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Abstract. Human gaze behavior is not the only important aspect about
eye tracking. The eyelids reveal additional important information; such
as fatigue as well as the pupil size holds indications of the workload.
The current state-of-the-art datasets focus on challenges in pupil center
detection, whereas other aspects, such as the lid closure and pupil size,
are neglected. Therefore, we propose a fully convolutional neural network
for pupil and eyelid segmentation as well as eyelid landmark and pupil
ellipsis regression. The network is jointly trained using the Log loss for
segmentation and L1 loss for landmark and ellipsis regression. The ap-
plication of the proposed network is the offline processing and creation
of datasets. Which can be used to train resource-saving and real-time
machine learning algorithms such as random forests. In addition, we will
provide the worlds largest eye images dataset with more than 500,000
images. DOWNLOAD
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1 Introduction

Psychology, medicine, marketing research, computer graphics, car industry, and
many other disciplines are interested in the information contained in human
eyes. For instance computer graphics need a robust gaze signal for foveated
rendering [50,31] to be useful for the consumer market. With the upcoming of
autonomous driving, the interest in information contained in the eye is also ris-
ing for the car industry [44,6]. They not only regard the gaze signal alone. The
main interest is in the estimation of the drivers capability to take over the car in
critical situations [44,6]. Therefore, other features such as the eyelids are impor-
tant to extract information about the cognitive state of a person [29,46]. This
information is also important for psychology and cognition science. Where the
workload of a person [40,48], movement processes which are predictable based on
the gaze [41], and also characteristic eye movements which identify diseases [5].
In medicine, eye tracking is not applied to disease classification [35,4]. Current
research also regards novice training and expertise level classification [28,14] as
well as surgical microscope steering [13]. Using the gaze signal as a control signal
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for human computer interaction is also used in virtual reality [12] and the eye is
used as an identification characteristic [47]. Andrew T. Duchowski summarized
most of the aforementioned application areas already in 2002 [11]. Further ad-
vancement in the field of eye tracking and its application areas is still limited by
the amount of information that can be extracted out of the eye.

Current research in video based eye tracking mainly concerns a robust pupil
signal [26,20,49]. The same is true for commercial systems [38] because robust
gaze signal is the most important first step for eye tracking to be applicable. It
needs to handle near infrared illuminated images containing heavy reflections,
and rapid illumination changes trough sunlight etc. Stand alone algorithms for
eyelid extraction and eyelid opening estimation were also proposed in [10,23].
This separation of pupil and eyelid detection limits research and progress in
application areas that use all the information contained in the eye. Machine
learning based image processing have made huge progress through the invention
of local stationary features as used in convolution neural networks (CNN) [42].
Together with the advances in hardware allowing GPUs as massive parallel pro-
gramming device, CNNs are already applicable in real time. Further advances
in CNN architectures, like residual [34] and inception modules [57], allow to
train deeper networks and improve the accuracy and robustness further. The
current state-of-the-art in computer vision tasks (detection, classification, seg-
mentation, image generation) is taken by the above mentioned architectures.
For semantic image segmentation, the invention of transposed convolutions [45]
lead to a breakthrough. They can train a fully convolution neural network [45]
in a way that the loss function also contains spatial information compared to
fully connected layers. Another approach is the encoder and decoder architec-
ture [3]. Here, the pooling information is shared between corresponding layers in
the encoder and the decoder for up-sampling. Other approaches for image seg-
mentation stem from generative adversarial networks (GAN) [30]. They have the
disadvantage that the training is difficult because the discriminator is likely to
overfit. While this issue was solved with the cycle loss function [65] and unpaired
training samples, they have not yet achieved the accuracy of fully convolutional
neural networks trained on training sample pairs.

Fig. 1. The proposed architecture of the joint regression and segmentation CNN.

In this work, we propose a combined convolutional neural netowrk archi-
tecture for eyelid landmark, pupil ellipse regression together with pupil area
and eyelid area segmentation. Our architecture is based on residual blocks [34],
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which allow us to train a deep network. We used the L1 loss and the log loss
function for regression and segmentation respectively. The idea behind a com-
bined approach is that multiple tasks performed by the same network improve
the accuracy [64]. Additionally, the results and the landmarks can be compared
against each other to detect invalid segmentations and correct them. Further-
more, we contribute a large dataset containing more than 500,000 images with
segmented pupil and eyelid areas. These images were annotated using the pro-
posed architecture, which will be described with the training procedure in the
following.

2 Related works

Recent developments in video based eye tracking concern the improvement of
the reliability of the pupil signal. Summarizations for head mounted and remote
eye tracking can be found in [26,59] and [20,49] respectively. One difference be-
tween head and remote eye tracking is the resolution of the eye images and the
necessity for remote eye tracking to detect the face of a person and estimate its
head pose. In head mounted eye tracking, the most successful approaches are
based on edge detection [56,21,25,54], which allows to extract the pupil ellipses.
This process is important for the validation [25,54] as well as the precision,
since the ellipsis allows sub pixel accuracy. While edge based approaches are
continuously improving, other attempts based on thresholding also have their
advantages if edge detection is not applicable, i.e. for blurred and out of focus
images. These attempts range from adaptive thresholding [32] to segment se-
lection and combination [36]. Multistage approaches based on CNNs where also
applied already [24,60,2]. They have the advantage to be applicable for a wider
variety of challenges with the drawback of higher computational demands. Other
approaches out of the realm of machine learning are based on random ferns [19]
and oriented edge boosting [18]. Currently, the main disadvantage of all machine
learning approaches so far is the lack in available pupil outline annotations for
segmentation.

In the field of eyelid segmentation, edge detection was one of the first ap-
plied methods [62]. After the eyelid edges where found, the structure was ap-
proximated using parabolas for the upper and lower lid. Another edge based
approach was proposed in [9]. Here, the iris was initially detected and after-
wards the eyelids based on their distortion of the circular structure of the iris.
The final approximation of the eyelids was done using splines. Similar to first
eyelid extraction approach, the largest edges were selected with the difference of
an anisotropic diffusion preprocessing [1]. Since blurred and out of focus images
affect edge detection, a thresholding approach was proposed in [55]. After the
separation of the image into regions based on a threshold, a likelihood map was
computed using texture patches [63]. This approach was further developed using
additional statistics for the computation of the likelyhood map [16]. VASIR [43]
uses a linear Hough transform for iris segmentation in the first step. In the sec-
ond step, a third order polynomial is fitted to edges above and below the iris for
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eyelid approximation. Machine learning approaches where also applied for eyelid
detection [53] as well as histograms of oriented gradients and support vector
machines [17]. Similar to BORE [18], an optimization was formulated to extract
the eyelids based on oriented edge values [23].

The field of computer vision also achieved considerable progress in image
segmentation. On the one hand it comes by the further development of the CNN
architecture [34,58] and on the other hand from the development of transposed
convolution filters [45]. Other approaches where also developed using the pooling
indices of an encoder for up sampling but with less success [3]. Both used the
soft max loss function to train their networks. The fully convolution approach
was further developed by applying a region loss function [33,8,51] to achieve a
higher accuracy at the segmentation borders. Unpaired training of generative
adversarial networks (GANs) [30] together with the cycle loss function [65] was
also applied on image segmentation, but the current state-of-the-art is based on
the fully convolution architecture together with conditional random fields for
refinement [7].

In this work, we use fully convolutional neural networks which have been
proven to be the best performers on image segmentation [7,27]. Our network is
jointly trained for segmentation and landmark regression to further improve the
accuracy [64]. This network was used to generate a huge dataset together with
manual correction of the found segmentations.

3 Method

Figure 1 shows the architecture of our CNN. Our network starts with a convo-
lution and pooling layer. Afterward, residual layers with downscaling (Residu-
alD(L)) are used for feature encoding. The parameter L is the amount of learned
filters. For further feature encoding, we used a residual block without scaling
(Residual(L)). Outgoing from the result of this block, we regress the landmarks
and the parameters of the pupil ellipse. In addition, we use the results of the cen-
tral residual block for segmentation. Therefore, we use transposed convolutions
in residual blocks (ResidualU(L)). The ”ConvT.” is a transposed convolution and
is computed by upscaling the input by the specified stride. The final transposed
convolution outputs the segmentation in two separated layers.

The design of the architecture has two purposes. First it allows the usage
of only the regression part of the CNN, which makes it real time capable on
a GPU (≈ 6ms), this runtime can be further reduce using binarized weights.
In addition, the segmentation using the transposed convolution layers allows to
increase the loss for training due to the pixel-wise comparison. It allows longer
training period and, therefore, more accurate results.

Since the pupil parameters are numerically in no relation to landmarks and
the additional segmentation, the loss function of the ellipse was reformulated
into landmark form. Therefore, one ellipse is interpreted as n points (eight in
our implementation). It allows to calculate the euclidean distance for each point,
which serves as a loss function and is equivalent to the eyelid landmarks. For
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this it is necessary that each landmark can be assigned to a different one, for
which we have used the orientation to the elliptical center. It means that each
landmark on the ellipse corresponds to an angle (0◦, 45◦, 90◦, 135◦, 180◦, ... in
our implementation).

Fig. 2. The pupil ellipse as landmark representation. Landmarks in the same color
belong to the same orientation.

Figure 2 shows the representation of the pupil ellipse as landmark. It means
that our FC13 block in Figure 1 contains an internal block with sixteen inputs
(elliptical landmarks) and five outputs (ellipse parameters). For the final ellipse
parameter estimation we used the geometrical ellipse fitting approach proposed
in [52].

Fig. 3. Augmented training samples where the first column is the input image and the
following rows are the image with added reflections, noise, adjusted contrast etc.

For training, we used a fixed learning rate of 10−8. The loss function for
the fully connected layers regressing the landmarks and the ellipse was an L1
norm and for the segmentation we used a logarithmic loss. We trained our net-
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work for ≈ 2000 epochs, whereby we augmented the data online so that our
network could not see the same image twice. For data augmentation, we used
image shifts of up to 40% in each direction to cover images where the entire
eye is not present. Scaling each axis between 0.8 and 1.2 was applied to cover
more camera perspectives than present in the training dataset together with a
rotation between -30 and 30 degrees. We also added random noise between 0
and 30% of the image. The contrast was changed between -30% and 30% of the
intensity values. For occlusions, we added random patches which could cover
up to 50% of the image. Reflections were added based on the approach from
[61], where the reflection is assumed to be a blurred additive of a second im-
age. Therefore, we used all the images from the PASCAL Visual Object Classes
Challenge 2007 [15] as reflection pool from which we selected randomly. Those
reflections were also shifted, rotated, and scaled with the same parameters as
the original image. Examples of augmented data without shifting and scaling are
shown in Figure 3. For the training dataset, we used the one published in [17],
which consists of 16,200 hand-labeled images, where the eyelids and the pupil
ellipsis was annotated. The recording system was a near-infrared remote camera
in a driving simulator setting with a resolution of 1280 × 752 pixels.

4 Data set

Fig. 4. Example result of our network with the segmentation, landmarks, and pupil
ellipses in the same order.

The image source for our dataset was the same as for the ElSe [25] and
ExCuSe [21] algorithm, which are the on-road recordings from [37]. The recording
device during this study was a head-mounted camera system (Dikablis Mobile
Eye Tracker by Ergoneers GmbH) with a frame rate of 25Hz and a resolution
of 384 × 288. Our dataset contains 20 subjects and 501,230 images. Figure 5
shows some exemplary images with drawn eyelids (red) as well as the pupils
ellipse (green). The contained challenges are noise, illumination changes, closed
eyes, reflections, eyelashes, makeup, pupil dialation, motion blur, contact lens,
and physiological characteristics (e.g. additional black dot on the iris). For the
annotation, we used the proposed network (Figure 1). Afterwards, we used the
Jaccard index (A1∩A2

A1∪A2 ) to evaluate the quality of the found annotations: 0.5 is
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Fig. 5. Examples from the proposed dataset.

common as a good value for segmentations. A1, in our case, is the area of the
segmentation and A2 is the area segmented by our landmarks and pupil ellipses.
For interpolation of the landmarks we used natural Bezier splines. Figure 4
shows a segmentation on the left, where white is the pupil area and grey the
eyelid area. The central image in Figure 4 shows the detected landmarks in red
and the pupil center in blue. The pupil ellipses is drawn in green on the right
of Figure 4. For finding false detections and false segmentations, we used the
averaged sum of the Jaccard index of the segmented eyelid area and the area
enclosed by the landmarks (red dots in Figure 4) as well as the pupil segment
(white) and the area of the pupil ellipses. If the average Jaccard index was below
0.8, we inspected and corrected the image. Afterwards, we analysed all frames
as video for mistakes. Overall, we had to correct ≈ 2% of the eyelid and
≈ 4% of the pupil annotations. The manual annotiation itself was done using a

modified version of EyeLad [22], which allows to annotate the pupil ellipses and
the eyelids with many supporting features like relative normalization, zooming,
and tracking.

Table 1. Average Jaccard index per algorithm on the dataset from [25].

Algorithm Eyelid Pupil

[39] 41,45 -
[23] 52.89 -

Proposed 87.34 81.00
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The runtime of our trained network is 30ms per image on an NVIDIA 1050Ti
for the entire architecture. Since our network is capable of regressing landmarks
and segment the image, the segmentation part can be omitted for a faster detec-
tion. It improves the runtime to 6ms per image, which allows a realtime usage
with 160Hz using a GPU. The average Jaccard index per subject cross validated
on the dataset proposed in [17] is 87.34 for the eyelid area and 81.00 for the pupil
area (Table 1). The ExCuSe [21], ElSe [25], and PupilNet [24], Swirski [56], and

Table 2. Average detection result over all subjects on the publicly available datasets
[21,25,24,56,59].

Algo. ElSe ExCuSe [56] PURE CBF PNET Prop.

[21,25,24] 0.67 0.54 0.30 0.72 0.91 0.76 0.92
[56] 0.81 0.86 0.77 0.78 - - 0.96
[59] 0.54 0.50 0.49 0.73 - - 0.92

Labeled Pupils in the Wild [59] datasets were recorded using a head mounted
eye tracker, we reach 92%, 96%, and 92% respectively for the pixel error up to
5 pixels which is the suggested pixel tolerance by the authors to compensate for
inaccurate annotations (Table 2).

5 Conclusion

We propose a dataset for eyelid and pupil detection wherein the pupil ellipse as
well as the enclosed eyelid area is segmented. The dataset contains more than
500,000 images from challenging real world recordings. In addition, we proposed
a combined architecture for landmark regression and segmentation with a novel
ellipse-to-landmark loss transformation. This network can also be used partially
with a runtime of 6ms on the GPU for real time usage of up to 160 Hz. In
addition, it can be used for dataset generation and data post processing. The
dataset itself will help training and evaluating pupil and landmark detection
algorithms, such as [39,19,18], which use less computational resources.
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25. Fuhl, W., Santini, T.C., Kübler, T., Kasneci, E.: Else: Ellipse selection for robust
pupil detection in real-world environments. In: Proceedings of the Ninth Biennial
ACM Symposium on Eye Tracking Research & Applications. pp. 123–130. ACM
(2016)

26. Fuhl, W., Tonsen, M., Bulling, A., Kasneci, E.: Pupil detection for head-mounted
eye tracking in the wild: an evaluation of the state of the art. Machine Vision and
Applications 27(8), 1275–1288 (2016)

27. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-
Rodriguez, J.: A review on deep learning techniques applied to semantic segmen-
tation. arXiv preprint arXiv:1704.06857 (2017)

28. Gegenfurtner, A., Lehtinen, E., Säljö, R.: Expertise differences in the compre-
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