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Abstract. Eye movements hold information about human perception,
intention, and cognitive state. Various algorithms have been proposed to
identify and distinguish eye movements, particularly fixations, saccades,
and smooth pursuits. A major drawback of existing algorithms is that
they rely on accurate and constant sampling rates, impeding straightfor-
ward adaptation to new movements such as microsaccades. We propose a
novel eye movement simulator that i) probabilistically simulates saccade
movements as gamma distributions considering different peak velocities
and ii) models smooth pursuit onsets with the sigmoid function. Addi-
tionally, it is capable of producing velocity and two-dimensional gaze se-
quences for static and dynamic scenes using saliency maps or real fixation
targets. Our approach is also capable of simulating any sampling rate,
even with fluctuations. The simulation is evaluated against publicly avail-
able real data using a squared error. The Matlab code for the simulator
can be downloaded at http://ti.uni-tuebingen.de/Projekte.1801.0.html
or used in EyeTrace.
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1 Introduction

Eye movements hold valuable information about a subject, and his cognitive
states [3, 16] and are also important for the diagnosis of defects and diseases of
the eyes (many examples can be found in [20]). Therefore, the detection and
differentiation of eye movement types have to be accurate. Most algorithms
for eye movement detection apply different dispersion, velocity or acceleration
thresholds and validate the detected eye movements based on their duration.
This approach seems to be unsatisfactory [1] at its current state. This is partially
due to unstable/dynamic sampling rates of eye tracking devices, task-specific
sources of noise, the interpolation method applied to the data by the eye tracker,
and several more [5, 8]. Depending on the task at hand, different thresholds are
proposed in the literature [13]. It is especially difficult to adjust these thresholds
for inconsistent sampling rates and noise which is not annotated by the eye
tracker. Some commercial eye-tracker differ between tracking the eye and pupil
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and re-detecting them after a tracking loss, where the latter requires significantly
more processing time and thus results in a decreased frame rate. Therefore,
the identification of eye movements is still a difficult task; it complicates to
confidently generalize research findings across experiments [1].

We propose an eye movement simulator to generate data similar to the data
of eye-trackers. This is especially useful if algorithms have to be evaluated or
data is necessary to test the robustness of software working with eye tracking
data. In addition, the generated data can be used to asses visualizations. The
proposed simulator currently contains the following features:

– Generate velocity profiles of Saccades, Fixations and Smooth Pursuits based
on scientific findings.

– Generate random sequences following predefined orders.
– Generate static and dynamic sampling rates.
– Supports any sampling rate.
– Generate gaze positions for static images using saliency maps.
– Generate new eye tracking data using real data mapped to a saliency map

or to real fixation targets.
– Generate gaze positions for dynamic scenes like EPIC-Kitchens [6] using

saliency maps or real fixation targets.

2 Related work

While there are well-established findings about the gaze signal itself, its synthesis
is still challenging. In the Eyecatch [32] simulator, a Kalman filter is used to pro-
duce a gaze signal for saccades and smooth pursuits. While the signal itself was
similar to real eye-tracking recordings, the jitter was missing. The first approach
for rendering realistic and dynamic eye movements was proposed in [19], where
the main focus was on saccadic eye movements. It also included smooth pursuits,
binocular rotations (vergence) and the combination of eye and head rotations.
The first data-driven approaches where proposed in [21] and [25]. Both simulate
the head and eye movements together in order to generate eye-tracking data. The
main disadvantage of [21] was that head motion seemed to trigger eye movement.
In fact, the head orientation is only changed if the necessary amplitude of the
eye is larger than a specific threshold [22] (≈ 30◦). Another data-driven ap-
proach was proposed in [18], where an automated framework for head motion,
gaze, and eyelid simulation was developed. The framework generates data based
on speech input using trained Gaussian Mixture Models. While this approach
is capable of synthesizing nonlinear data, it only generates unperturbed gaze
directions. The approach in [10] models eye rotations using specific eye related
quaternions for oculomotor rotations as proposed in [29]. The main disadvantage
of this approach is that the synthetic eyes cannot be rotated automatically. The
approach in [31] produces gaze vectors and eye images to train machine learning
approaches for gaze prediction, but does not synthesize realistic eye movements.

All of the aforementioned approaches have their origin in computer graphics
with the goal to generate visually realistic head movement and gaze data. The
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main application of those simulators is to produce realistic interacting virtual
humans using parametric models [2, 24]. This leads to the disadvantage, that all
movements in the generated data are perfect optimal representatives. In reality,
the raw gaze data in eye movements contains noise introduced either through
actual movements such as microsaccades or inaccuracies of the used eye-tracker.
The first approach to simulate a realistic scan path, i.e., a sequence of fixations
and saccades, on static images was proposed in [4]. They use a saliency map
together with a unified Bayesian model to generate realistic random walks over
a stimulus. A pure gaze data simulation approach including noise was proposed in
[7]. Based on this approach, [9] further improves the noise synthesis by simulating
jitter as a normal distribution.

Our approach combines the before mentioned publications by simulating ve-
locity profiles of three eye movement types and map them to saliency maps.
In contrast, our approach is capable of simulating noise as uniform and normal
distribution and also allows to produce any sampling rate (static and dynamic).
We also extended the mapping functionality to allow the usage of real fixation
targets and use dynamic scenes instead of only static images.

3 Simulation

Fig. 1. Work-flow of generating eye movement data. First, a sequence of eye movement
types is generated. In the second step, a model of each eye movement type is generated
(F: Fixation, S: Saccade, SM: Smooth pursuit). This model allows for an almost infinite
sampling rate, which is in the next stage interpolated to a target sampling rate (Red:
Fixation, Green: Saccade, Blue: Smooth pursuit). Finally, noise is added on top of
the signal (gray). The last stage is the mapping of the generated sequence to target
locations.
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The entire work-flow of the simulator is shown in Figure 1. Generating an eye
movement velocity profile is done in four steps. The first step chooses a sequence
of eye movement types (Fixation, Saccade, Smooth pursuit) without any time or
velocity constraints. Afterward, each movement type in this sequence is assigned
a velocity profile generated by preliminary set parameters. The mathematical
model behind these profiles allows sampling at an extremely high, almost arbi-
trary rate. The target sampling rate is obtained by interpolating the computed
frequency, which also allows for dynamically adjusting the target sampling rate.
In the next step, noise is added which represents measurement errors or blinks.
The generated velocity profile is then mapped to two-dimensional locations on a
stimulus which are created using saliency maps ([12, 15, 14]) or real fixation tar-
gets. This also allows to remap real eye tracking data or use a dynamic stimulus
taking into account the duration of the individual eye movement types. Each step
of this eye movement simulator is described in the following subsections in more
detail. The simulator also includes a random walker generator to model fixation
direction [11]; saccade and smooth pursuit directions are generated randomly
(but consistently within a movement) since this is stimuli- and task-dependent.

3.1 Eye movement sequence

Generating a sequence of eye movement types can be done either by sampling
from a uniform distribution, setting it manually, or by following construction
constraints. In case of the uniform distributed eye movements, the generator
script randomly selects between three types of eye movements. If the amount
of each type is specified a priori, the probability is automatically adjusted. This
means that after each insertion the probabilities are computed based on the
remaining quantity of each type to favor higher quantities. This process can
also be constrained, e.g., by forcing the algorithm to insert a saccade after each
fixation or before a smooth pursuit.

3.2 Fixation

Fixations are generated based on two probability distributions which can be
specified and parametrized. The first distribution determines its duration, the
second the consistency of the fixation. For the duration and consistency, the
minimum and maximum can be set. As distributions, the simulator provides
Normal and Uniform random number generation. For the Normal distribution,
the standard deviation can be specified. consistency describes the fluctuations
in the velocity profile and is used as such in the entire document.

In Figure 2, two artificially generated fixations are shown. The consistency
was set to one degree per second and the standard deviation for the normal
distribution to two (Figure 2 (a)). As can be seen in the figure, the Uniform
distribution looks more similar compared to real data although we have set the
consistency very high with one degree per second.
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(a) (b)

Fig. 2. Generated fixation based on a Normal (a) and Uniform (b) distribution.

3.3 Saccade

The most complex part of the eye movement generator is the saccades. For the
length, we follow the same approach as for the fixations, in which a minimum
and maximum length have to be set. The selectable distributions are Normal
and Uniform. The result of the length also influences the maximum speed of the
saccade. Therefore, the two random numbers are multiplied (both in the range
between zero and one). This means that shorter saccades are limited to lower
maximal velocities. To generate the velocity profile, minimum, maximum and
the distribution type have to be set.

The most characteristic property of a saccade is its velocity profile. In our
simulator, this is generated as a Gamma distribution. Therefore, the minimum
and maximum skewness have to be specified. In [30] it was found that the Gamma
function can be considered suitable to approximate saccade profiles (yet not
perfect). To achieve more realistic data, a consistency minimum, maximum and
distribution can be specified. This generates the jitter along the velocity profile.

(a) (b)

(c) (d)

Fig. 3. Generated saccades with jitter (b,d) and without (a,c). For (a) and (b), the
distribution was skewed to the left. In (c) and (d), Gamma distribution was only slightly
skewed.

Figure 3 shows some generated saccades of fixed length. We simulated two
large and two slightly left skewed saccades. The maximum velocity was selected
from a range between 300 and 500 degrees per second. As can be seen from
the Figure, the profile contains on- an offset of a saccade. The profile itself is
smooth and follows the Gamma distribution. Post-saccadic movement is as of
now missing in the simulator. In Figure 3(b) and (d), a small amount of jitter
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was added to simulate measurement inaccuracy. This usually occurs through the
approximation on image pixels or ellipse fit inaccuracy in pupil detection.

3.4 Smooth pursuit

For generating smooth pursuits we also simulate the onset following the findings
in [23]. The authors did not provide a final function for the description of the
velocity profile but visualized and described it precisely. The shape of the onset
of a smooth pursuit follows a nonlinear growing function similar to the sigmoid
function. While this equation is not scientifically proven, our framework allows
to simply replace it once a better model is available. The most complex part of
the pursuit model is the onset, followed by a regular movement.

The parameters that can be specified are the minimum and maximum length
together with their distribution type. For the velocity and the length of the
onset, the same parameters can be adjusted. To include the measuring error, the
consistency parameters are also configurable. For the pursuit itself, we included
linear growing, decreasing and constant profiles. In case of the growing, again the
minimum, maximum and consistency function can be specified. Figure 4 shows

(a) (b) (c) (d) (e) (f)

Fig. 4. Generated smooth pursuits with jitter (b,d,f) and without (a,c,e). For (a) and
(b), the pursuit movement was constant. In (c,d) and (e,f) it was linear increasing and
decreasing.

simulated smooth pursuits. For the visualization of the linear decreasing and
increasing function, extreme values were used. The first column shows a smooth
pursuit for a constantly moving object, which is often observed in laboratory
experiments. The increasing and decreasing profiles are for objects which move
further away or come closer to the subject with a constant speed. Other profiles
may occur in real settings too, where the object has a slightly varying speed but
these are future extensions of the generator and not part of this paper.

3.5 Sampling

After generating and linking the eye movements, they have to be interpolated to a
sampling rate. This is necessary to simulate different recording frequencies. Here
it is important to mention that not all modern eye trackers record at a constant
frequency. On the one hand, image acquisition rates can vary depending on
illumination changes that affect the aperture time of the camera and timestamps
generated by the eye-tracker can vary in accuracy. On the other hand, image
processing time, e.g. for eye and pupil detection, are not necessarily constant and
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might change depending on how easy the pupil can be identified. For example,
detection of the pupil is usually more time-consuming than keeping track of
a previously detected pupil. Some systems, especially when running on mobile
devices, may run into a state where frames are dropped in order to maintain
real-time performance. We found systems where the timestamps are generated
by the CPU time (which may be inaccurate for fast sampling rates) and even
timestamps that are generated after image processing. Therefore, our simulator
is capable of simulating varying sampling rates. The parameters for this step are
the minimum and maximum sampling rate and also the consistency function.
The interpolation itself computes the mean of all values from the last sampling
position to the new sampling position.

(a) (b)

(c) (d)

Fig. 5. Generated velocity profile of an eye movement sequence (a). In (b), the data is
sampled at 60Hz without variations. (b) and (c) vary between 50 and 70 Hz with the
Normal and the Uniform distribution.

In Figure 5(a) a generated velocity profile is shown. The initial sampling fre-
quency was set to 1000 Hz but any other sampling rate is possible. For (b), a
constant sampling frequency of 60 Hz was used. In (c), the sampling frequency
varies between 50 and 70 Hz (with a mean of 60 Hz), wherein the Normal dis-
tribution was used as the random number generator. It differs significantly from
the constant sampling rate in (a) and also has a different length. For (d), the
sampling frequency also varied between 50 and 70 Hz with the difference that
the Uniform distribution was used as the random number generator. The length
is therefore similar to the constant sampling rate but it still differs especially for
the saccadic peeks.

3.6 Noise

For generating noise, two distributions are used: one for the location where to
place the noise in the data and the second for the velocity change to apply.
Therefore, the user has to specify the types for both distributions and the min-
imum and maximum velocity of noise. The amount of noise is specified as a
percentage of the samples that should be influenced.
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(a) (b) (c)

Fig. 6. Generated velocity profile of an eye movement sequence (a). In (b), noise is
added based on a Normal distribution and in (c) a Uniform distribution was used.

Figure 6 shows two types of Noise added to the velocity profile shown in (a).
The amount of noise added was 10%. For the Normally distributed noise in (b)
it can be seen that the peaks are mostly high. In comparison to it, the Uniform
distributed noise in (c) produces more peaks of different heights.

3.7 Mapping

Fig. 7. Scenarios of mapping eye movement data. First, a video sequence is converted
to saliency maps and afterward gaze data is mapped to them based on the frame rate.
The central part shows the mapping of generated or real data to a new stimulus image.
At the bottom real data is mapped to the same stimulus based on fixation locations
and saccade durations. The upper series of images is taken from EPIC kitchen [6].

The mapping function of the simulator is used to produce spatial data out
of the velocity profiles (Figure 7). This functionality can be used for simulated
and real data (fixations, saccades, smooth pursuits). Therefore, possible fixa-
tion targets have to be identified for which our simulator includes three saliency
maps ([12, 15, 14]). As locations, the local maxima of these saliency maps are
used. In addition, a small random shift of the local maxima is also included as
the possible target to simulated close consecutive fixations. Afterward, a type
of eye movement is selected and randomly generated by a predefined parameter
set including a duration range. For saccades and smooth pursuits, this duration
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is interpolated to the distance between the last and new fixation target taking
into account the speed of the individual sample points. In addition, a maximal
deviation range can be defined based on which the gaze points differ to the
straight line between both positions. For fixations, the scattering is generated
based on the deviation parameter (inaccuracy of the measurement simulation).
For smooth pursuits, both approaches are used to map the velocity profile be-
tween to locations. Since it is possible to generate a velocity profile out of real
data to the aforementioned approaches can also be used to map real fixations,
saccades, and smooth pursuits to new stimulus images. For the generation of new
data out of real data for the same stimulus image, we propose to randomly select
an eye movement type out of the real data and use the centers of all fixations as
possible targets. An example can be seen at the bottom of Figure 7.

For dynamic scenes, the generated data can be mapped based on the same
approach (local maxima of saliency maps). The only thing that differs is that
the local maxima are time-dependent. This means that for a saccade the two
locations have to be selected out of two different sets of local maxima which are
computed based on the timestamps of frames in the video (Figure 7 top).

4 Evaluation

(a) (b) (c)

Fig. 8. Squared velocity error for the simulation per data set.

Figure 8 shows the per sample point squared error as whisker plots of our sim-
ulator in comparison to the publicly available datasets [17, 27, 28, 26]. The error
was computed based on the squared difference between each sample. Therefore,
we simulated each fixation, saccade, and smooth pursuit ten times with the same
length as in the available data sets. For a fixation, the simulator got the informa-
tion of the mean velocity and the standard deviation to generate a profile. The
information of a saccade was the peak velocity and the position of this peak. For
smooth pursuits, the simulator got the information of the mean velocity and the
standard deviation.

As can be seen in Figure 8(b), the error for saccades was the largest. This is
due to the noisy signal which is due to the inter sample velocity computation.
Figure 9 shows some saccades which produced high squared errors. The red line
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(a) (b) (c)

Fig. 9. Saccades with a high squared error. Red is the simulation and blue is the real
data.

corresponds to the simulation result, whereas the blue line corresponds to the real
data. As can be seen, the course of the velocity profile is well simulated, which is
well in line with previous findings in [30]. The high errors originate mainly from
measurement inaccuracies in the real data. This also highlights the difficulty in
detecting eye movements in such a signal. For the data set from [26](I-BDT), the
error for saccades was lowest. This is due to the low sampling rate of the used
eye tracker (30 Hz), for which large fluctuations do not occur. This is similar to
smoothing or using multiple samples for the velocity computation. In contrast,
the smooth pursuits error was the largest in the I-BDT data set. This is because
in such low sampling rates the onset of a smooth pursuit is hardly represented.
Our simulator is capable of simulating this (sampling 3.5) but for the evaluation,
it was not used. We only used the generators to simulate the eye movements.

5 Conclusion

We proposed a novel eye movement simulator which is capable of creating map-
pings to static images and dynamic scenes based on saliency maps or real fixation
targets. Optionally the framework is also capable of remapping real eye tracking
data onto new stimuli or generate a new scan path based on real data for the same
stimuli. In addition, it can generate data for any static and dynamic sampling
rate. The currently included eye movement types are Fixations, Saccades and
Smooth Pursuits which can be parameterized. Variations and noise can be gen-
erated using different distributions for noise, sampling shift, eye tracker accuracy
etc. Further research will be the extension of the simulator to be also capable of
generating post saccadic, optokinetic and vestibular-ocular movement. In addi-
tion, smooth pursuits have to follow an object for which we want to include a
key point registration and detection to compute possible locations for this type
of eye movements in videos.
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26. Santini, T., Fuhl, W., Kübler, T., Kasneci, E.: Bayesian identification of fixations,
saccades, and smooth pursuits. In: Proceedings of the Symposium on Eye Tracking
Research and Applications. pp. 163–170. ACM (2016)

27. Startsev, M., Agtzidis, I., Dorr, M.: Smooth pursuit.
http://michaeldorr.de/smoothpursuit/ (2016)

28. Startsev, M., Agtzidis, I., Dorr, M.: Manual & automatic detection of smooth
pursuit in dynamic natural scenes. In: Proceedings of the European Conference of
Eye Movements (2017)

29. Tweed, D., Cadera, W., Vilis, T.: Computing three-dimensional eye position
quaternions and eye velocity from search coil signals. Vision research 30(1), 97–110
(1990)

30. Van Opstal, A., Van Gisbergen, J.: Skewness of saccadic velocity profiles: a unifying
parameter for normal and slow saccades. Vision research 27(5), 731–745 (1987)

31. Wood, E., Baltrusaitis, T., Zhang, X., Sugano, Y., Robinson, P., Bulling, A.: Ren-
dering of eyes for eye-shape registration and gaze estimation. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 3756–3764 (2015)

32. Yeo, S.H., Lesmana, M., Neog, D.R., Pai, D.K.: Eyecatch: simulating visuomotor
coordination for object interception. ACM Transactions on Graphics (TOG) 31(4),
42 (2012)


