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Abstract. Exploring the effects of expertise on eye movements and vi-
sual search behavior of surgeons may help to improve and speed up the
training of novices. However, comparing scan patterns to each other is a
non-trivial task. This work employs several state-of-the-art, automated
scan pattern comparison methods to re-analyze eye-tracking data of neu-
rosurgeons that was captured during the observation of a tumor removal.
We evaluate whether these methods can reproduce the findings from the
original manual analysis and compare their performance regarding dif-
ferent eye-tracking metrics. Among the considered methods, SubsMatch
revealed significant differences between eye movement patterns of expert
surgeons and novices for all stimulus images.

1 Introduction

Eye-tracking technology promises to provide insights into the current attentional
focus and thereby into cognitive processes related to visual processing [8,18]. De-
spite a rich landscape of techniques that have been developed for the analysis of
eye-tracking data, the comparison of visual search scanpaths, i.e., the identifi-
cation of common or similar patterns among several visual scanpaths as well as
the quantification of differences between them, is a non-trivial task and there-
fore still challenging. Insights that are gained from such analysis could be of
enormous impact for example in therapy and rehabilitation of visually impaired
patients [9,10,13,15,20]. Beyond issues of rehabilitation, scanpath analysis has
found application in the assessment of expertise level in domain such as medicine
and arts [5,12,16,17,19].

To date, most of the scanpath studies are mainly limited to the comparison
of time-integrated features of eye movements, namely average fixation duration,
average saccade length, or comparison of heatmaps derived from viewing tasks.
However, due to the sequential nature of the scan pattern, such metrics are
mostly not suitable to capture essential pattern characteristics of the viewing
behavior. For example, Buswell [1] reported that during art viewing, fixation
durations increase with observation time, suggesting an initial exploration phase
of short fixations, followed by a series of longer fixations [1,2]. Similarly, an initial
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exploratory phase with long saccades may be followed by in-depth examination
with lots of short saccades. Such an effect, however, cannot be found once an in-
tegrating and averaging over the time dimension has been conducted. Exploring
such events requires the analysis of time series.

Although recent studies have employed automated sequence-based scanpath
metrics, most of these analysis methods are yet limited to the simple string edit
distance or matching of similar fixations. Furthermore, the output of most of
automated scanpath comparison methods is in the form of a pairwise similarity
matrix which is not intuitively comprehensible. Instead, further post-processing
steps and visualization techniques are required to gain relevant semantics from
such output.

This work focuses on the question whether state-of-the-art approaches can
reveal the level of expertise of surgeons based on automated analysis of differ-
ences in their eye movement features. First, we provide an overview of existing
methods on automated scanpath comparison and discuss then their strengths
and weaknesses based on a data set of micro-neurosurgeons from [5] during the
observation of a tumor removal surgery. We do not aim at the identification of
new gaze characteristics associated with the specific task, but focus on the appli-
cability and potential of automated scanpath comparison methods. In addition,
we highlight ways of statistical testing and visualization of the results.

2 Review on Scan Pattern Comparison

With increasing distance from the fovea our visual acuity drops rapidly. Thus, we
have to continuously perform eye movements in order to scan the environment
and sequentially project different sections of the scene onto the fovea. During
such a projection, i.e., fixation, the eye is kept stable on the object of interest.
Rapid eye movements, i.e., saccades, enable an attention shift towards the next
object or area of interest. The resulting spatio-temporal sequence of such eye
movements is called a scanpath. The key to comparing scanpaths is to find an
adequate computational representation of the data. Usually, the conversion to
the model space is associated with massive simplification of the scan pattern.
Scan patterns can be reduced to fixations and saccades and simplified further to
so-called regions of interest (ROIs), discarding relevant information, such as the
fixation duration or the temporal sequence of fixations. An overview on scanpath
comparison algorithm is given in Table 1.

Fixation heatmaps, i.e., time integrated visualizations of the spatial gaze
behavior, are used to compare scanpaths where areas that are often hit by the
gaze gradually become hot in color. Although easy to comprehend, the construc-
tion and interpretation of heatmaps for dynamic scenarios is quite challenging.
Heatmaps can be compared against each other statistically, however correcting
for multiple testing for every pixel has to be considered [2].

String-based representations encode the location information of a se-
quence of fixations as a sequence of letters. This way, scanpath comparison can
be reduced to the problem of string-alignment (e.g. ScanMatch [3]). Sequential
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as well as spatial information is conserved. A similar approach is taken by the
algorithm SubsMatch [11]. By determining transition probabilities for sequences
of transitions instead of just for single transitions, SubsMatch can be applied to
the comparison of complex search patterns.

Vector-based representation of scanpaths contain both information on
the fixations as well as on the saccade characteristics. MultiMatch [4] and Func-
Sim [6] are two methods in which pairs of vectors with a low distance to each
other are matched together. In vector-based methods, usually several measures
are computed, e.g., vector difference, saccade length difference or Euclidean dis-
tance between fixations. The vector representation is mathematically elegant
and fast.

Probabilistic methods for scan pattern comparison can cope with the
problem of high individual variability between repetitions of the same task and
noise by learning the extend of individual noise and distinguishing effects that
exceed this noise range, e.g., Hidden-Markov-Models (HMM).

Other methods for scanpath comparison are iComp [7] and Eyenalysis [14].
iComp automatically determines ROIs by mean-shift clustering of fixations. Eye-
nalysis [14] works on an unordered set of fixations of arbitrary dimensionality
and performs a mapping of fixations with minimal distance towards each other.

Table 1: Overview of state-of-the-art methods for scan pattern comparison.

Metric Simplification
Temporal order
perserved

Repre-
sentation

Major
characteristics

iMap Simplified No Heatmap Position, Duration
MultiMatch Simplified Yes Vector Shape, Position, Duration
ScanMatch Grid Yes String Sequence, Position
FuncSim - Weak Vector sets Shape, Position, Duration
iComp AOI No String Sequence, Position
SubsMatch Binning Weak String / Prob. Repeats, Position
HMM Clustering Weak Probabilistic Transition, Position
Eyenalysis - No Vector Position

Scanpath similarity metrics as computed by the above algorithms represent
a similarity score between two scanpaths. However, experimental designs usually
involve the comparison of more than two scanpaths. Therefore, we need to han-
dle a matrix of pairwise scanpath similarity scores such as the example depicted
in Figure 3a. For n scanpaths this would result in a symmetric n × n matrix.
Since the distances d(a, b) and d(b, c) do not necessarily predict d(a, c), we need
to operate in a multidimensional space that is non-trivial to interpret. A simplifi-
cation method is multidimensional scaling, where the high dimensional distance
matrix is compressed into fewer dimensions. This process is however associated
with an error that is subject to minimization. Scan pattern similarities can be
reduced to one point in 2D or 3D space. Scan patterns with small distances
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between each other will be drawn closely together, while scanpaths with large
distances are come to lie further apart (Figure 3b).

3 Methods

Our analysis is based on data from a study presented in [5]. Aim of that work was
to study whether expert and novice micro-neurosurgeons differ in gaze behavior
while viewing images of a surgery. The data acquisition is described in detail
in [5], here the above authors thankfully provided us more participants data
compared to their study. Seven expert surgeons and seven novices looked at four
images of a tumor removal surgery (Figure 1) for 10 seconds. The subjects’ gaze
was recorded by means of a Tobii T120 eye tracker. Regions of interest were
annotated for the tumor cavity, the instruments, and for the bleeding areas.
The authors found differences in the viewing behavior regarding the amount of
gaze directed towards the instruments and towards the areas highlighted by a
fluorescence marker. Furthermore, they found longer fixation durations in the
expert group as well as shorter saccades. The overall viewing behavior of experts
was characterized as more compact, especially for the stimuli images 3 and 4
where a fluorescence marker was applied.

(1) (2) (3) (4)

Fig. 1: The sequence of stimuli employed in the study with the areas
annotated [5]. The stimulus image number matches the descriptions in
the text. Full scale versions at https://docs.google.com/presentation/d/

1yHAGXdSDgjUkyKXs1_jAqM780ReLFQ_Kc-kyR_QlFRY

We calculated the scanpath similarities for the above data (14 subjects and
4 different stimuli) using ScanMatch [3], SubsMatch[11], MultiMatch [4], Func-
Sim [6], iComp [7], Eyenalysis [14], and a HMM. Each comparison resulted in a
similarity matrix of dimensions 14 × 14 × 4. To achieve the best possible result
for each algorithm, the parameter choice was optimized using a grid-search ap-
proach. It should be noted here that the parameter optimization step may have
a significant influence on the performance of the algorithms, i.e., algorithms with
many parameters may return better results due to our optimization criteria of
group separability. However, they showed to be surprisingly robust to parameter
choices. For algorithms that provide multiple distance output dimensions, all
dimensions are treated as a separate, independent distance measure.

https://docs.google.com/presentation/d/1yHAGXdSDgjUkyKXs1_jAqM780ReLFQ_Kc-kyR_QlFRY
https://docs.google.com/presentation/d/1yHAGXdSDgjUkyKXs1_jAqM780ReLFQ_Kc-kyR_QlFRY
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For statistical testing the distances within the expert surgeon and within
the novice groups were compared to the distances between the classes. The two
distributions were tested against each other by the Kolmogorov-Smirnov test.
The resulting p-values were corrected for multiple testing by the Benjamini-
Hochberg false discovery rate procedure (14 techniques × 4 stimuli). A significant
result (with alpha-level 0.05) would therefore mean that distances within groups
and distances between groups do not follow the same distribution.

4 Results

Figure 2 shows the statistical evaluation of scan pattern distances, where sig-
nificant results (p < 0.05) regarding distances within and between the surgeon
groups are shown in black. For the stimulus images 3 and 4 (fluorescence marker
has been applied), significant distances between the expertise groups are found
by 7 of the evaluated algorithms. While ScanMatch and FuncSim (Direction) de-
tected differences for the stimulus images 3 and 4, SubsMatch revealed scanpath
differences between experts and novices for all four stimulus images. Algorithms
working mainly on fixation location information (ScanMatch, SubsMatch) and
respecting the temporal order of fixations (ScanMatch, FuncSim, SubsMatch)
are performing well. For the presented images the local information also corre-
sponds to tool locations. Results will probably change in favor of other methods
(such as FuncSim direction) once a video or real operation procedure would be
used as stimulus.

Fig. 2: Result of automated scan pattern comparisons on four stimulus im-
ages. Reported are the false discovery rate corrected p-values of a Kolmogorov-
Smirnov test applied to the distances within and between expertise groups.

To visualize the results, we chose the similarity matrix produced by the Sub-
sMatch algorithm for stimulus image 4 as an example. However, any of the other
algorithms with significant results should produce similar results, although the
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group separability may vary. Figure 3b was created by a multidimensional scal-
ing of the distance matrix of Figure 3a: three-dimensional positions are assigned
to each scanpath in a way that the distance to all other scanpaths is as similar
to the distances of the matrix as possible. The result in Figure 3b suggest that
there is a group of three novices showing very similar gaze behavior, while ex-
perts spread wide around them. This indicates a strong focus on certain image
regions for the novice group and a more heterogeneous viewing behavior for the
expert group. The novice group can probably be split into two subgroups - one
with very homogeneous gaze behavior and one more similar to the experts gaze
behavior. Figure 3c reveals that experts repeatedly focus on certain image re-
gions with the first few fixations, then they begin a broader exploration phase.
Novices show an overall more repetitive viewing behavior.

A separation of the expertise groups could be achieved by examining the
distance to the cluster center (the mean of all the scanpath positions). This in-
dicates that the level of expertise is a major causes of systematic variance within
the eye-tracking data and that, consequently, differences in viewing behavior be-
tween experts and novices do exist.

(a) (b) (c)

Fig. 3: (a) Distance matrix of the pairwise scan pattern comparisons with Sub-
sMatch for stimulus image 4. (b) Scatterplot of the multidimensional scaling
of the scanpath distance matrix. Novices show an overall smaller distance to-
wards each other, resulting in a denser MDS plot while expert scanpaths exhibit
larger distances. (c) Repeated patterns as found by SubsMatch. They reveal a
more repetitive viewing behavior for the novices. Experts focus their repetitive
scanning to the first few fixations, then transition to broader exploration.

In summary, most of the evaluated algorithms found significant differences in
viewing behavior between expert surgeons and novices for the stimulus images
3 and 4, where a fluorescence marker was applied. Among the state-of-the-art
algorithms SubsMatch revealed scanpath differences for all four images.

The above findings from the automated analysis correspond to findings from
a previous study by Eivazi et al. [5], where the viewing behavior between the
surgeon groups was analyzed manually based on aggregated features. Eivazi et
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al. [5] found a significant effect of expertise on the number of fixations performed.
Furthermore, the authors reported that the average fixation duration was found
to be significantly longer (for all stimuli) and average saccade length larger (for
stimuli 3 and 4) for the expert group. Neither MultiMatch nor FuncSim were able
to show this effect consistently, Figure 2. This is probably due to the fact that the
above algorithms respect the temporal order instead of averaging for the viewing
time. In the light of the automated scanpath analysis we can now conclude that
longer saccade lengths probably resulted in the more heterogeneous scanpaths
for the expert group. Most algorithms performed better on stimulus images 3
and 4, for which Eivazi et al. were also able to find more significant effects than
for the other images. Novice gaze was probably captured by image saliency at
the fluorescent image parts stronger than expert gaze.

It should be noted that significant differences derived by this analysis do not
necessarily imply that groups are clearly separable. Although higher distances
between than within groups indicate this fact, the extend of this effect is not
analyzed thoroughly so far. Provided enough data, an effect even for largely
overlapping but not entirely identical groups could be found. Therefore, the
visualization step is required in order to reveal the actual extend of the effect.

5 Conclusions

We analyzed and compared eye movements of expert and novice microneuro-
surgeons when viewing images of a tumor removal surgery by means of several
state-of-the-art algorithms for automated scanpath comparison. The automated
analysis revealed that there are significant differences between expert and novice
surgeons regarding their viewing behavior, confirming thus the assumption that
the level of expertise is manifested in the viewing behavior. As future work,
we will focus on methods that direct the surgeon’s gaze into areas of interest,
mimicking thus the viewing strategy of experts. When employed for training pur-
poses, such method may not only increase the learning rate of novice surgeons
but also contribute to an overall better surgery quality.
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