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Fig. 1. data streams which can be extracted from a human eye image and used for eyemovement classification.

We present a new dataset with annotated eye movements. The dataset consists of over 800,000 gaze points
recorded during a car ride in the real world and in the simulator. In total, the eye movements of 19 subjects
were annotated. In this dataset there are several data sources such as the eyelid closure, the pupil center, the
optical vector, and a vector into the pupil center starting from the center of the eye corners. These di"erent
data sources are analyzed and evaluated individually as well as in combination with respect to their goodness
of #t for eye movement classi#cation. These results will help developers of real-time systems and algorithms to
#nd the best data sources for their application. Also, new algorithms can be trained and evaluated on this data
set. The data and the Matlab code can be downloaded here https://atreus.informatik.uni-tuebingen.de/sea#le/d/
8e2ab8c3fdd444e1a135/?p=%2FA%20Multimodal%20Eye%20Movement%20Dataset%20and%20...&mode=list.
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1 INTRODUCTION

The eyes are an increasingly important source of information [10]. Current research in eye move-
ments is concerned with cognitive states [64], workload of people [65], attention assurance in
autonomous driving vehicles [54], and gaze forecasting [61]. In addition, classical research in
the eye domain, such as feature extraction [20, 23, 24, 34, 36, 43–46, 49, 50, 60], eye movement
classi#cation [1, 14, 16, 25, 37, 47, 59], and gaze point determination [21, 56], is far from complete.

The application #elds of an eye tracker are wide-ranging and include expertise determination [4],
human computer interaction [11], human robot interaction [3], improved remote assistance [71],
visualizations [33, 35, 55], facilitating the work of surgeons [2, 5, 7, 8, 43], and much more. Due
to this variety of possible applications, eye trackers must perform reliably under a wide range
of conditions, which creates a great many challenges in image processing [10] but also in eye
movement classi#cation [37]. Many Classical eye movement classi#cation algorithms use a variety
of thresholds which are applied to the data [1, 52]. More modern algorithms use a wide variety of
machine learning techniques [13, 28–31] to do this [15, 17, 37, 59, 77] but it is still very challenging.
The modern methods have the advantage that the algorithms can be adapted to di"erent eye
trackers through training and annotated data. The disadvantage this creates is the need for a large
amount of annotated data with a high quality. Some works [6, 26, 37, 48] have therefore dealt with
the generation and simulation of eye movements.
In this work, we present a new dataset that includes annotations for #xations, saccades, and

smooth pursuits. Due to the driving context it can also be used for scan path analysis [12, 18] and
saliency prediction [32, 51]. Currently, this is the world’s largest dataset along with new metrics
such as the optical vector, relative eye opening state, and a vector computed from the pupil center
and the center of the eye corners. Since this dataset is based on the image data of [21, 39], the
segmentations for the pupil as well as the sclera [19, 22, 39] are also given as well as the eyeball
parameters and the optical vector. Also, this work includes an evaluation of di"erent machine
learning algorithms to assess the goodness of individual features. The contribution of this work is
listed below as a bullet point list.

(1) The #rst contribution of this work is an eyeball annotated dataset which has already been
annotated with semantic segmentations, the eyeball, and the optical vector by previous work
[21, 39]. These data come from the car driving context and was recorded in a simulator as
well as during real driving.

(2) The presented dataset also contains more extracted features than previous datasets regarding
eye movements. As features we have the optical vector, the pupil center, a vector which has
its origin exactly between the eye corners, and the degree of aperture of the eyelid [40–42].
Also, the movements in the x,y and depth dimension are additionally provided.

(3) With this multitude of features, we perform an analysis that highlights the importance and
contribution of each feature. To the best of our knowledge, this is also the #rst work that
looks at these features and their combination. This allows algorithm developers to more
easily select the data they need.

(4) To our knowledge, the presented dataset is also the world’s largest dataset of annotated eye
movements. This includes #xations, saccades, smooth pursuits, and errors in the data. The
recordings come from long-term recordings in a driving simulator and from real-world car
driving.
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2 RELATED WORK

The two best known algorithms are IDT and IVT (Identi#cation by Dispersion Threshold, Identi#-
cation by Velocity Threshold) [69]. Here, di"erent thresholds are used to limit the dispersion of the
data points and the length of the segments. For IVT, only velocity is considered and a threshold is
used to distinguish between #axtion and saccade. For IVT there is also an approach which adap-
tively determines the threshold for velocity [9]. For #ltering and smoothing the signal, a Kalman
#lter has also been presented [58]. Since the Kalman #lter makes predictions, this smoothing can
be used online. Also IVT was extended by a threshold for the segment length [57]. An approach
which uses the χ

2-test for smoothing was published in [57]. An extension of the IDT algorithm
was presented using the F-tests scatter [74]. Here, the F-test decides the class thereby bypassing a
#xed threshold. Since the F-test is very susceptible to noise, covariance was used instead of the
F-test in [75]. However, the covariance approach has the disadvantage that three thresholds are
now needed. In [57], a minimal spanning tree was computed to group the data into clusters. These
clusters correspond to eye movement types. Since this algorithm requires all the data to compute,
it cannot be used online.
In the #eld of machine learning, the #rst approaches were used to compute the threshold via

statistics. The #rst approach used Hidden Markov Models (HMM) [57] and applied them to velocity.
The model itself has two states and distinguishes between #xations and saccades. The #rst extension
of this approach was presented in [72]. Here, automatic parameter determination was introduced.
More recent approaches deal with newer eye movement types such as smooth pursuits and post
saccadic movements (PSM). The #rst algorithm for PSM detection was presented in [67]. In the
following year an algorithmwhich considers both eyes was presented [73]. The latter two algorithms
use adaptive thresholding, the second assuming that both eyes perform the same movement. For
four eye movements, an approach using adaptive thresholds was described in [63]. This can only be
used o*ine, since it also includes some preprocessing steps. For high sampling rates, this algorithm
has been extended [62]. The novelty in this approach is that a coarse segmentation is created after
preprocessing. This segmentation is then further re#ned until the entire data is annotated.

Recent approaches to eye movement classi#cation use deep neural networks (DNN) or random
forrests (RF). The #rst approach from this #eld is published in [53]. This approach transforms
the data points in a #xed window into frequency space and then uses a DNN for classi#cation.
In [77], an approach using RF was presented. The algorithm was trained to work with di"erent
sampling rates. This was achieved by preprocessing the data using cubic spline interpolating and
thus mapping it to a #xed sampling rate. Fourteen statistical features were also computed, which are
used for classi#cation. A rule-based approach, which can be fed with di"erent data, was published
in [17]. It learns rules consisting of threshold values and segments the individual data streams.
Each segment combination is assigned a class. For the use of arbitrary machine learning algorithms
the feature extractor histogram of oriented velocieties (HOV) was presented [15]. Here, the HOVs
are computed on the data and can then be used with any machine learning method. GazeNet [76]
is another approach which uses deep neural networks together with LSTM (Long Short Term
Memory) cells. Semantic eye movement classi#cation in combination with fully convolutional
networks was presented in [37]. Here variational autoencoders were used to generate data too. In
[59] a new dataset as well as an algorithm based on RF was presented.

3 ANNOTATION PROCESS

For the annotation, we summarized and normalized the data from [21, 39]. In the #rst step, the
optical vectors was normalized to a magnitude of one. The pupil center was normalized to the
range of values of the image width and height, so that the new x and y coordinate multiplied by
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the resolution gives the coordinates in pixels. The center was also calculated from the corners of
the eyes and from this the vector to the center of the pupil was calculated. This vector was also
normalized to the image width and height, but with the di"erence that it can contain both negative
and positive values. To calculate the pupil center in pixels from this vector between the pupil and
the eye corner center, the vector must be multiplied by the resolution and added to the eye corner
center.

From all these values, the di"erence between two points was calculated as well as the di"erence
for each axis and stored in a matrix. Values in which the detection failed based on the work of
[39] were marked as errors. Also, all values using an error entry in the calculation were marked
as errors. Subsequently, #xations and saccades were annotated over physiologically determined
thresholds [52]. These segments were manually inspected and the ranges were adjusted. In this step,
#xations were also reclassi#ed to Smooth Purisuites. Finally, the approach of [37] was used to make
the annotation as consistent as possible together with di"erent validation procedures [27, 38]. Here,
the approach was trained on 50% of a person’s data at a time and then applied to the remaining 50%.
This process was repeated several times. Subsequently, all areas in which there was a di"erence
between the annotation and the automated detection were inspected manually.

4 DATASET DESCRIPTION

• F1: Normalized euclidean pupil center distance between two frames.
• F2: Normalized euclidean eyelid center vector distance between two frames.
• F3: Normalized euclidean optical vector distance between two frames.
• F4: Eyelid opening in relation to eye width (eye corner distance).
• F5: Normalized pupil center distance in x direction.
• F6: Normalized pupil center distance in y direction.
• F7: Normalized eyelid center vector distance in x direction.
• F8: Normalized eyelid center vector distance in y direction.
• F9: Normalized optical vector distance in x direction.
• F10: Normalized optical vector distance in y direction.
• F11: Normalized optical vector distance in z direction.

The presented data set includes eleven features which are listed and described in the List 4. The
image data comes from [21, 39]. The normalization of the data is described in the section 3. As can
be seen in the List 4, these eleven features are four main features (F1-F4) and their di"erences into
di"erent dimensions (F5-F11). In total, our dataset has 866,050 annotated entries of which 154,242
are eye movement types segments and 10,580 are error segments. In total, 3.89% of the dataset is
+agged as error based on the entries. More detailed information on all data types can be found
in the Table 1. Our dataset includes car driving recordings of 19 people in total with the #rst 10
having driven in a simulator and the last 9 having performed real car rides. We also take this split
for training (driving simulator) and testing (real driving) in the 5 section, where the multimodal
data analysis is described. The eye tracker used was a Dikablis Pro with 25 frames per second. This
low sampling rate makes it even harder to distinguish the di"erent eye movement types.

Our data is provided in a Matlab data container (Mat #le). Here the division into subjects as well
as the division of the segments per eye movement type with amount of entries, start index, and
stop index is given. Under Features you can #nd all features with the corresponding label.
Table 1 shows all statistics of our data set. Due to the low sampling rate of the eye tracker, it

is also possible that there are several consecutive saccades with no #xation in between. This is
due to the fact that the #xation occurred between two images. However, these annotations occur
very rarely, which can also be seen in the statistics regarding saccades in Table 1, as the mean and
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Table 1. Statistical characteristics of our dataset for each event type separately.

Eye Movement Type Data Points Event Count Mean Length Deviation Length

Fixation 510.814 71.868 7,24 4,45
Saccade 112.519 76.183 1,45 1,05

Smooth Pursuit 208.962 6.191 32,94 16,75
Error or Blink 33.755 10.580 3,12 2,87

standard deviation are close to one for saccades. The longest segments are the smooth pursuits,
which have a mean length of 32.94 data points as well as a standard deviation of 16.75 data points.
Since these are subsequent movements, this is quite normal. The error segments in our dataset
are relatively small on average, but there are also longer segments in person 15, which will be
described later together with Figure 3. The #xations in our data set are up to one second long
whereas these long #xations occur very rarely. Looking at the mean and standard deviation for
#xations in Table 1, they are in the range of 290 milliseconds with a deviation of 180 milliseconds.

Fig. 2. Wisker plots for the feature values from F1, F2, and F3. Red crosses correspond to values that are

considered as ouliers. The blue boxes represents the 75% confidence interval and the red line is the median.

Figure 2 shows the distribution of the value ranges of the main features F1, F2, and F3. The red
crosses are considered outliers. The blue boxes are the 75% con#dence intervals and the red line in
the con#dence interval is the median. Comparing the central (saccades) with the left (#xations) and
right (smooth pursuit) plot, it is clear that the range of values regarding all features for saccades is
signi#cantly higher than the range of values for #xations and smooth pursuits. When looking at
the left and right plot, it is noticeable that the second feature (F2) has signi#cantly more outlier
than the features F1 and F3. Since this is the vector between the eye corner center and the pupil, it
can be assumed that the classi#cation results in section 5 are signi#cantly worse with this feature
alone in comparison to F1 or F3. Another peculiarity of feature F3 is that it has a much higher
range of values for saccades than features F1 and F2. F3 is the optical vector, which is also used for
shift invariant calibrations. If the left plot is compared with the right plot, it is noticeable that the
smooth pursuits have a minimally smaller range of values than the #xations. This is due to the fact
that the #xations have signi#cantly more transitions to and from saccades in relation to the data
points, since smooth pursuits are generally much longer than #xations (See Table 1).

Figure 3 shows a section of the data from exactly 2,500 samples for each individual. As described
in the legend at the very top, the color green stands for #xations, yellow for saccades, blue early
smooth pursuits, and red for errors or blinks in the data. What can be seen #rst is that the smooth
purisuites occur signi#cantly more often in the simulator data (P1-P10). Likewise, one can see, for
example, in person twelve (P12), that there can also be long saccades. As already mentioned in
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Fig. 3. Shows a small section of the data for each person. Here, the colors red represent an error, blue a

smooth pursuit, green a fixation, and yellow a saccade. The clipping corresponds to exactly 2.500 samples.

Larger red areas, especially for person 15, come from eye camera malfunctions or reflections that cover the

entire eye.

the statistics for table 1, this is due to successive saccades in which a very short #xation or blink
occurs between two frames. In person #fteen (P15), large error segments can be seen. On the one
hand, this is due to errors of the camera, which produced only distorted or black eye images in
certain time ranges. Another reason for the large error segments are very strong re+ections on
the person’s glasses. These re+ections cover the complete eye and thus make the detection of the
eyelids and the pupil impossible.

5 MULTIMODAL EYE MOVEMENT CLASSIFICATION

For the evaluation of di"erent data sources, we have chosen the two most popular machine learning
methods. This would be the random forrests (RF) on the one hand and the neural networks (NN)
on the other hand. For the RF we evaluated two optimization methods, this would be bagging [68]
where several RFs are trained and in the end a majority decision decides the class. The other
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Table 2. In the area of machine learning approaches, we have chosen decision trees, and a tiny neural

networks. For the decision trees, we evaluate the boosting and bagging training algorithms. The input data

are the normalized features specified on the le! side of the table. Here we evaluated di"erent window length

and used the classifiers in an online fashion meaning that only previouse data points can be used in the

window for classification of the current data point. F=Fixation,S=Saccade,P=Smooth Pursuit,E=Error

Window Bagged RF Boosted RF Neural Network
Unit: mean Intersection over Union (mIoU) * 100

Features F S P E F S P E F S P E

1

F1,F5,F6 66 88 12 97 0 87 22 97 75 81 0 98
F2,F7,F8 61 67 12 97 64 0 0 98 71 58 0 98

F3,F9,F10,F11 68 84 9 98 64 0 0 97 75 87 0 98
F1,F5,F6,F4 70 87 9 93 0 87 23 87 75 85 0 95
F2,F7,F8,F4 65 67 9 92 0 0 18 87 71 58 0 98

F3,F9,F10,F11,F4 70 85 8 93 0 0 18 87 75 87 0 98
F1,F5,F6,F2,F7,F8 74 96 7 98 0 87 22 97 76 89 0 97

F1,F5,F6,F3,F9,F10,F11 73 88 7 98 0 87 22 98 75 87 0 98
F2,F7,F8,F3,F9,F10,F11 74 94 6 98 64 0 0 97 75 89 0 98
F1,F5,F6,F2,F7,F8,F4 75 96 6 93 0 87 23 87 75 77 0 98

F1,F5,F6,F3,F9,F10,F11,F4 73 88 6 94 0 87 23 87 75 87 0 94
F2,F7,F8,F3,F9,F10,F11,F4 75 95 5 94 0 0 18 87 76 89 0 98

F1-F11 76 99 5 94 0 87 23 87 76 90 0 96

10

F1,F5,F6 79 89 40 98 0 87 22 97 76 74 16 95
F2,F7,F8 74 72 36 98 64 0 0 98 73 59 19 97

F3,F9,F10,F11 78 87 36 98 64 0 0 97 77 84 19 97
F1,F5,F6,F4 78 89 39 92 0 87 23 87 76 82 22 95
F2,F7,F8,F4 74 72 34 92 0 0 18 87 72 58 16 82

F3,F9,F10,F11,F4 78 87 36 93 0 0 18 87 78 87 26 97
F1,F5,F6,F2,F7,F8 80 96 37 98 0 87 22 97 77 79 20 97

F1,F5,F6,F3,F9,F10,F11 79 90 39 98 0 87 22 98 77 84 20 76
F2,F7,F8,F3,F9,F10,F11 80 94 37 98 64 0 0 97 78 87 22 80
F1,F5,F6,F2,F7,F8,F4 80 96 36 94 0 87 23 87 77 79 22 96

F1,F5,F6,F3,F9,F10,F11,F4 79 89 38 94 0 87 23 87 77 84 25 97
F2,F7,F8,F3,F9,F10,F11,F4 80 94 36 94 0 0 18 87 78 86 26 98

F1-F11 81 99 37 95 0 87 23 87 77 82 23 76

30

F1,F5,F6 83 88 44 98 0 87 22 97 77 80 24 83
F2,F7,F8 78 72 41 98 64 0 0 98 69 30 2 96

F3,F9,F10,F11 82 87 42 98 64 0 0 97 77 69 18 82
F1,F5,F6,F4 83 88 44 93 0 87 23 87 76 76 25 83
F2,F7,F8,F4 78 72 40 93 0 0 18 87 73 57 17 83

F3,F9,F10,F11,F4 82 87 43 95 0 0 18 87 79 86 32 88
F1,F5,F6,F2,F7,F8 84 96 44 98 0 87 22 97 77 74 23 82

F1,F5,F6,F3,F9,F10,F11 83 89 44 98 0 87 22 98 75 59 15 84
F2,F7,F8,F3,F9,F10,F11 84 94 43 98 64 0 0 97 79 88 28 84
F1,F5,F6,F2,F7,F8,F4 84 96 43 96 0 87 23 87 76 68 23 83

F1,F5,F6,F3,F9,F10,F11,F4 83 89 44 96 0 87 23 87 79 84 28 84
F2,F7,F8,F3,F9,F10,F11,F4 84 94 42 96 0 0 18 87 74 50 15 81

F1-F11 85 98 45 97 0 87 23 87 78 86 30 78

optimization method is RUS boosting [70], as it is particularly well suited for non-equilibrium
datasets. Here, multiple RFs are also trained but each RF further optimizes the result of the last
RF. For both approaches we always used 100 RFs and the default parameters of MatLab. This can
also be seen in the attached script (Supplementary Material). For the NN we used the optimization
method scaled conjugated gradients [66]. This allows very small meshes to be trained on the entire
training set. The NN always had only one hidden layer with 50 neurons. As with the RF, we used
the standard MatLab parameters for the NN. This can also be seen in the attached script in the
supplementary material.
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Table 3. For the decision trees, we evaluate the boosting and bagging training algorithms. The input data are

the normalized features specified on the le! side of the table. Here we evaluated a window length of 41 and

used the classifiers in an o!line fashion meaning that previouse as well as consecutive data points are used

in the window for classification of the current data point. F=Fixation,S=Saccade,P=Smooth Pursuit,E=Error

Bagged RF Boosted RF Neural Network
Unit: mean Intersection over Union (mIoU) * 100

Features F S P E F S P E F S P E

F1,F5,F6 92 89 79 98 0 87 22 97 78 73 27 80
F2,F7,F8 84 73 66 98 64 0 0 98 75 61 30 80

F3,F9,F10,F11 89 87 70 98 64 0 0 97 79 78 29 84
F1,F5,F6,F4 91 88 75 94 0 87 23 87 74 48 23 79
F2,F7,F8,F4 83 73 63 93 0 0 18 87 73 48 25 81

F3,F9,F10,F11,F4 89 87 70 95 0 0 18 86 79 74 33 82
F1,F5,F6,F2,F7,F8 91 95 72 98 0 87 22 97 72 27 10 96

F1,F5,F6,F3,F9,F10,F11 92 89 78 98 0 87 22 98 80 84 32 83
F2,F7,F8,F3,F9,F10,F11 91 93 72 98 64 0 0 97 79 74 30 83
F1,F5,F6,F2,F7,F8,F4 91 95 71 95 0 87 23 87 73 38 22 79

F1,F5,F6,F3,F9,F10,F11,F4 92 89 78 96 0 87 23 87 77 59 29 82
F2,F7,F8,F3,F9,F10,F11,F4 91 93 72 96 0 0 18 86 75 46 26 78

F1-F11 93 97 75 97 0 87 23 87 77 61 30 79

The training and test split was chosen so that person one to ten (P1-P10) who drove in the
simulator serve as training data and the real drives (P11-P19) as test data. This split was chosen
because the data di"er signi#cantly (see Figure 3) and it makes the classi#cation much more
di<cult. Also, we see this scenario as a realistic implementation for generating training data in an
industrial setting. Here, the training data would also be recorded in a simulator or on a test track
to obtain as much and clean data as possible. As a metric for all evaluations, we used the mean
intersection over union (mIoU) or Jaccard index separately for each eye movement as well as the
errors ( Predicted∩T ruth

Predicted∪T ruth
). The mIoU was used since it is very sensitive to mistakes. In image based

segmentations a score above 0,5 is usually seen as a good result.
Table 2 and Table 3 show the evaluations of di"erent machine learning methods with di"erent

feature combinations. In all cases, bagging in combination with RF is the best procedure. For the
o*ine case (Window with previous and future values in Table 3) the results of bagged RF are very
good. In the case of a window size of 1 (Table 2) it is very hard to detect the smooth pursuits for all
machine learning methods. However, this improves for larger windows. Looking at the individual
features (First three evaluations in Table 2 and 3) we can derive the quality ranking F1 best, F3
slightly worse, and F2 worst (F1=pupil center, F2=eye corner vector,F3=optical vector). As for the
eye opening degree (F4), it worsens the results in most cases. As for the feature combinations,
F1,F5,F6,F2,F7, and F8 seem to be the best in terms of smooth pursuits. If more emphasis is placed
on the saccades, F1,F5,F6,F2,F7, and F8 are the best. This can be seen clearly in Table2 and Table3.

6 CONCLUSION

In this work, we have presented a new dataset which includes several features and consists of two
di"erent recording scenarios. This would be on the one hand the simulator driving and on the
other hand the real driving. We have clearly shown that the sequences of eye movements di"er
signi#cantly (Figure 3) and also performed a feature analysis. The feature analysis can be used to
infer which features as well as which combinations can be used e"ectively. To our knowledge, the
presented dataset is currently the largest dataset worldwide.
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