Maximum and Leaky Maximum Propagation

1°* Wolfgang Fuhl
University Tiibingen
Human Computer Interaction
Tiibingen, Germany
wolfgang.fuhl @uni-tuebingen.de

Abstract—In this work, we present an alternative to conven-
tional residual connections, which is inspired by maxout nets.
This means that instead of the addition in residual connections,
our approach only propagates the maximum value or, in the
leaky formulation, propagates a percentage of both. In our eval-
uation, we show on different public data sets that the presented
approaches are comparable to the residual connections and have
other interesting properties, such as better generalization with
a constant batch normalization, faster learning, and also the
possibility to generalize without additional activation functions.
In addition, the proposed approaches work very well if ensembles
together with residual networks are formed. LinkToCodeBlind

Index Terms—Neural Network, Deep Neural Network, Resid-
ual Block, Maximum Propagation, Maximum Selection, Residual
Block Alternative, Ensemble Neural Networks

I. INTRODUCTION

The development of deep neural networks [1]-[3] has
undergone steady advancements over the past few decades.
These advancements, especially through the introduction of
convolutions [2], residual blocks [3], and memory functional-
ity [4], have led to deep neural networks being the de facto
standard approach for many areas of algorithm development
today. This has led to major advances in the areas of computer
vision [5], speech recognition [6], pattern recognition [7],
human computer interaction [8], and big data processing [9].
The application areas of deep neural networks in modern times
are Autonomous Driving [10], Gaze Estimation [11], Colli-
sion Detection [12], Industrial Algorithm Development [13],
Tumor Detection [14], Person Identification [15], Text Trans-
lation [16], Image Generation [17], Quality Enhancement of
Images, and many more.

The research areas of deep neural networks include acti-
vation functions [18], optimization methods [19], robustness
of neural networks [20], explainability and definitional do-
mains [21], unsupervised learning [22], reinforcement learn-
ing [23], application to graphs resp. dynamically structured
data [24], computing metrics [25], autonomous learning or
artificial intelligence [26], and many more. In this work, we
deal with an alternative to residual blocks that optimize the
function R(z,y) = f(z)+y. x and y are here two consecutive
outputs of convolution layers.

Our approach builds on maxout nets [27], which were in-
troduced as activation functions requiring k times the number
of neurons. For k = 2 these maxout nets optimize the function
M(z,y) = max(x,y) where x and y are the outputs of
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two neuron or convolution layers which are parallel to each
other (Receiving the same input). This concept can be directly
integrated as a replacement for the residual function, thus not
requiring any additional learnable parameter or neurons. This
means we use the function M (z,y) = max(z,y) whereby z
and y are consecutive convolutions. In addition, we formulate
the leaky max propagation (LMP) to combine the residual
function with the maxout function. This combination optimizes
the equation LM P(z,y) = max(z,y) * o + min(x,y) * 8
where z and y are again sequential convolutional layer outputs
and a and [ are weighting factors which are fixed before
training and satisfy the condition a4 5 = 1.
Difference to Maxout

o We do not need twice the amount of neurons

e We use the maximum as a combination or propagation
layer

+ We extended the formulation to leaky max propagation.

Contribution of this work

o We show that maximum propagation can be used effec-
tively as a replacement for residual connections as well
as an alternative to form ensambles.

o We extend the formulation of maximum propagation to
allow a fraction to pass (leaky maximum propagation).
¢ Our proposed approaches generalize well without batch
normalization and since batch normalization makes
DNNss less robust [28], [29], we see this as an advantage.

e Our proposed approaches can be trained without addi-
tional activation function.

II. METHOD

Figure 1 shows a visual representation of the structure of
residual blocks (a), maximum propagation blocks (b), and
leaky maximum propagation blocks (c). There is no differ-
ence between the blocks except for the final combination
of the block’s input and the output of the internal layers.
Formally, the residual blocks and the maximum propagation
blocks optimize different functions where the leaky maximum
propagation function is a generalization of both functions. For
the input of a block € R? and the function of the internal
blocks f(z), the function which is optimized in residual blocks
is given by:

Residual(z) = f(x) + = (1)
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Fig. 1.

Visual description of the architecture from residual blocks (a), maximum propagation blocks (b), and leaky maximum propagation blocks (c) for

ResNet-34 (ResNet-50 uses two depthwise convolution before the 3 X 3 convolution block in the center but the concept is identical). All three share the same
placement of the convolution (CONV), batch normalization (BN), and rectifier linear unit (ReLu) blocks. The only difference is the performed operation to

combine the result of the block computation and the input to the block.
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Fig. 2. Visual description of functions learned by consecutive maximum propagation blocks. On the left side is the input to the three blocks with the internal
functions f(x), g(x), and h(x). Based on the maximum selection each input has a different output function.

The function 1 tries to find an optimization f(x) for the
input z. In the case of blocks connected in series, this means
that each block produces an improvement for the previous
output, which is passed from block to block. This results in a
nested optimization that can be interpreted as an ensemble of
many small networks [30]. The biggest advantage of residual
blocks, however, is that they help circumvent the vanishing
gradient problem [30].
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In equation 2, the maximum propagation function is shown,
which is also used as the activation function in maxout
nets [27]. Since we use this as a combining function for nested
blocks, we do not need twice the amount of neurons as is the
case in maxout nets [27]. Compared to the residual blocks,
only the maximum value is forwarded. Hereby, the whole
network optimizes different long and small nets in parallel.
This means that whole blocks can be skipped internally. For
the backpropagation of the error, both inputs receive the same
error value, which is added to the input connection since it
receives the error of the internal function additionally.

Figure 2 shows a visual representation of the function
approximation of maximum propagation blocks. Each input
value (X,y,z,k) is assigned a different output function based on
the maximum selection. The functions f(x), g(x), and h(x) are
computed by the internal convolutions, batch normalization,
and activation functions in the intermediate layer as shown in
Figure 1. Through this, the network now no longer learns an
optimization to the previous layer in each layer, but different
deep networks, which are assembled based on the maximum
values. For the backpropagation, the error is given to the
maximum value only, which means, that the lesser value does
not receive an error and therefore, can be theoretically unused

in the network. This brings us to our general formulation
of the maximum propagation, which is the leaky maximum
propagation function in equation 3.
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The leaky maximum propagation function has two addi-
tional parameters v and 3, which have to be set in advance.
These two parameters, specify how much weight is given to
the maximum and the minimum value. For the parameters
« = 1.0 and 8 = 1.0 this would be the residual function. If
we use @ = 1.0 and 8 = 0.0 we would have the maximum
propagation function. For any other value, we receive a func-
tion, which optimizes both functions in parallel but weighted
(With the exception of a« = 0.0 and 5 = 0.0). This means that
the leaky maximum propagation function is a generalization
of the residual and maximum propagation function. For the
back propagation of the error we use the same values for
and [ to assign each input the weighted error. The idea behind
this formulation is to overcome a possible unused layer which
can happen in the maximum propagation function.

Figure 3 shows further possible combinations of the residual
and maximum propagation blocks as an alternative to the
leaky maximum propagation formulation. In Figure 3 a) the
results of the maximum propagation and the residual blocks
are concatenated. Hereby, each layer has only half the depth
(Or output channels) to allow a fair comparison with the same
number of parameters. This is the use of the inception [31]
technique which processes several small nets in parallel and
concatenates their results at the end. Figure 3 b) shows the
residual and maximum propagation blocks connected in series.
Here the residual block optimizes the previous result and the
maximum propagation block selects either the improvement or
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Fig. 3. Visual description of possible alternatives to combine the residual and maximum propagation layer. In a) the concatenation is shown and in b) the

alternating interconnection of the layers.

another internal optimization. These nestings can be continued
arbitrarily. However, this requires a large number of GPUs
and a grid search over many possibilities, which is beyond
the scope of this work. In this work, we consider only the
alternating use of residual and maximum propagation blocks
if ”Alternating Blocks” is specified in brackets after a model.

Figure 4 shows the use of the residual (a), maximum propa-
gation (b), and leaky maximum propagation (c) blocks without
activation function. For this, the two internal convolutions
must also be reduced to one, doubling the number of layers,
in order to arrive at the same set of learnable parameters and
allow for a fair comparison. The ReLu after each block was
also removed and since we used global average pooling [32]
and only one fully connected layer at the end, there is no
activation function in the whole network. This is a very
interesting property of maximum propagation, since maximum
selection is already an activation function, as shown earlier in
maxout nets [27]. For residual blocks (Figure 4 a)), this does
ofcourse not work and the network will either learn nothing
or end up in not a number. For maximum propagation this
work surprisingly and even better than the leaky maximum
propagation, which we will show in our results.

III. EVALUATION

In this section we show the performance of maximum
propagation and leaky maximum propagation in comparison
to residual blocks, which are marked as (Addition) in the
evaluations, on a variety of publicly available data sets. For
the leaky maximum propagation, we always used o = 0.9
and 8 = 0.1. The hardware to train all the models is an AMD
Ryzen 9 2950X with 3.50 GHz and 64 GB DDR4 Ram. The
used GPU is an NVIDIA 3090 RTX with 24 GB DDR6X Ram.
As deep learning framework we used DLIB [33] version 19.21
in which the provided code can be copy pasted an directly
executed. The NVIDIA driver version of the system is 461.09,
the operating system is Windows 10 64Bit, the CUDA version
is 11.2, and the cuDNN version used is 8.1.0. First we describe
all used data sets and the training and test splits we used in
this work.

SVHN [34] is a public data set with real world images
from house numbers. Similar to MNIST [35] it contains all
numbers from O to 9. The resolution of each image is 32 x 32

with all color channels (red, green, and blue). For training
the authors provide 73,257 images and for validation 26,032
images. There is also a third set without annotations which we
did not use in our evaluation.

FashionMNIST [36] is an image classification data set
inspired by MNIST [35]. The images are gray scale and have
a resolution of 28 x 28. The data set contains 60,000 images
for training and 10,000 images for validation.

CIFAR10 [37] is a publicly available data set with RGB
(red, green, and blue) images and 10 classes. The resolution of
the images is 32 x 32 and the authors provided 50,000 images
for training and 10,000 images for validation. The data set is
balanced which means, that for each class the same amount
of samples is provided.

CIFARI100 [37] is a similar data set to CIFAR10 but with
100 instead of 10 classes. The resolution of the images is
32 x 32 and each image has all three color channels (red,
green, and blue). The training set contains 500 images per
class which sums up to 50,000 images. The validation set has
100 images per class which is 10,000 in total. As CIFARIO0
this data set is balanced.

ImageNet ILSVRC2015 [38] is one of the largest publicly
available image classification data sets. It has one thousand
classes and more than one million images for training. The
images have different resolutions which contains an additional
challenge. For validation 50,000 images are provided.

VOC2012 [39] is a publicly available data set for semantic
segmentation. Semantic segmentation means that the object
has to be extracted from the image with pixel accuracy and
each pixel has to be classified into the object class. For training
1,464 images are provided with 3,507 segmented and classified
objects. The validation set consists of 1,449 images with 3,422
segmented objects. In addition to the images with segmented
objects, a third set is provided without annotations. In our
evaluation we did not use the third set.

S500kCloser [40], [41] is a publicly available data set with
866,069 images. It contains semantic segmentations for the
pupil and the iris as well as eyeball parameters and gaze
vectors. In our evaluation we only used the regression of the
eyeball parameters as well as the gaze vector. The resolution
of the images is 192 x 144 and the recordings are gray scale.
The images are split in two videos, one from simulator driving
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Fig. 4. Visual description of the architecture from residual blocks (a), maximum propagation blocks (b), and leaky maximum propagation blocks (c) without
any actiavation function for ResNet-34 blocks (ResNet-50 would requier to pack each convolution block between a max propagation connection). All three
share the same placement of the convolution (CONV) and batch normalization (BN) blocks. The only difference is the performed operation to combine the
result of the block computation and the input to the block. There is also no activation function after the block and due to the global average pooling [32] no
activation function in the entire model.

TABLE I
SHOWS THE CLASSIFICATION ACCURACY RESULTS FOR THE DATA SETS CIFAR10, CIFAR100, FASHIONMNIST, AND SVHN WITH DIFFERENT
ARCHITECTURES AND BATCH NORMALIZATION AS AVERAGE OVER 5 RUNS WITH STANDARD DEVIATION AFTER +. THE TEXT IN THE BRACKETS AFTER
THE ARCHITECTURE SPECIFIES THE PERFORMED COMBINATION OPERATION TO THE INPUT AND OUTPUT OF EACH BLOCK.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=0.1, Batch size=100, Training time=100 epochs, Learning
rate reduction after each 20 epochs by 0.1
Data augmentation: Shifting by up to 4 pixels in each direction and padding with zeros. Horizontal flipping for the CIFAR datasets only. Mean (Red=122,
Green=117, Blue=104) subtraction and division by 256.

Method CIFARI0 CIFARIO0  FashionMNIST SVHN
ResNet-34 (Additon) 9252 £ 025 73.16 £0.61 04.83L0.22 96.1 £0.23
ResNet-34 (Maximum) 93.36£0.08  73.13+£0.69 95.00+0.18 96.36 & 0.09
ResNet-34 (Leaky Max) 93.88 +0.09 73.664+0.2 95.054+0.14  96.19 & 0.19
ResNet-50 (Additon) 93.13+£0.19 7441 +041 9544+0.19  96.77 £0.19
ResNet-50 (Maximum) 94.02+021  744+041  95774+0.21 97.11+0.21
ResNet-50 (Leaky Max) 94.49 & 0.18 74.91+0.4 96.01+0.18  96.95+ 0.21
TABLE II

SHOWS THE CLASSIFICATION ACCURACY RESULTS FOR THE DATA SETS CIFAR10, CIFAR100, FASHIONMNIST, AND SVHN WITH DIFFERENT
ARCHITECTURES AND FIXED BATCH NORMALIZATION (MEAN=0,STD=1,SCALE=1,SHIFT=0) AS AVERAGE OVER 5 RUNS WITH STANDARD DEVIATION
AFTER *. THE TEXT IN THE BRACKETS AFTER THE ARCHITECTURE SPECIFIES THE PERFORMED COMBINATION OPERATION TO THE INPUT AND OUTPUT

OF EACH BLOCK.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=highest possible (0.01 or 0.001), Batch size=100, Training
time=100 epochs, Learning rate reduction after each 20 epochs by 0.1
Data augmentation: Shifting by up to 4 pixels in each direction and padding with zeros. Horizontal flipping for the CIFAR datasets only. Mean (Red=122,
Green=117, Blue=104) subtraction and division by 256.

Method CIFAR10 CIFAR100 FashionMNIST SVHN
ResNet-34 (Additon) 76.83 £ 0.72 35.63 £0.2 92.4£0.15 93.16 £ 0.05
ResNet-34 (Maximum) 88.76 =0.05 59.96 £0.23 93.45+0.09 95.92 1 0.05
ResNet-34 (Leaky Max) 80.26 £ 0.1 44.54 £+ 0.46 93.09 £0.15 94.45 £ 0.02

recordings (509,379 images) and one from real world driving
recordings (356,690 images). Since there is no predefined train
and test split we used the simulator recordings for training and
the real-world recordings for validation.

Table I shows the results with batch normalization for the
model ResNet-34 and ResNet-50. Averaged over five runs, the
maximum propagation and the leaky maximum propagation
seem to perform at least as well or even slightly better than
ordinary residual connections. Between the leaky maximum
propagation and the maximum propagation only the data set
SVHN seems to make a difference, whereas the maximum
propagation seems to work a bit better. Since we can’t see
much difference, although the maximum propagation networks
learn a different function (See Figure 2), with the standard
networks, we investigated why this is the case and found that
batch normalization does a significant amount of the work for
residual connections.

Table II shows the results with a constant batch nor-
malization so the parameters Mean=0, Std=1, Scale=1, and

Shift=0 are constant during the whole training process and
also during the validation. Here it becomes clear that the
maximum propagation generalizes best, which is especially
the case for CIFAR100 and CIFAR10. Another interesting
property of the constant batch normalization, is the reduction
of the variance of the results for the maximum propagation.
This clearly shows that the maximum propagation as well
as the leaky maximum propagation learn different functions
compared to residual connections. Of course, this also raises
the question of why not use batch normalization. Here we
would mention firstly the reduced robustness of networks
caused by batch normalization [28], [29]. Since our approaches
do not require batch normalization for generalization, we see
this as an advantage of our approaches. Another point in
favor of removing batch normalization is that it reduces the
complexity of the networks and thus simplifies validation in
future research.

Table III shows the results for different possible combina-
tions of residual connections and maximum propagation. By



TABLE III
SHOWS THE CLASSIFICATION ACCURACY RESULTS FOR THE DATA SETS CIFAR10, CIFAR100, FASHIONMNIST, AND SVHN WITH DIFFERENT

ARCHITECTURES AND BATCH NORMALIZATION AS AVERAGE OVER 5 RUNS WITH STANDARD DEVIATION AFTER +. THE TEXT IN THE BRACKETS AFTER

THE ARCHITECTURE SPECIFIES THE PERFORMED COMBINATION OPERATION TO THE INPUT AND OUTPUT OF EACH BLOCK. FOR THIS EVALUATION WE
FOCUSED ON DIFFERENT COMBINATION APPROACHES LIKE CONCATENATION AND THE USEAGE OF ALTERNATING BLOCKS IN THE SAME ARCHITECTURE.

ALTERNATING IN THIS CONTEXT MEANS, ONE MAXIMUM PROPAGATION BLOCK IS ALWAYS FOLLOWED BY ONE RESIDUAL BLOCK.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=0.1, Batch size=100, Training time=100 epochs, Learning
rate reduction after each 20 epochs by 0.1
Data augmentation: Shifting by up to 4 pixels in each direction and padding with zeros. Horizontal flipping for the CIFAR datasets only. Mean (Red=122,
Green=117, Blue=104) subtraction and division by 256.

Method CIFARI10 CIFAR100 FashionMNIST SVHN
ResNet-34 (Leaky Max) 93.88+0.09 73.66+0.2 95.05+0.14 96.19+0.19
ResNet-34 (Concatenation) 92.56 + 0.24 71.38 £0.54 91.52 £ 0.64 95.02 4 0.37
ResNet-34 (Alternating) 93.04 +0.35 72.39+0.4 95.06 + 0.36 96.06 + 0.1
ResNet-50 (Leaky Max) 94.49 £ 0.18 74.91+£0.4 96.01+0.18 96.95+0.21
ResNet-50 (Concatenation) 93.18 0.2 72.65 1+ 0.4 92.21 £ 0.21 95.63 - 0.18
ResNet-50 (Alternating) 93.68 + 0.21 73.67+0.4 95.68 + 0.21 96.75 + 0.21
TABLE IV

SHOWS THE CLASSIFICATION ACCURACY RESULTS FOR THE DATA SETS CIFAR10, CIFAR100, FASHIONMNIST, AND SVHN WITH ENSAMBLES OF SIX
RESNET-34 ARCHITECTURES. THE TEXT IN THE BRACKETS AFTER THE ARCHITECTURE SPECIFIES THE AMOUNT OF MODELS PER APPROCH IS IN THE
ENSAMBLE (A=RESIDUAL BLOCKS OR ADDITON, M=MAXIMUM PROPAGATION, LM=LEAKY MAXIMUM PROPAGATION).

Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=0.1, Batch size=100, Training time=100 epochs, Learning
rate reduction after each 20 epochs by 0.1
Data augmentation: Shifting by up to 4 pixels in each direction and padding with zeros. Horizontal flipping for the CIFAR datasets only. Mean (Red=122,
Green=117, Blue=104) subtraction and division by 256.

Method CIFAR10  CIFARI00  FashionMNIST SVHN
ResNet-34 (6*A,0%M,0*LM) 93.64% 75.42% 95.18% 96.14%
ResNet-34 (0*A,6*M,0*LM) 94.97% 75.59% 95.46% 96.89%
ResNet-34 (0*A,0%M,6*LM) 94.44% 74.94% 95.19% 96.67%
ResNet-34 (3*A,3*M,0*LM) 95.36% 78.02% 95.61% 96.68%
ResNet-34 (3*A,0%M,3*LM) 94.65% 77.15% 95.49% 96.49%
ResNet-34 (0*A,3*M,3*LM) 95.39% 77.83% 95.81% 97.13%
ResNet-34 (2*A,2*M,2*LM) 95.99% 78.55% 95.99% 97.96 %
TABLE V

SHOWS THE CLASSIFICATION ACCURACY RESULTS FOR THE DATA SETS CIFAR10, CIFAR100, FASHIONMNIST, AND SVHN WITH BATCH
NORMALIZATION AND NO ACTIVATION FUNCTION AS AVERAGE OVER 5 RUNS WITH STANDARD DEVIATION AFTER &. THE TEXT IN THE BRACKETS
AFTER THE ARCHITECTURE SPECIFIES THE PERFORMED COMBINATION OPERATION TO THE INPUT AND OUTPUT OF EACH BLOCK. THE USED BLOCKS

CAN BE SEEN IN FIGURE 4.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=0.1, Batch size=100, Training time=100 epochs, Learning
rate reduction after each 20 epochs by 0.1
Data augmentation: Shifting by up to 4 pixels in each direction and padding with zeros. Horizontal flipping for the CIFAR datasets only. Mean (Red=122,
Green=117, Blue=104) subtraction and division by 256.

Method CIFAR10 CIFAR100 FashionMNIST SVHN
ResNet-34 (Additon) nan nan nan nan
ResNet-34 (Maximum) 93.78 £ 0.13 71.08 +2.29 94.82 + 0.27 96.19 +0.11
ResNet-34 (Leaky Max) 87.69 +2.1 74.04 £ 0.25 95.154+0.17 96.39 1+ 0.16

”concatenation” we mean the concatenation of the addition and
the maximum as shown in Figure 3 a). For these nets we used
the inception model where each sub-block had only half the
depth to get the same number of parameters as all other nets.
By 7alternating” we refer to the alternating use of residual
blocks and maximum propagation as shown in Figure 3 b).
Based on the results in Table III, it is evident that the leaky
formulation is the most effective over all data sets.

Table IV shows the results for the formation of ensem-
bles. Here, of course, it is important that networks learn
different functions to benefit from the combination. This can
be seen in the central section of Table IV in which almost
all combinations are significantly better than combining the
same nets (First section in Table IV). Of course, there is an

exception here, which is the maximum propagation for the
data set SVHN and CIFARI10. In these two cases, combining
the same nets with the maximum propagation is slightly better
in comaprison to some other combinations. In the last section
in Table IV, all approaches are combined and also give the
best results overall.

Figure 5 shows the loss (Solid line) and the accuracy
(Dashed line) for the maximum propagation (Green) and
residual connections (Red) over five runs as average value. As
can be seen, the maximum propagation reduces the loss faster
and therefore requires less time to learn. Note that after each
20 epochs the learning rate was reduced by 0.1. An exception
here is the second segment (Epoch 20 to 40) for the CIFAR100
data set. This shows that the faster learning is not always the



TABLE VI
SHOWS THE MEAN ABSOLUTE DISTANCE FOR THE EYEBALL CENTER, EYEBALL RADIUS, AND OPTICAL VECTOR ON THE RESULTS FOR THE DATA SET
S00KCLOSER. THE TEXT IN THE BRACKETS AFTER THE ARCHITECTURE SPECIFIES THE PERFORMED COMBINATION OPERATION TO THE INPUT AND
OUTPUT OF EACH BLOCK.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight Decay=0.0005, Learning rate=0.001, Batch size=10, Training time=100 epochs, Learning
rate reduction after each 30 epochs by 0.1
Data augmentation: Random noise up to 20%. Random image shift of up to 20% of the image. Random image blurring with o up to 1.5. Random image
overlay with up to 30% of its intensity. Random color offset. Random color offset. Mean (Gray-scale=125) subtraction and division by 256.

Method Center Eyeball Radius  Optical Vector
ResNet-34 (Additon) 0.52 +2.20 0.03 £+ 0.02 0.20 +0.10
ResNet-34 (Maximum) 0.66 + 2.37 0.03 £0.02 0.19+0.11
ResNet-34 (Leaky Maximum) 0.52 £+ 2.10 0.04 + 0.02 0.24 +0.12
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Fig. 5. Visual progress of the loss and accuracy as average over 5 runs for CIFAR10, CIFAR100, FashionMNIST, and SVHN. The solid lines are the loss
values and the dashed lines are the accuracy. Red represents the values for the residual blocks and green the maximum propagation. The used architecture is

ResNet-34 and every 20 epochs the learning rate was reduced by 0.1.

case and as described earlier, the maximum propagation and
leaky maximum propagation can be seen as an alternative to
residual connections but not as a replacement which works
always better.

Table V shows the results without additional activation
function in or after a residual, maximum, or leaky maximum
connection. This is also visualized in Figure 4. For the residual
connection this does not work since it ends up in not a number
indicated by nan. For the maximum and leaky maximum prop-
agation it still works but based on the random initialization of
the network it can have a negative impact on the results as can
be seen for CIFARI10 for the leaky maximum propagation as
well as for CIFAR100 for the maximum propagation. In the
following, we show that the presented maximum propagation
and leaky maximum propagation also work for large data sets
like ImageNet, and that they can also be used for semantic
segmentation and regression.

TABLE VII
SHOWS THE CLASSIFICATION ACCURACY RESULTS FOR THE DATA SET
ILSVRC2015 OR IMAGENET. THE TEXT IN THE BRACKETS AFTER THE
ARCHITECTURE SPECIFIES THE PERFORMED COMBINATION OPERATION TO
THE INPUT AND OUTPUT OF EACH BLOCK.

Training parameters: Optimizer=SGD, Momentum=0.9, Weight
Decay=0.0001, Learning rate=0.1, Batch size=160, Training time=150
epochs, Learning rate reduction after each 50 epochs by 0.1
Data augmentation: Random cropping of 227 x 227 regions. Random
flipping in each direction. Random color offset. Mean (Red=122,
Green=117, Blue=104) subtraction and division by 256.

Method Top-1 Top-5

ResNet-34 (Additon) 75.33%  92.43%
ResNet-34 (Maximum) 7523%  92.31%
ResNet-34 (Leaky Maximum)  75.55%  92.90%

Table VII shows the Top-1 and Top-5 accuracy on Ima-

geNet. The maximum propagation has the lowest results. The
best results are obtained by the leaky maximum propagation.
Since the training and evaluation on ImageNet consume a lot
of time, we made only one training and evaluation run. There-
fore, we think, that the results show that all three approaches
are comparable since for each training and evaluation run the
results change slightly as it is the case for all of the other data
sets.

TABLE VIII
SHOWS THE PIXEL CLASSIFICATION ACCURACY OF THE SEMANTIC
SEGMENTATION RESULTS FOR THE DATA SET VOC2012. THE TEXT IN THE
BRACKETS AFTER THE ARCHITECTURE SPECIFIES THE PERFORMED
COMBINATION OPERATION TO THE INPUT AND OUTPUT OF EACH BLOCK.
Training parameters: Optimizer=SGD, Momentum=0.9, Weight
Decay=0.0005, Learning rate=0.1, Batch size=30, Training time=80
epochs, Learning rate reduction after each 40 epochs by 0.1
Data augmentation: Random cropping of 227 x 227 regions. Random
fipping in each direction. Random color offset. Mean (Red=122,
Green=117, Blue=104) subtraction and division by 256.

Method Pixel Accuracy
U-Net (Additon) 85.15%
U-Net (Maximum) 85.34%
U-Net (Leaky Maximum) 85.58%

Table VIII shows the pixel accuracy on VOC2012 for the
semantic segmentation task. As can be seen the maximum
propagation and leaky maximum propagation work slightly
better in comparison to the residual connection but since it is
evaluated in a single run this cannot be seen as an evident
result. We just want to show, that the proposed approaches
work for semantic segmentation too.

Table VI shows the regression results on the 500kCloser
data set. As can be seen the residual connections as well as
the maximum and leaky maximum propagation deliver more



or less the same results. Since the data set is huge we also
computed only a single run. Overall, Table VI shows, that
the proposed approaches work for regression with competitive
results to residual connections.

TABLE IX
SHOWS THE CLASSIFICATION ACCURACY RESULTS FOR THE DATA SET
CIFAR100 WITH DIFFERENT LARGE DNN MODELS. THE JOINTLY
TRAINED ENSAMBLE (JTE) CONSISTS OF THREE SUBNETWORKS WITH
ADDITION, MAXIMUM PROPAGATION, AND LEAKY MAXIMUM
PROPAGATION CONNECTIONS, WHICH ARE CONCATENATED. A DETAILED
DESCRIPTION IS GIVEN IN THE SUPPLEMENTARY MATERIAL. THE NUMBER
AFTER THE JOINTLY TRAINED ENSAMBLE STANDS FOR THE AMOUNT OF
JTES WE HAVE COMBINED IN A MAJOR VOTING ENSAMBLE. THE
DIFFERENCE BETWEEN JTE1 AND JTE2 IS ONLY THE DEPTH OF THE
CONVOLUTIONS LAYERS WHICH OF COURSE ALSO EFFECTS THE SIZE OF
THE CONCATENATED TENSOR BEFORE THE LAST FULLY CONNECTED
LAYER.

Training parameters: Optimizer=SGD, Momentum=0.9, Weight
Decay=0.0005, Learning rate=0.1, Batch size=50, Training time=150
epochs, Learning rate reduction after each 30 epochs by 0.1
Data augmentation: Shifting by up to 4 pixels in each direction and padding
with zeros. Horizontal flipping and mean (Red=122, Green=117, Blue=104)
subtraction as well as division by 256.

Method CIFARIO0  Params
ResNet-152 (Additon) 76.17% 60M
ResNet-152 (Maximum) 72.80% 60M
ResNet-152 (Leaky Max) 75.12% 60M
WideResNet-28-10 (Additon) 78.04% 36.5M
WideResNet-28-10 (Maximum) 74.57% 36.5M
WideResNet-28-10 (Leaky Max) 76.89% 36.5M
JTE1 x1 70.45% M
JTE1 x3 74.14% 3M
JTE1 x6 75.67% 6M
JTE1 x9 77.18% M
JTE2 x1 73.41% 3.5M
JTE2 x3 75.73% 10.5M
JTE2 x6 78.15% 21M
JTE2 x9 79.89% 31.5M

Table IX shows the results of the standard addition con-
nections compared to the maximum and leaky maximum
propagation. As can be clearly seen, the presented connec-
tions drastically reduce the accuracy of large models. This is
especially true for the maximum propagation. In comparison,
the ensambles of jointly trained ensambles achieve the same or
even better results as the large networks with less parameters.
This confirms the results in Table IV where the nets were
trained independently and the individual nets were also sig-
nificantly larger. A detailed architecture of the jointly trained
ensambles can be found in our supplementary material.

IV. LIMITATIONS

A limitation of the use of the maximum propagation or the
leaky maximum propagation is that the selection of the maxi-
mum requires an additional comparison in the implementation.
Through this the calculation should be minimally slower than
residual blocks. In the case of the leaky maximum propagation
the multiplications with o and S are added. If however no
activation functions are used, which permits the use of the
maximum propagation, then the maximum propagation as well
as the leaky maximum propagation should be minimally faster
or equally fast to compute. In addition, the maximum and

leaky maximum propagation, does not work as well as residual
blocks for large networks but it outperforms the sole use of
residual blocks in jointly trained ensambles with a similar
sturucture as vision transformers.

V. CONCLUSION

In this work, we present an alternative to conventional
residual connections which propagates the maximum value
or a combination of the maximum and minimum value. We
showed in several evaluations, that it is competitive to usually
used residual blocks and can be effectively combined in
neuronal network ensembles together with residual networks.
In addition to the competitive results, the maximum propa-
gation and leaky maximum propagation has some interesting
properties. One is the better generalization with a fixed batch
normalization (Or without) which should help in creating more
robust networks since it has been shown, that batch nor-
malization is vulnerable to adversarial attacks. Our proposed
approaches can also be trained without additional activation
function which could help in validation approaches since the
network complexity reduces. This is especially true if the batch
normalization is also removed. Another interesting property is
that for most of the data sets, the proposed approaches learn
faster in comparison to residual connections. Future research
should investigate the robustness of maximum propagation and
leaky maximum propagation blocks as well as the possibility
of validating such networks. A further alternative is the usage
of such blocks in architecture search.
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