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ABSTRACT
Pervasive eye-tracking applications such as gaze-based human com-
puter interaction and advanced driver assistance require real-time,
accurate, and robust pupil detection. However, automated pupil
detection has proved to be an intricate task in real-world scenarios
due to a large mixture of challenges – for instance, quickly changing
illumination and occlusions. In this work, we introduce the Pupil
Reconstructor with Subsequent Tracking (PuReST ), a novel method
for fast and robust pupil tracking. The proposed method was evalu-
ated on over 266,000 realistic and challenging images acquired with
three distinct head-mounted eye tracking devices, increasing pupil
detection rate by 5.44 and 29.92 percentage points while reducing
average run time by a factor of 2.74 and 1.1. w.r.t. state-of-the-art
1) pupil detectors and 2) vendor provided pupil trackers, respec-
tively. Overall, PuReST outperformed other methods in 81.82% of
use cases.
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1 INTRODUCTION
Pupil detection is the fundamental layer in the eye-tracking stack
as virtually all subsequent layers rely on the signal generated by
this layer – e.g., for calibration [Santini et al. 2017a], gaze estima-
tion [Morimoto and Mimica 2005], model construction [Świrski
and Dodgson 2013], and automatic identification of eye move-
ments [Santini et al. 2016]. As a result, errors in the pupil detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ETRA ’18, June 14–17, 2018, Warsaw, Poland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5706-7/18/06. . . $15.00
https://doi.org/10.1145/3204493.3204578

layer propagate to subsequent layers, systematically degrading
eye-tracking performance. Unfortunately, robust real-time pupil
detection in natural environments remains an elusive challenge.
An elusiveness that is evidenced by several reports of difficulties
and low pupil detection rates in natural environments such as driv-
ing [Chu et al. 2010; Kasneci 2013; Kübler et al. 2015; Schmidt et al.
2017; Trösterer et al. 2014; Wood et al. 2017], museum visit [Santini
et al. 2018a], shopping [Kasneci et al. 2014], walking [Foulsham et al.
2011; Sugano and Bulling 2015], in an operating room [Tien et al.
2015], and during human-robot interaction [Aronson et al. 2018].
These difficulties in pupil detection stems from multiple factors;
for instance, reflections (Fig. 1a), occlusions (Fig. 1b), complex illu-
minations (Fig. 1c), and physiological irregularities (Fig. 1d) [Fuhl
et al. 2016c; Hansen and Hammoud 2007; Hansen and Pece 2005].

(a) (b) (c) (d)

Figure 1: Examples of pupil detection challenges in real-
world scenarios: (a) reflections, (b) occlusions, (c) complex
illuminations, and (d) physiological irregularities.

With the recent pervasive increase in the adoption of video-
based head-mounted eye trackers, these challenges have become
progressively more prevalent and relevant. As a result, a plethora of
pupil detection methods have been proposed lately to try and alle-
viate low pupil detection rates – e.g., [Fuhl et al. 2015, 2017, 2016a,b;
Javadi et al. 2015; Othman et al. 2017; Santini et al. 2018b; Świrski
et al. 2012; Timm and Barth 2011; Vera-Olmos and Malpica 2017].
From these algorithms, PuRe [Santini et al. 2018b] stands out for
four particular reasons: PuRe 1) is currently the best performing al-
gorithmic approach, 2) detects the pupil outline (in contrast to pupil
center only), 3) provides ameaningful confidencemetric, and 4) runs
in real-time even for high frame rates (higher than 120Hz). In this
work, we build on top of PuRe, using it as a seeding detection step,
and propose a novel tracking method that exploits the spatiality and
shape of the previously estimated pupil in order to detect the pupil
in the subsequent frame, Throughout this work, we refer to this
novel combination as PuReST (Pupil Reconstructor and Subsequent
Tracking). The following sections describe and evaluate PuReST
against state-of-the-art methods, showing improvements in terms
of detection rate and run time. A reference open-source C++ imple-
mentation, which has also been integrated into EyeRecToo [Santini
et al. 2017b], is available at www.ti.uni-tuebingen.de/perception.

https://doi.org/10.1145/3204493.3204578
https://doi.org/10.1145/3204493.3204578
https://doi.org/10.1145/3204493.3204578
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2 PROPOSED METHOD
PuReST consists of three distinct parts orchestrated to produce a
fast and robust pupil tracking algorithm. When no reliable pupil
information from the previous frame is available, PuReST employs
PuRe [Santini et al. 2018b] to find a seed pupil estimate. Otherwise,
the search space is spatially constrained to a square region of in-
terest (ROI) centered at the previous pupil’s center. This ROI’s size
can be tuned to cover a precise range of eye movements if the
inter-frame period and eye position w.r.t. the camera are known1 –
e.g., by modeling the pupil movement range [Świrski and Dodgson
2013]. In this work, we take a more straightforward approach by us-
ing an adaptive ROI with lateral equal to twice the previous pupil’s
major axis. Within this ROI, two methods attempt to track the pre-
vious pupil. The first method’s (outline tracker) goal is to locate
the pupil during fixations, slow smooth pursuits / vestibulo-ocular
reflexes, and micro saccades by evaluating the alignment between
the previous pupil’s outline and the edges lying in a small band
around this outline. The second method’s (greedy tracker) goal is to
greedily combine good edge segments to reconstruct and detect the
pupil when it has moved from the previous location – e.g., during
saccades and smooth pursuits. These methods are described in detail
in the sequence.

2.1 Initial Pupil Detection
As previously mentioned, we employ PuRe [Santini et al. 2018b]
to perform an initial pupil detection. PuRe is an edge-based pupil
detection method that approaches the task by 1) selecting curved
edge segments that are likely to belong to the pupil outline, 2)
conditionally combining segments pair-wise to construct further
candidates, 3) fitting an ellipse to the candidates, and 4) producing
a confidence measure for each candidate based on the ellipse aspect
ratio, angular edge spread w.r.t. the ellipse, and ratio of outline
points whose inner-to-outer contrast supports the hypothesis of
the ellipse being a pupil. Naturally, the candidate with the highest
confidence is taken as pupil estimate. [Santini et al. 2018b] suggest
a cut-off threshold (τconf idence ) of 0.66 for this confidence metric,
which we have adopted. Therefore, whenever a pupil with enough
confidence is detected, the subsequent frame pupil detection is
performed with the tracking methods.

2.2 Shared Tracking Preamble
Since both the outline tracker and the greedy tracker operate on
edge images using information from histogram analysis, PuReST
starts with a shared preamble that generates all data common to
both methods. The first step of this preamble is to downscale the
ROI image if necessary. We have chosen a maximum working size
of 100 × 100 px empirically2. It is worth noticing that when down-
scaling happens, it has a denoising effect, and the results must be
upscaled to the original size, introducing an intrinsic error. After-
wards, edges are extracted using a Canny edge operator [Canny

1Note that one can use the ROI size to trade-off covered range and run time.
2This scale was chosen based on run time measurements from three mobile ultra
low-power CPUs (Intel® Core™ i7-4510U, i7-4600U, and i5-6300U). Such processors
power devices that might be effortlessly carried around but are powerful enough
to run a fully fledged eye tracking framework at high frame rates (≈ 120Hz) – e.g.,
EyeRecToo [Santini et al. 2017b] and Pupil Labs Capture [Kassner et al. 2014]), making
them excellent candidates for pervasive real-time eye tracking platforms.

1986]. The resulting edge image is then manipulated with morpho-
logical operations to thin and straighten edges as well as break
up orthogonal connections following the procedure described by
Fuhl et. al [Fuhl et al. 2016b]. Additionally, the histogram analysis
establishes two masks: dark and bright. The dark mask assumes
that the pupil is the darkest region in the ROI and tries to estimate
this region. The threshold for this mask is found iteratively by ac-
cumulating the histogram counts – starting at the darkest value –
until the accumulated pixel count is larger than the previous pupil
area. The resulting binary image is then morphologically closed
to lessen spurious regions that might result from small reflections
or eyelashes. The bright mask aims at identifying glints and small
reflections. A brightness threshold is first selected by accumulating
histogram counts – starting at the brightest value – until the accu-
mulated pixel count is larger than 5% of the ROI area. To cover the
outskirts of corneal reflections, the resulting threshold is further
decreased by a bias of five, and the resulting binary image is mor-
phologically dilated. In our implementation, the aforementioned
morphological operations employ an elliptical 7 × 7 kernel.

2.3 Outline Tracker
First, edges outside of the dark mask and edges inside the bright
mask are removed to lessen the influence from edges that belong
to reflections and near-pupil iris features. The resulting edge im-
age is then intersected with a mask of the previous pupil’s outline
(width=5 px), and an ellipse is fit3 to the remaining pixels. After-
wards, the alignment ratio between the intersected edges and the
previous pupil’s outline circumference is calculated, akin to the
metric proposed by [Prasad and Leung 2012]4. If the ratio is below
a minimum alignment threshold (τaliдn = 0.65), the outline tracker
gives up. Otherwise, the edge pixel intersection and alignment ra-
tio procedures are repeated using a new ellipse fit to the initially
intersected edges. The edges resulting from this second iteration
are then used to fit a final pupil outline candidate, and a confidence
measure is established following PuRe’s method.

Note that this procedure might be dangerous: In its ingenuity, it
consumes any edges that lie within the pupil outline enclosing band
assuming these edges to belong to the pupil outline. Hence, the rea-
soning for eliminating edges belonging to reflections. Nonetheless,
spurious edges from the eyelids and eyelashes might still remain
and cause the outline tracker to attach to these edges. To prevent
such behavior, the outline tracker keeps track of the initial pupil
seed throughout consecutive outline trackings and breaks the track-
ing if the major axis of the estimated pupil is larger than 1.05 times
the seed pupil’s major axis. Consequently, the outline tracker does
not track continuously dilating pupils by design.

2.4 Greedy Tracker
The greedy tracker starts by clustering the edge pixels into con-
nected segments using the topological structural analysis proposed
by Suzuki et. al [Suzuki et al. 1985]. To remove significantly plain
shapes, the segments are approximated with polylines using the
3Throughout this work, we employed the least-squares ellipse fitting method proposed
by Fitzgibbon and Fisher [Fitzgibbon and Fisher 1995]
4The alignment ratio measures the ratio between edges and ellipse circumference.
We saturate this metric at value one since it might result larger than that due to
discretization and the nature of the edge operator.
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Douglas-Pecker algorithm [Douglas and Peucker 1973] (ϵ = 1.5),
and approximations with three or less points are discarded. Af-
terwards, good segments are identified. In this context, we define
good candidates as those segments whose majority of pixels fall
within the dark mask. The following step gives the greedy tracker
its name: this tracker greedily generates all possible segment com-
binations without repetition. Therefore, for N initial segments, the
number of candidates evaluated by the greedy tracker is

∑N
i=1
(N
i

)
.

In practice, however, the number of combinations quickly becomes
unfeasible to process in a timely manner. For this reason, we sort
the candidates according to their diameter, which is evaluated as
the largest distance between two of the segment’s points, and use
only the largest five segments as seeds for the combination process.
Subsequently, the convex hull [Sklansky 1982] of each candidate is
calculated so that straight lines within curved segments are sim-
plified, and an ellipse is fit to the hull points. A confidence for
the candidate is calculated using PuRe’s method. In this process,
there are four candidate discarding mechanisms: 1) if the ellipse
fit is not possible, 2) if the ellipse major axis is smaller than PuRe’s
minimum pupil size (pdmin ), 3) if the ellipse aspect ratio is smaller
than PuRe’s ratio threshold (Rth ), and 4) if the pupil confidence is
smaller than the confidence cut-off threshold (τconf idence ). If the
greedy tracker finds a pupil, the new estimate is considered a new
pupil seed. Otherwise, PuReST falls back to detecting using PuRe.

3 EXPERIMENTAL EVALUATION
Before we commence, it is worth clarifying the distinction we make
between a pupil detector and a tracker. Although both aim at lo-
cating the pupil in an image, detectors use the information of a
single frame, whereas trackers use information from the current
and previous frames. PuReST is a pupil tracker, and, thus, we focus
on evaluating it against approaches from the same class. Neverthe-
less, PuRe was also included in this evaluation as a representative
from the detector class. PuRe was chosen since it is the base for
PuReST and also the current best performing real-time detector. For
a description of PuRe, please consult Section 2.1. For the tracker
class, we initially considered Starburst [Li et al. 2005], but its detec-
tor performance was found to be particularly low (< 15%, see [Fuhl
et al. 2015, 2016b,c; Kassner et al. 2014]). Thus, instead we settled
for two state-of-the-art methods with default parameters provided
as part of the Pupil (v1.1) software platform [Kassner et al. 2014],
which is officially supported by Pupil Labs [Pupil Labs 2017a], to
compare against. These are briefly described in the sequence.

The Pupil Labs 2D tracker uses the Pupil Labs detector to first
locate the pupil outline. This detector uses a center-surround to
estimate a coarse location for the pupil, which is used as ROI for
the remaining of the algorithm. Afterwards, the lowest and highest
spikes in this ROI’s intensity histogram are located. Dark areas
are defined using an offset from this lowest spike, and areas with
intensity above the highest threshold are considered spectral re-
flections. Edges are detected within the ROI, and those outside of
the dark areas or inside spectral reflections are discarded, resulting
in selected edges. These selected edges are extracted into contours
and split using a curvature continuity criteria. Candidate pupil
ellipses are found using ellipse fitting, and the final ellipse fit is
found through an augmented combinational search [Kassner et al.

2014]. The tracker stage is integrated after the selected edges step
and tracks the pupil outline by considering edges that support the
pupil outline based on their distance to the outline ellipse5.

The Pupil Labs 3D tracker builds on top of the Pupil Labs 2D,
augmenting it with 3D eye model information derived similarly
to the approach proposed by Swirski et. al [Świrski and Dodgson
2013]. Whenever the evidence from the Pupil Labs 2D tracker is
considered weak, constraints from competing eye models are used
to robustly fit the pupil [Pupil Labs 2017b].

For this evaluation, we employed five data sets acquired with
three distinct head-mounted eye tracking devices, namely, the
Świrski [Świrski et al. 2012], ExCuSe [Fuhl et al. 2015], ElSe [Fuhl
et al. 2016b], LPW [Tonsen et al. 2016], and PupilNet [Fuhl et al.
2016a] data sets. In total, these data sets contain 266,786 realistic
and challenging images, encompassing 99 distinct use cases – i.e.,
99 individual eye videos.

3.1 Pupil Detection Rate
A pupil is considered detected if the algorithm’s pupil center esti-
mate lies within a radius of n pixels from the ground-truth pupil
center. Similar to previous work, we use n = 5 to account for small
deviations in the ground-truth annotation process [Fuhl et al. 2015,
2016b; Santini et al. 2018b; Tonsen et al. 2016; Vera-Olmos and
Malpica 2017]. As can be seen on the left side of Fig. 2, PuReST
surpassed other algorithms for all pixel errors, improving the detec-
tion rate at the 5 px mark by 5.44 and 29.92 percentage points w.r.t.
PuRe and the Pupil Labs algorithms, respectively. The right side of
this figure indicates the generality of PuReST , showing that the pro-
posed method reaches detection rates above 87.62% for the majority
of the individual uses cases. Furthermore, Fig. 3 contrasts PuReST
with the rival (i.e., the best performer from the other algorithms)
in a use case granularity level. At this level, PuReST outperformed
other approaches in 81.82% of use cases, where as PuRe, Pupil Labs
3D, and Pupil Labs 2D were the best performers in 13.13%, 3.03%,
and 2.02%, respectively.
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Figure 2: On the left, the cumulative detection rate for the
aggregated 266,786 images from all data sets. On the right,
the distribution of the detection rate per use case as a Tukey
boxplot [Frigge et al. 1989].

5We could not find reviewed references to this tracking stage; please consult the strong
prior part in https://github.com/pupil-labs/pupil/blob/v1.1/pupil_src/shared_modules/
pupil_detectors/detect_2d.hpp#L189 for further details.

https://github.com/pupil-labs/pupil/blob/v1.1/pupil_src/shared_modules/pupil_detectors/detect_2d.hpp#L189
https://github.com/pupil-labs/pupil/blob/v1.1/pupil_src/shared_modules/pupil_detectors/detect_2d.hpp#L189
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Figure 3:PuReST w.r.t. to the rival; each linewithin a data set
represents a distinct use case. PuReST is the best algorithm
in 81.82% of cases, PuRe in 13.13%, Pupil Labs 3D in 3.03%, and
Pupil Labs 2D in 2.02%.

3.2 Run Time
A key requirement for real-time gaze-based applications, such as
human-computer interaction, is the algorithm run time. In par-
ticular, as faster cameras become more accessible, the challenge
of meeting the imposed processing deadline grows. For instance,
Pupil Labs recently released a new camera capable of 200 fps, which
corresponds to a slack of 5ms. This challenge is further increased
by the fact that system resources must be shared to process (and
sometimes record) video streams from multiple cameras – e.g., two
eye cameras and a field camera. We evaluated the algorithms using
a Intel® Core™ i5-4590 CPU @ 3.30GHz with 16GB RAM under
Windows 8.1, which is similar to systems employed by eye tracker
vendors. All algorithms are coded in C++. Fig. 4 shows the resulting

run time distribution for the evaluated algorithms. PuReST exhib-
ited the fastest average run time (1.89ms), reducing the average run
time by a factor of 2.74 w.r.t. PuRe (5.17ms). The Pupil Labs trackers
have a very competitive average run time (Pupil Labs 2D≈2.08ms
and Pupil Labs 3D≈2.47ms). Relative to these algorithms, PuReST ’s
run time reduction factor is limited to only ≈ 1.1. It is worth notic-
ing that PuRe already struggles and does not meet the required
slack, but PuReST is the fastest algorithm regardless of using PuRe,
indicating that the trackers are responsible for the majority of the
detections. In fact, the outline tracker , greedy tracker , and PuRe were
responsible for 72.55%, 22.47%, and 4.98% of the correctly detected
pupils, respectively. In a first glance, this distribution misleadingly
indicates that the outline tracker is the main PuReST driver. How-
ever, this distribution is skewed due to the LPW data set, which
was collected using a slowly moving object, resulting in an over-
whelming majority of slow smooth pursuits. When excluding this
data set, the distribution is more evenly spread with the outline
tracker , greedy tracker , and PuRe contributing 49.32%, 40.81%, and
9.87%, respectively. It is worth noticing the upper bound for run
time results for cases in which both trackers fail and PuRe must be
run; if no pupil is detect to be tracked, run time results similar to
PuRe.
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Figure 4: Run time distribution across all evaluation images
using a Tukey schematic boxplot; outliers are not shown for
the sake of visualization. PuReST has an average run time of
µ = 1.88ms and standard deviation σ = 2.19ms, whereas the
others resulted: PuRe (µ = 5.17ms,σ = 0.51ms), Pupil Labs 2D
(µ = 2.08ms,σ = 1.65ms), and Pupil Labs 3D (µ = 2.47ms,σ =
5.14ms).

4 CONCLUSION
In this work, we have proposed and evaluated PuReST , a novel algo-
rithm for fast and robust pupil tracking. The proposed method was
evaluated on over 266,000 realistic and challenging images acquired
with three distinct head-mounted eye tracking devices, increasing
pupil detection rate by 5.44 percentage points while reducing aver-
age run time by a factor of 2.74 when compared to state-of-the-art
pupil detectors. Relative to state-of-the-art pupil trackers provide
by a vendor, PuReST increases detection rate by 29.92 percentage
points while reducing average run time by a factor of 1.1. Overall,
PuReST outperformed other methods in 81.82% of use cases. While
this is our first iteration of PuReST , which uses prior knowledge
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only from a single past frame, this initial evaluation resulted in such
a significant improvement in term of both detection rate and run
time that we found it worth to share our findings and a reference
open-source implementation with the community already6. How-
ever, the tracking design space offers a wide range of possibilities,
and a significant amount of work remains for future work. In partic-
ular, we find the approach of the Pupil Labs 3D tracker to point in an
interesting direction by attempting to derive and employ a 3D eye
model to improve pupil detection. Furthermore, the applicability
and required modifications to more generic trackers should also be
investigated such as Kernelized Correlation Filters [Henriques et al.
2015; Li and Zhu 2014] and Tracking-Learning-Detection [Kalal
et al. 2012]. Finally, we hypothesize that the tracking can generate
a more stable gaze estimation signal given that prior information is
taken into account, which we plan to evaluate in the near future.
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