold-based and probabilistic methods was given in [Kasneci
et al. 2014] and their applicability to non-automated driving sce-
narios was discussed. It was stated that threshold-based methods,
which make use of empirically adjusted thresholds, are not appli-
cable to highly dynamic scenarios and the strongly physically- and
physiologically-dependent viewing behavior. Yet no further refer-
ences or details on this statement were given. Further, two state-
of-the-art probabilistic methods, namely Bayesian Mixture Model
(BMM) [Tafaj et al. 2012] and Hidden Markov Model (HMM)
[Salvucci and Anderson 1998], were compared in terms of their
applicability to online driving scenarios, revealing a superior clas-
sification performance of the BMM over the HMM. BMM consid-
ers the Euclidean distances of sequential data points for its classi-
fication and is based on the assumption that these distances, either
describing a fixation or a saccade, are Gaussian distributed. The
parameters of the applied Gaussian Mixture Model (GMM) will
be updated with every new classified distance in an online-fashion.
Note that if a constant sample time is considered, the distances can
be seen as velocities.

Studies which specifically examined individual viewing behavior,
typically in the field of psychology, focus on the eye movements
during specific tasks. For example, in [Castelhano and Hender-
son 2008] the authors found inter-individual differences in the sac-
cadic amplitudes during the scanning process of images, while the
intra-individual saccadic amplitudes were stable. Moreover, there
is a considerable amount of eye movement studies in reading de-
scribing differences in the viewing behavior among various types
of readers. A comprehensive overview on the above work is given

in [Rayner 1998]. All these findings indicate that there is a signif-
icant individual difference in the eye movement parameters among
individuals performing the same task, while the existence of vari-
ous threshold settings for different tasks suggests a non-negligible
task-individual difference. The scenario of conditionally automated
driving exposes further challenges to the eye movement classifi-
cation algorithms, since both task- and inter-individual differences
occur at the same time. There are plenty of possible secondary
tasks, which can be performed in conditionally automated driving
scenarios and among which the driver can switch frequently. Exam-
ples for possible secondary tasks are reading news, writing emails,
watching a movie, or just relaxing and observing the environment.
Even the level of automation can change between conditionally au-
tomated and non-automated route sections, so that the driver needs
to take over or hand over the control of the vehicle. All these vary-
ing task-individual conditions can influence the eye movement be-
havior of the driver. Furthermore, inter-individual differences need
to be considered due to the possibility of multiple various drivers
per vehicle and drive. Since the eye movement behavior of various
drivers can react individually for the different conditions, the task-
and inter-individual differences intensify each other.

The contributions of this paper are two-fold. On the one hand, it
is shown that state-of-the-art classification algorithms such as the
BMM cannot sufficiently adapt their parameters to eye-tracking
data which frequently changes its underlying distribution. This
is a crucial factor since a driver often switches between different
secondary tasks in the conditionally automated driving scenarios.
Therefore, an enhanced version of the BMM is introduced with sev-
eral advantages towards the previous method such as real-time ca-
pability, easier implementation geared towards embedded architec-
tures, and an improved adaptation. On the other hand, a thorough
examination is performed of the task- and inter-individual differ-
ences of the eye movement behavior in case of conditionally auto-
mated driving situations, where the driving situations are character-
ized by frequent changes between automated and manual driving
sections and among various secondary tasks. This is done using the
novel classification algorithm to describe the currently underlying
distributions of the saccade and fixation velocities as well as occur-
ring changes in these distributions to avoid manual classification.

3 MERCY: Moving Estimation Classification

Conditionally automated driving enables the driver to perform sec-
ondary tasks while the automated driving function takes over con-
trol of the vehicle. As outlined in Section 2, the literature sug-
gests that by varying the task the resulting eye movement behavior
varies as well. Hence, a classification algorithm needs to be able
to adapt its internal parameters to classify fixations and saccades
sufficiently. To what extend current classification methods satisfy
these requirements will be investigated in this section by means
of the BMM [Tafaj et al. 2012], resulting in a Moving Estimation
Classification or MERCY, an enhanced version of the BMM.

3.1 Evaluation of BMM

Based on the same assumption as in [Tafaj et al. 2012] that the
underlying process generating the velocities of fixations and sac-
cades can be described by a GMM, the probability density function
p(||vi||) of the model is given by

pf (||vi||) = πfN(||vi||, µf , βf ) (1)
ps(||vi||) = πsN(||vi||, µs, βs) (2)
p(||vi||) = pf (||vi||) + ps(||vi||) (3)

where vi is the measured velocity between the two sequential data
points with the index i−1 and i, the parameters µ and β describe the
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mean resp. the variance of the Gaussian distribution, π describes
the mixture parameter, and the indices f and s denote the compo-
nents of the fixations or the saccades. The norm ||.|| represents the
Euclidean distance. The classification process can be seen as the
determination of the intersection δ of the two probability density
functions pf and ps and consequently boils down to the estimation
of the means, variances, and mixture components denoted by the
parameter set

Θk = {µk, βk, πk} where k = {f, s}. (4)

An artificially generated example of a GMM is shown for illustra-
tion in Figure 1.
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Figure 1: The three probability density functions pf (grey), ps
(red), and p (dotted black).

To determine the parameter sets Θf and Θs, Variational Message
Passing (VMP) as implemented by Infer.NET1 was used [Winn and
Bishop 2005]. Since VMP is an advanced approximation technique
for applying variational inference to Bayesian Networks, the time
required as well as the complexity for implementing such a frame-
work in order that it can be run online on common RCP and HIL
tools in the vehicle are still enormous. Furthermore, the VMP al-
gorithm is realized as an iterative method converging in terms of a
lower bound [Winn and Bishop 2005]. For this iterative approach,
it cannot be determined a priori how many iterations need to be
performed, which can be problematic in terms of real-time applica-
tions.

Artificially generated data is used to evaluate the ability of the
BMM to adapt its parameters to frequently changing eye movement
behavior. The reason for this approach is to provide a ground truth
of the GMM and its parameter sets, which facilitates a simulation of
the frequent changes of the underlying process and the evaluation
in total. For creating the GMM, the MATLAB class gmdistribu-
tion2 was used, which is able to generate random numbers of the
specified mixture model. In total, 25000 random data samples were
generated with different pre-defined parameter sets for a first eval-
uation. After 5000 samples the parameter set was changed for the
first time and another 5000 data samples were generated. In Figure
3, this procedure was repeated four times, before 5000 random data
samples were generated by a step-by-step changing model, result-
ing in a continuously decreasing threshold at the end of the figure.
Table 1 specifies which parameters were used and varied for the
different intervals each containing the 5000 samples. The BMM
was trained with the first 1000 data samples, before starting the on-
line adaption, which explains the gap at the beginning of the BMM

1http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
2http://de.mathworks.com/help/stats/index.html

Parameter set of the x-th interval

interval 1 2 3 4 5

µ1 1 1 1 1.1 1.1− i 1
e9

µ2 200 220 210 207 207
β1 0.1 0.1 0.14 0.33 0.33
β2 400 400 400 404 404− i 1

e3

π1 0.8 0.5 0.6 0.7 0.7
π2 0.2 0.5 0.4 0.3 0.3

Table 1: Parameter sets of the different 5000 samples large inter-
vals shown in Figure 3. The varied values between two sequential
steps are highlighted by a blue shaded background. The parameter
i in the last column represents the i-th iteration, since these values
were varied for every iteration.

plot. The initial parameters as well as the variations of these values
in Table 1 were chosen to provide a meaningful GMM according to
preliminary studies, while still providing distinctly separable data
for a moderate classification task.

As shown in Figure 3, the BMM based on the velocity distributions
adapts poorly to the frequently changing GMM. It shows among
others the calculated intersection point of the artificial GMM and
the intersection of the estimated GMM of the BMM. After the train-
ing phase, the estimated intersection point of the BMM differs from
the actual intersection, but is slowly approaching it. The reason for
this slow behavior is that the generated data samples are weighted
lower the later they are given to the algorithm. Hence, shortly after
the training phase new data samples already have little to no ef-
fect on the parameters of the BMM. Consequently, for significantly
emerging differences such as at sample 15, 000 in the fourth inter-
val, the BMM is overwhelmed by the adaption process. Section 4.2
shows that the individual differences due to performing different
tasks are significantly larger than for the artificially generated data
at this point. Hence, an even worse estimation of the mixture model
in case of conditionally automated driving data is expected.

3.2 A Novel Approach for Improved Adaptability

This section introduces MERCY, a novel approach for an improved
estimation of the parameters of GMMs and suitable for implemen-
tation on common RCP and HIL tools in the vehicle. The architec-
ture of this approach is illustrated in Figure 2 and can be separated
into three iterative steps: estimation, updating, and classification.
These steps are performed in each iteration, requiring the parame-
ter sets Θf and Θs of the previous round and the current measured
velocity.

Classification

Classification is performed in the same way as in the BMM algo-
rithm by comparing the current velocity ||vi|| to the intersection
point δ. If the velocity is smaller than the intersection point, i.e. it
lies on the left side of the intersection, it will be marked as fixa-
tion otherwise as a saccade. After the classification, the algorithm
is able to update one of the two distributions depending on the be-
longing of the current velocity.

Estimation

The main idea behind MERCY is to estimate the parameter sets
Θf and Θs by means of sample mean and sample variance. These
estimations of the means, variances, and mixture components can
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Figure 2: Architecture of the novel algorithm MERCY.

easily be reformulated into a recursive form. Furthermore, to pre-
vent the estimation from converging and that new data samples will
be considered with decreasing weight, the recursive formulas can
be provided with a weighting factor ω, which can be interpreted
as the size of a moving window. Choosing a small ω leads to
very dynamic behavior of the estimation, but increases the influ-
ence of outliners on the estimation. On the other hand, choosing a
large ω results in idle behavior which adapts slowly to the chang-
ing conditions. Given the simplifying assumption that the velocities
v1, v2, ... are realizations of the random variable V generated by an
independent and identically distributed process, the recursive equa-
tion for the weighted sample mean is defined as

µkn+1 =
ωµkn + vn+1

ω + 1
(5)

and the recursive equation of the weighted sample variance is de-
fined as

βkn+1 =
(ω − 1)βkn + (Vn+1 − E[Vn+1])2

ω
. (6)

Note that the estimation of the variance depends on the estimation
of the mean of the same round. The estimation of the mixture com-
ponents πf and πs, which describe the ratio between the number
of data samples classified as fixations and saccades, is realized by
means of a weighted counter given by

πkn+1 =
ωπkn + 1

ω + 1
. (7)

In comparison to the estimation of the sample mean and sample
variance, both parameters πk can be updated in every round of the
algorithm independent of the classification result.

Updating

As shown in Figure 2, there are two pairs of parameter sets Θk

and Θ̃k. While the parameter sets Θk describe the actual param-
eters used for the classification, Θ̃k depict the currently estimated
parameters of the GMM with regard to the new data samples. If
these parameter sets diverge more than a pre-defined threshold l,
the currently estimated parameters Θ̃k will be used as new param-
eter set Θk for the classification in the next round. As long as the
threshold is set to l = 0, the actual model parameters will be up-
dated with every new data sample, which is in general the proper
approach. Nevertheless, this separation into two parameter sets was
considered as a possible additional analysis of the task- and inter-
individual differences. Since the whole algorithm has a constant
complexity O(1), this method is suitable for most real-time appli-
cations.
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Figure 3: The three plots show the artificially generated threshold
(black solid line), the estimated threshold by the BMM (dotted gray
line), and MERCY (solid light gray line).

MERCY is applied to the same artificial data samples as the BMM
in Section 3.1 and the estimation is plotted as a light gray line
in Figure 3. Although the initialization values were chosen with
an offset of 0.5 in the means and variances, resulting in a start-
ing position of the estimated intersection point at 4 px/s, the algo-
rithm adapts as fast as the BMM to the artificial model. However,
MERCY is more accurate than the BMM up to iteration 15, 000.
In contrast to the BMM, MERCY is still able to detect and adapt
to the changing distribution in the fourth interval, but the error be-
tween the actual intersection and the estimation increases slightly,
due to the lack of a sufficient number of data samples. The perfor-
mance of MERCY exceeds the performance of the BMM for larger
steps in intersection point δ and MERCY adapts appropriately even
in the fifth interval with the continuously decreasing intersection.

A large-scale data set of half a million data samples, generated by
randomly changing parameters of the artificial GMM was created in
the same way as in the exemplary plot of Figure 3. The parameters
were varied randomly every 10, 000 samples so that every param-
eter, e.g. the mean µf , was set to a value of the interval defined
by the initial value and the radius, e.g. [µf − µf/2, µf + µf/2].
Furthermore, every 50, 000 samples, MERCY was reset to the ini-
tial values and the parameter of the BMM were determined by an
additional training phase. To compare the performance of both al-
gorithms, the absolute error between the actual intersection point
and the estimated points was calculated. The result is shown as a
stacked bar diagram in Figure 4. For the plot, the intervals of the
training phases of the BMM and all absolute errors smaller than
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Figure 4: Two stacked bars illustrate the absolute error between
each algorithm and the actual intersection point of the artificial
GMM. The three stacks per bar represent three classes of error
sizes.

0.1 px/s were not considered. In addition, one round of 50, 000
samples was discarded because the BMM was not able to calcu-
late a meaningful initialization of the model in the training phase.
The calculated error was separated into three different error classes,
dividing them into small errors≤ 1.2 px/s, medium size errors be-
tween 1.2 px/s < x ≤ 2.4 px/s, and the class of the large errors
with 2.4 px/s < x. The stacked bar of MERCY shows no errors
for the large errors class, since there are too few to be visible in
the plot. There are 25, 000 errors smaller than 0.1 px/s resulting
in a decreased bar height compared to the bar of the BMM. The
right bar can be coarsely divided into one quarter of medium size
errors and three quarters of small size errors. In contrast, the bar
of the BMM can be divided into three nearly equal stacks of the
different error classes. As suggested by the example in Figure 3,
MERCY adapts considerably better to the given data samples than
the BMM, providing fewer and smaller errors in terms of the inter-
section point. All errors of every parameter of Θf and Θs affect the
estimation of the intersection point, which therefore can be seen as
the worst-case scenario for the estimation. In summary, despite the
simple implementation, the introduced approach provides an im-
proved adaptability for the classification of eye movements during
frequently changing viewing behavior and is suited for real-time
applications due to the complexity in the order of O(1).

4 Task- and Inter-Individual Differences

Analyzing the eye movement behavior is a challenging task since
there is no ground truth available for the wanted underlying distri-
bution of fixations or saccades and the labeling effort for empirical
studies is time-consuming and error-prone. MERCY, a novel ap-
proach of classifying saccades and fixations by means of a GMM,
was introduced in the preceding section and shown to be capable
of adapting to occurring variations in the parameters of the original
mixture model. This adaptability is subsequently used for the eval-
uation of eye-tracking data from a driving simulator study to detect
changes in the eye movement behavior of the drivers.

4.1 Experimental Setting

For the examination of the task- and inter-individual differences
in conditionally automated driving scenarios, a driving simulator
study was performed in the Mercedes-Benz moving-base Driving
Simulator. This moving-base simulator realizes a 360◦ projection
of the traffic situation, realistic wind and engine sound effects, as

well as acceleration forces in all directions. The test subjects drove
in a conditionally automated setting on a typical german highway
for about 35 minutes at 120 km/h in a detailed driver’s cabin of a
Mercedes-Benz W212 E-Class. At the beginning of every drive, an
introductory route section was simulated to introduce the partici-
pants to the driving simulator and to the automated driving system
by driving manually or with the activated conditionally automated
driving function without performing any secondary task for about
one minute in each case. Furthermore, four take-over situations
were set along the route forcing the driver to take over the control
of the vehicle within 2.5 to 4 seconds. A touch screen, shown in
Figure 5c) and 5f), was mounted in front of the center console so
that the driver could perform the secondary tasks. On the touch
screen a graphical user interface was providing the upcoming tasks
which the test subject had to select manually. However, the selec-
tion process was not considered for the evaluation of the eye move-
ment data. The set of secondary tasks included watching a movie,
reading news, writing an email, listening to music, and being idle
i.e. the driver was asked to not perform any task. For convenience,
the manual driving sections are considered as additional tasks and
the abbreviations manual driving, idle, mail, music, read, and video
are used in the following to refer to the secondary tasks of driving
manually, being idle, writing an email, listening to music, reading
news, and watching a short movie. The eye movements of the test
subjects were recorded by means of a monocular, mobile Dikablis
eye tracker, shown in Figure 5b), measuring at a sampling rate of
25 Hz. Note that according to the Nyquist-Shannon theorem an ac-
curate measuring of the peak velocities and the velocity profiles of
the saccades is not feasible with such a low sampling rate. How-
ever, since MERCY only considers the point-to-point velocities the
low sampling rate is sufficient. 85 test subjects participated in this
study, divided into an experimental group of 74 test subjects per-
forming secondary tasks and into a control group of 11 test subjects
performing only the idle task. Introducing this second group of sub-
jects allowed examining the driver’s visual behavior in the context
of automated driving, where the driver was not involved in a sec-
ondary task. Inside the cabin, four video cameras were mounted at
different angles allowing the permanent observation of the driver’s
face, the footwell, the steering wheel area, and the touch screen.
The video image of the four cameras, a synchronized image of the
current simulation view in front of the driver cabin, as well as an
interface for monitoring purpose of various vehicle and route infor-
mation were merged and recorded (see Figure 5).

Figure 5: Recorded video of the different camera perspectives, the
simulated scenario in front of the vehicle, and of the GUI for moni-
toring purpose.

4.2 Evaluation

For the following evaluation only 743 of the initial 85 experiments
could be used due to missing signals from the eye tracker for six

341 males/33 females, mean age of 39 years (range 20-60, SD=10)
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Table 2: Summary of the classification results.

Algorithms Recall Precision F1 score
I-DT 0.73 0.66 0.69
BMM 0.86 0.67 0.75

MERCY 0.91 0.75 0.82

subjects and erroneous simulations such as traffic freezes for five
subjects. In total, the eye movement data set included 35.5 hours
of recorded eye tracking data separated into 1.5 hours of manual
and 34 hours of conditionally automated driving. First, accumu-
lated eye movement behavior of the experimental versus the con-
trol group was investigated for significant differences. For this pur-
pose, MERCY was applied to the eye-tracking data of each driver,
since the adaptability of this method proved to be convenient for
describing mixture models and their variations. The reliability of
MERCY depends mainly on the choice of the initial parameters
of the GMM. Hence, these initial parameters should at least be in
the same range as the average parameters over all drivers and sit-
uations. Therefore, random segments of a pre-defined size were
extracted from randomly chosen simulator drives and used as input
for the Expectation Maximization algorithm. The estimated param-
eters by means of the Expectation Maximization algorithm were av-
eraged, resulting in the initial values Ωf,init = {0.55, 1.13, 0.90}
and Ωs,init = {30.09, 3792.20, 0.10}. As window size, ω = 10
seconds was chosen such that the algorithm could react to current
changes in the eye movement behavior within a short period of
time and, at the same time, the algorithm would not generate high-
frequency oscillations. The threshold l was set to l = 0 so that the
parameters were updated in every iteration.

Before analyzing the eye movement behavior, a detailed evaluation
of MERCY in comparison to the BMM and the dispersion-based
algorithm I-DT was performed regarding their capability to dis-
tinguish between fixation and saccade points. In total, eight data
sets of six different subjects performing the mentioned secondary
tasks consisting of 6623 fixation points and 1384 saccade points
were manually labelled by two raters. The duration and dispersion
thresholds of the I-DT were set to the fixed values of 100ms and
15 px in terms of the unit of the eye camera. As shown in Table
2 MERCY achieved the highest results for all three metrics of the
applied algorithms. The BMM showed a high recall value, since
it is sensitive to even small point-to-point velocities. However, this
sensitivity leads to an increased false negative rate and, therefore, to
the low precision on the labelled data set. The threshold-based al-
gorithm I-DT showed the lowest results for all three metrics, which
indicates the disadvantage of the fixed threshold versus the adaptive
ones.

First evidence for an existing difference in the eye movement be-
havior between conditionally automated driving scenarios with and
without performing secondary tasks is given just by looking at two
examples of the curve shape of the intersection δ in Figure 6. While
the blue solid plot, representing the intersection point of one of
the idle drivers, seems to be stable and shows only high-frequency
noise, the red dashed plot of one of the drivers performing the sec-
ondary tasks shows huge drifts over the whole experiment. These
drifts could be the result of the task-individual eye movement be-
havior, which would be a strong evidence for the authors’ hypoth-
esis that frequent changes in the performing task generate a sig-
nificantly varying eye movement behavior. In addition, the huge
differences of up to 90 px/s in the amplitudes as well as the steep
gradients of the shown drifts require an even higher adaptability of
eye movement classification algorithms than the artificially gener-
ated data. The vertical offset of the two curves can be interpreted as

inter-individual difference due to variations of the individual view-
ing behavior or due to the setting of the measuring system, e.g.
decreased distance of the camera to the eye.
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Figure 6: Exemplary plots for the behavior of the intersection point
of a driver of the experimental and control group.

To analyze of the intersection behavior over all subjects, Figure
7 shows the boxplots of δ, averaged over the whole test duration
of every subject. For the plot, possible outliers were removed by
considering only the inner 95% of the data samples. Applying the
one-sample Kolmogorov-Smirnov test to the estimated data of the
intersection point, it was indicated that the data is not normally dis-
tributed. The difference of the eye movement behavior between the
experimental group and the control group can be seen straightaway
in Figure 7, since there is no overlapping of the interquartile ranges,
including median, first and third quartile, of the two boxplots. This
first impression is underpinned by the Wilcoxon rank-sum test and
the Hedges’ g measure, implying that the difference is significant
(p = 0.002, z = 2.99 ) and of practical relevance (g = 0.711). De-
spite the increased value in the location parameters, the left boxplot
shows an increased interquartile and whisker range. These find-
ings illustrate the significant difference in the estimated intersection
point between both groups and therefore suggest that the variations
in eye movement behavior are considerably greater for the drivers
performing secondary tasks than for drivers without any tasks.
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Figure 7: Boxplots of the averaged estimated intersection point δ
of MERCY while performing secondary tasks versus being idle. The
boxplots show the inner 95% of the data, excluding in this way the
lowest and the largest 2.5% of the data due to outliers.

To identify the parameters of the estimated GMM, which are vary-
ing the most during the conditionally automated driving scenario
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and which differ between the idle and busy driver, Table 3 com-
pares the means, medians, minimums, maximums, and variances
of the parameter sets Θf and Θs of the experimental and control
group.

mean med var min max

Ta
sk

µf 0.73 0.69 0.08 0.26 1.96
µs 55.42 52.35 337.87 21.71 89.04
βf 2.26 1.96 2.51 0.55 9.73
βs 3604 3733 241763 1763 3999
πf 0.91 0.92 0.001 0.73 0.98
πs 0.09 0.08 0.001 0.02 0.27

mean med var min max

Id
le

µf 0.53 0.50 0.03 0.23 1.46
µs 50.35 46.41 262.7 21.47 80.60
βf 1.32 1.15 0.65 0.49 6.00
βs 3622 3761 179901 1825 3999
πf 0.91 0.92 0.001 0.71 0.97
πs 0.09 0.08 0.001 0.03 0.29

Table 3: Statistical values of the estimated GMM divided into
mean, median (med), variance (var), minimum (min), and maxi-
mum (max).

It can be seen that the parameters µf , πf and πs for both groups
of subjects have such low variances that these parameters proba-
bly do not require learning and adapting to them at all. Especially
the a priori probabilities πf and πs imply a constant ratio of 1/9
between saccades and fixations over the whole experiment and all
statistical measures are nearly identical for both groups. The av-
erage velocity of the fixations µf is not exactly zero as expected,
due to measurement inaccuracies or smaller eye movements as the
nystagmus4. Nevertheless, as long as such "disturbances" are kept
as small as possible, there will be no significant variation in this
parameter. The size of the relative variances as well as the ranges
from the minimum to the maximum value of the remaining param-
eters µs, βf , and βs indicate that these values vary the most overall
measured data. Note that due to the flat and wide distribution of the
saccades, the influence of µs on the intersection point and hence
on the classification is low. In summary, for the given assumption
of a GMM describing the process of generating saccades and fix-
ations, it would be sufficient to only learn the parameter βs and
βf , describing the variance of the distribution of the saccades resp.
the fixations, since the remaining parameters of the mixture model
can be considered as constant or their influence on the classification
performance is vanishingly low. If the values of Table 3 are com-
pared between the control and experimental group, an increased
variance can be observed while performing secondary tasks as it
occurred for the intersection point. This finding confirms the hy-
pothesis suggesting high variations in the eye movement behavior
due to task-individual differences in the same way as the evaluation
of the estimated parameter δ above.

To explain which secondary tasks cause the variation in the eye
movement behavior during conditionally automated driving, Fig-
ure 8 shows a boxplot of the estimated intersection point of all per-
formed secondary tasks and of the manual driving sections. The
interquartile range of the boxplots of the tasks video, mail, and read
are similar to the range of the idle task, but with an increased av-
erage of the estimated intersection point. These small variances
probably result from the fact that all three tasks were performed on
the touch screen built in the cabin. Thus, most eye movements were
performed in a narrow field of view. Obviously, they cannot be the
sole explanation of the increased variations in the eye movement

4Rhythmic, oscillating, and involuntary movements of the eyeball [Ben-
jamin 1997].
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Figure 8: Quantitative comparison of the behavior of the estimated
intersection point during the different secondary tasks and while
driving manually over all subjects.

behavior during the performing of the secondary tasks. In contrast,
the music task reveals a larger variation of the eye tracking data
than the idle task in Figure 7, although a similar viewing behavior
of both tasks is expected. A possible explanation for this larger vari-
ation could be the gazes of the driver on the touch screen, since the
display was not turned off during the music task and, therefore, still
could attract the attention of the driver. Another explanation would
be the more active scanning behavior of the driver of the environ-
ment between the usual tasks performed on the touch screen, which
force the driver to focus the attention on the display and not to ob-
serve extensively the environment. An additional interesting point
to mention is the high variation of the intersection point of the man-
ual driving scenarios. This result indicates that for non-automated
driving scenarios on a typical german highway, significant varia-
tions in the viewing behavior occur which need to be taken into
account for a robust eye movement classification.

In summary, the tasks can be separated into two groups regard-
ing their variation of the intersection δ: one group consisting of
the music and manual driving task, showing large variations, and
in a second group, composed of the remaining tasks read, video,
and mail, depicting small variations. Since these two groups al-
ternate frequently in conditionally automated driving scenarios, the
eye movement behavior switches between tasks of small and larger
variations, leading to the higher variation of the viewing behavior
while performing secondary tasks compared to while being idle.

5 Future Work

On the one hand, additional developments of MERCY are advis-
able, since the primary reason for introducing MERCY was not to
provide a classification method, capable of a superior classification
on all conditions, but a method to detect robustly changes in the eye
movement behavior. Since this method uses sample mean and vari-
ance estimators, a reliable estimation of the variance first requires
a good estimation of the sample mean. That means that in case of
sudden changes in the eye movement behavior, the variance is esti-
mated insufficiently as long as the mean has not approximated the
actual mean causing an overshooting of the intersection parameter.
The error of the estimation of the sample mean affects the estima-
tion of the variance in a quadratic manner. A possible solution could
be a correction function depending on the gradient of the sample
mean. Another issue is given by the fact that MERCY is updating
only the parameter set Θf or Θs of the estimated GMM belonging
to the current classification result. In case of a large overlap area
of the two Gaussian distributions, e.g. in case of poor initialization
values, the incorrect parameters are often updated. Since the total
error of the falsely classified data samples can be estimated, this er-
ror should be considered for the estimation of the parameters of the
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model in terms of error minimization. In this way both parameter
sets Θf and Θs can be updated in every iteration.

On the other hand, further evaluations of the eye movement be-
havior are necessary, especially in the case of different automa-
tion levels. As the results of this work indicate, even in case of
non-assisted driving scenarios, variations of the eye movement be-
havior need to be considered, rendering static threshold-based eye
movement classification algorithms impractical. Since the manual
driving route section of the conducted experiment only had a du-
ration of 1 minute, more data, preferably of real-driving scenarios,
need to be considered to underpin these findings. Furthermore, the
evaluation of the eye movement behavior in different driving envi-
ronments such as urban, cross-country, or a highway environment,
could provide additional information about the necessary adaptabil-
ity of eye movement classification methods.

6 Conclusion

In this work, the necessity of adaptive eye movement classifi-
cation methods during conditionally automated driving scenarios
was thoroughly examined. The results, based on the evaluation
of a large-scale driving simulator study conducted in a high-end
moving-base simulator, distinctly indicate the increased challenge
for the eye movement classification while performing various sec-
ondary tasks. The task-individual difference was shown to be sig-
nificant between the viewing behavior of subjects performing sec-
ondary tasks and idle subjects, both driving in a conditionally au-
tomated setting. The findings suggest that the eye movement be-
havior during changing tasks is constantly varying and, therefore,
the threshold for the classification between saccades and fixations is
varying, too. These frequent changes in the eye movement behav-
ior justify the need of classification algorithms with an increased
adaptability. For this purpose, an extended approach of a proba-
bilistic state-of-the-art algorithm, called MERCY, was introduced
and its performance of adaptability was evaluated and compared to
a method based on a Gaussian mixture model. MERCY not only
showed a lower error rate with regard to the adaption to half a mil-
lion randomly generated data samples, but also comes with the ben-
efit of a smaller computational overhead and a constant time com-
plexity, convenient for the application in real-time scenarios and
suitable for implementation on common RCP and HIL tools in the
vehicle.
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