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Abstract. Accurate point detection on image data is an important task
for many applications, such as in robot perception, scene understanding,
gaze point regression in eye tracking, head pose estimation, or object
outline estimation. In addition, it can be beneficial for various object
detection tasks where minimal bounding boxes are searched and the
method can be applied to each corner. We propose a novel self train-
ing method, Multiple Annotation Maturation (MAM) that enables fully
automatic labeling of large amounts of image data. Moreover, MAM pro-
duces detectors, which can be used online afterward. We evaluated our
algorithm on data from different detection tasks for eye, pupil center
(head mounted and remote), and eyelid outline point and compared the
performance to the state-of-the-art. The evaluation was done on over
300,000 images, and our method shows outstanding adaptability and ro-
bustness. In addition, we contribute a new dataset with more than 16,200
accurate manually-labeled images from the remote eyelid, pupil center,
and pupil outline detection. This dataset was recorded in a prototype car
interior equipped with all standard tools, posing various challenges to
object detection such as reflections, occlusion from steering wheel move-
ment, or large head movements. The data set and library are available
for download at http://ti.uni-tuebingen.de/Projekte.1801.0.html.

Keywords: Automatic annotation, detector creation, eyelids, eye de-
tection, training set clustering, pupil detection

1 Introduction

Modern applications from diverse fields rely on robust image-based object de-
tection. These fields include, though are not limited to, autonomous driving [8,
4] and scene understanding [36], driver monitoring [5, 28], eye tracking [10, 51],
cognitive sciences [54], psychology [29], medicine [16] and many more. To ap-
proach object detection, many leading techniques are based on Deep Neural
Networks, and in particular, on Convolutional Neural Networks [33, 50]. Re-
cent improvements of CNNs are multi-scale layers [23], deconvolution layers [62]

Link to data:
https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%
2FMAM&mode=list
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(transposed convolutions), and recurrent architectures [41, 44]. Nevertheless, the
main disadvantage of such networks is that they need an immense amount of an-
notated data to obtain a robust and general network. For instance, in the realm
of eye-tracking, gaze position estimation and eye movement detection are based
on robust detection of the pupil center from eye images [20]. More specifically,
modern eye trackers rely on image-based pupil center detection and head pose
estimation, where multiple landmarks have to be initially detected. A state-of-
the-art approach to cope with this problem is to synthesize image data. For
example, [48] employed rendered images for gaze position estimation in both
head-mounted and remote eye tracking. [32] and [45] used rendering to measure
the effect of eyeglasses on the gaze estimation. [59] applied a k- nearest neighbor
estimator on rendered images to compute the gaze signal of a person directly
from an image. This approach was further improved by [63] using rendered data
to train a CNN.

Also, rendering data itself is challenging, since the objective is for highly
realistic data that not only cover a certain variety of anatomical structures of
the eye and head, but also reflect realistic image capturing properties of the
real world. Consequently, models generally need to be trained on both synthetic
and real images. Since the annotation of real-world images is a tedious task, we
propose an algorithm supporting accurate image annotation: Coined as Multiple
Annotation Maturation (MAM). MAM is a self training algorithm based on a
grid of detectors. Unlabeled data is clustered based on the detection, iteration,
and recognition. To ensure a high detection accuracy for each point, our approach
uses a grid of detectors. The deformation of this grid is used to cope with object
deformation and occlusions. MAM enables labeling of a large amount of data
based only on a small fraction of annotated data and is also capable of reusing
already trained detectors under different environmental conditions. Additionally,
it delivers specialized object detectors, which can further be used for new data
annotations or online detection.

The remaining of this paper is organized as follows. After a review of related
work on transfer learning, the proposed approach is described. We show examples
of our new dataset as well as how it was annotated. The last sections are the
evaluation of the proposed approach on public datasets and its limitations.

2 Related Work

Our method belongs to the domain of transfer learning. Transfer learning itself
refers to the problem of adapting a classification model or detector to a new
problem, or enhancing its general performance on unknown data. This prob-
lem can be solved in an inductive, transductive, or unsupervised way. In the
inductive case, annotated data in the target domain is provided in addition to
labeled data from the source domain. The process is called self-thought learn-
ing or multi-task learning. In self-thought learning, unlabeled data is used to
improve the classification performance. For example, [42] proposed a two-step
architecture: Where in the first step, feature extraction is improved by analyzing
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the unlabeled data using sparse coding [38]. The obtained basis vectors are used
afterward to generate a new training set from the labeled data. Then, a machine
learning approach, such as a support vector machine (SVM), is trained on the
new training data. In multi-task learning, the goal is to improve the classification
based on the information gain from other tasks or classes. It has been shown ex-
perimentally in [2, 7, 52, 11] that if the tasks are related to each other, multi-task
learning outperforms individual task learning. In [2] for example, a Gaussian
Mixture Model on a general Bayesian statistics-based approach as developed by
[3, 1] was employed. [11] developed a nonlinear kernel function similar to SVMs,
which couples the multi-task parameters to a relation between two regularization
parameters and separated slack variables per task. In another work, [6] inspected
the problem of detecting pedestrians in different datasets, where the recording
system differed (DC [35] and NICTA [37]). The authors used a nearest neighbor
search to adapt the distribution between the training sets of both data sets to
construct a new training set.
In the transductive case of transfer learning, available labeled data in the source
domain is employed with the intention to adapt the model to a new (but related)
domain, i.e., domain adaption. In this case, the domain is same; however, the
problem is reduced to the sample selection bias. Meaning, finding the weighting
of training that trains a better-generalized classification, as proposed by [25].
Another approach is the covariance shift proposed by [46], which is the impor-
tance weighting of samples in a cross-validation scenario with the same goal of
producing a better-generalized classification. If the domain or distribution be-
tween the training set and the target set differs, it is usually known as domain
adaption. Numerous works have been proposed in this field of transfer learning.
For example, [24] proposed Large Scale Detection through Adaptation (LSDA),
which learns the difference between the classification and the detection task to
transform labeled classification data into detection data by finding a minimal
bounding box for the classification label. [43] adapts a recurrent convolutional
neuronal network detector (RCNN) trained on labeled data to unlabeled data.
Here, the first step is normalizing the data in the source and target domain by
calculating the first n principal components. Afterwards, a transformation ma-
trix aligning both domains is computed. The source data is then transformed
using this matrix; afterwards, the RCCN detector is trained on the transformed
data. For example, in [26], a Gaussian process regression was used to reclassify
uncertain detections of a Haar Cascade classifier [56]. The Gaussian process is
initialized based on certain detection values that were chosen threshold based. In
[12], domain adaption was used to improve image classification. Their proposed
pipeline starts with maximum mean discrepancy (same as in [34, 47, 39]) for a
dimensionality reduction and aims to minimize the distance of the means of the
source and target domain. Afterwards, a transformation based on Gaussian Mix-
ture Models is computed and applied to the source domain. This step aims to
adjust the marginal distribution. The last step is a class-conditional distribution
adaption as proposed in [13], which is based again on Gaussian Mixture Models.
The same procedure is used in [34], where a modified version of the maximum
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mean discrepancy is used for the marginal and conditional distribution adaption.
[47] learned a nonlinear transformation kernel as first proposed by [40], with the
difference being they used eigendecomposition to avoid the need for semidefinite
programming (SDP) solvers. In the realm of deformable part-based models, [61]
proposed to incrementally improve the target classifier, basing it on multiple
instance learning. Therefore, their model needs either some ground truth in the
target data or a previously trained detector. For a new image, training data is
updated based on the detections and retrain detectors on this data. This step is
repeated until there is no update to the training set.

The last (and the most challenging) category is unsupervised learning. The
most famous representer of this group is the Principal Component Analysis [58].
The main application of unsupervised learning is the feature extraction (from im-
ages or from audio data) [39] based on autoencoders. The signal itself is the target
label and the internal weights are learned as a sparse representation. This repre-
sentation serves as an easier, understandable structure of input data for machine
learning algorithms. Based on such features, more advanced approaches like one-
shot object classification, as proposed by [14] or one-shot gesture recognition by
[57] can be applied. [14] initialized a multi-dimensional Gaussian Mixture Model
on already learned object categories and retrained it on a small set of new object
classes using Variational Bayesian Expectation Maximization. [60] proposed new
feature extractor which is the extended motion history images. It includes gait
energy information (compensation for pixels with low or no motion) and the
inverse recording (recover the loss of initial frames).

Our approach for automatic video labeling belongs to the category of self-
training. It does not require prior knowledge of the object to detect, rather a
very small set of labeled examples. It can be done by either using a previously
trained detector, or by labeling some object positions (ten in the evaluation).

3 Method

(a) (b)

Fig. 1. Our approach, MAM, tries to extend its knowledge of the object. The orange
line represents the object to be detected in the video under different conditions such
as reflections or changing illumination (challenges). The x-axis represents the timeline
of the video, whereas gray dots represent the initially given labels. The green bar
represents the detected objects representing similar challenges. Blue is the detection
state after the second iteration.
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The general idea behind our algorithm is that an object occurs under similar
conditions in a video, but at different timestamps. With similar conditions, we
mean equal pose and illumination for example. Therefore, different conditions
cause varying challenges. As illustrated in Figure 1(a), the orange line represents
the same object under different conditions (y-axis) over time (x-axis). Using this
interpretation, we can consider the object in a video as a function (orange line).
Given some examples (gray dots in Figure 1), our algorithm tries to detect ob-
jects under similar conditions in the entire video (horizontal juxtaposed dots on
the orange line). The knowledge gain out of the first iteration is represented as
the green bars in Figure 1. In the second iteration, this knowledge is extended
(blue bars) by retraining a detector on the existing knowledge. This approach
alone leads to saturation, which is especially present if some challenges are over-
represented in the video. Even more, it can occur if the object does not follow a
continuous function, which also impedes tracking (orange line Figure 1(b)).

To cope with this problem, we propose to cluster the detections (knowledge
K) into age groups (A, Equation 3); where the age is determined by the amount
of re-detections. This clustering allows us to train a set of detectors for different
age groups. The detector, which is trained on the entire knowledge obtained
from the video (V ), is for validation of new detections over multiple iterations
(re-detection). The detectors trained on a younger subsets are used to extend
the knowledge. Then, the challenge becomes evaluating whether a newly trained
detector is reliable or not. Here, we use a threshold TH on recall and precision
(on the training set). If both are below TH, the algorithm is stopped or the
detector is excluded from the iteration (Equation 1).

STOP =

{
1 TP

TP+FP < TH

1 TP
TP+FN < TH

(1)

DAge
Iter,Feat = 1

2 ||w||
2
∑|A<Age|

i αi

(yi ∈ LA<Age(〈xi ∈ Feat(KA<Age), w〉+ b)− 1)
(2)

Equation 2 shows the simplified optimization of an SVM for the age subsets (used
in this work). w is the orthogonal vector to the hyperplane, α is the Lagrange
multipliers, and b is the shift. In this optimization, we seek to maximize α and
minimize b, w. With LA<Age, we address the subset of found labels L, which has
a lower age than Age. The same applies for KA<Age, where Feat() represents a
transformation of the input data. In our implementations, we only used the raw
and histogram equalized images. The detector DAge

Iter,Feat can be any machine
learning algorithm, e.g. CNN, random forest, neuronal net, etc.

A(i) =

{
A(i)+ = a ,K(i) ∈ DAge

Iter,Feat(V )

0 , else
(3)

Equation 3 specifies the aging function. If the detector DAge
Iter detects a previously

found object on an image, the age of this object is increased by a constant factor
a. In the following, we will describe the details of our algorithm and address our
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solutions for the challenge of detecting the position accurately without further
information about the object (avoid drifting).

Fig. 2. Workflow of the MAM algorithm. The gray boxes on top represent the input
and on the bottom, the output for each iteration. The algorithm starts by splitting its
knowledge into age groups and trains detectors for each of them. Afterwards, knowledge
and age are updated and a new iteration starts (orange arrow).

Figure 2 shows the workflow of the algorithm, where either a previously la-
beled set or a detector can serve as input. The input represents the initial knowl-
edge of the algorithm. In the first iteration, only one detector can be trained
(since only one age group exists). After n iterations, there can be theoretically n
age groups, though this does not happen in practice. Nonetheless, it is useful to
restrict the number of age groups for two reasons. First, it reduces the computa-
tional costs in the detection part (since each detector has to see the entire video).
Second, it packs together similar challenges, which would generate more stable
detectors. For all our implementations, we used three age groups. The first group
(G1) trains on the entire knowledge for validation (Equation 1) and correction.
In the second group (G2), all objects detected twice are selected. Then, in the
last group (G3), only objects detected once are selected. After detection, the age
is updated, where we assign each group a different a as specified in Equation 3.

For implementation, we used the histogram of oriented gradients (HOG) to-
gether with an SVM as proposed by [15]. More specifically, we used the DLIB
implementation from [31]. The HOG features rely on cells which make them
either inaccurate (on pixel level) or consume large amounts of memory (over-
lapping cells). In our implementation, we shifted the computed gradients below
the cell grid in x and y directions ranging from one to eight pixels (used cell
size cs). For each shift, we run a detection and collect the results. The idea is
that the average of all detections is accurate. For some of those detections, the
counterpart is missing (no detection on the opposite shift); therefore, we perform
outliers removal for two times the standard deviation. The shift procedure not
only improves the accuracy, but also increases the detection rate.

Another issue with accuracy is when it comes to deformable objects in ad-
dition to moving occlusions, changing lighting conditions, and distractors (Fig-
ure 3). Specifically, for pupil center detection tasks, the circular pupil deforms
to an ellipse as shown in Figure 3. Moreover, the pupil size changes and many
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Subset of challenges which arise in pupil center detection. Deformations, reflec-
tions, motion blur, nearly closed eyes, and contact lenses are shown. Images are taken
from [21, 18, 20].

people use makeup or need eyeglasses: All of which lead to reflections in the
near infrared spectrum. To adapt to those challenges, we propose to use a grid
of detectors and average over the deformation. This averaging is dependent on
the combination possibilities for different types of success patterns of the grid
(symmetric patterns).

Fig. 4. Some exemplary symmetric means for a detector grid with size nine.

In our implementation, we chose the minimal grid consisting of nine detectors
with a shift of gs pixels. Some valid symmetric mean patterns can are shown
in Figure 4, where a red dot indicates that the detector belonging to this grid
position found an object. Those patterns can be calculated using the binomial
coefficient to get all possible combinations. For evaluation, if it is symmetric, the
sum of coordinates has to be zero if they are centered on the central detector
(for example x, y ∈ {−1, 0, 1} where (0, 0) is the central detector).

4 New Dataset

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 5. Exemplary images of the new dataset.

In addition to the proposed algorithm, this work contributes a new dataset
with more than 16,200 hand-labeled images (1280× 752) from six different sub-
jects. These images were recorded using a near-infrared remote camera in a
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driving simulator setting (prototype car with all standard utilities included) at
Bosch GmbH, Germany. As exemplary shown in Figure 5, the subjects drove
in a naturalistic way, e.g., when turning the steering wheel, eyes or head are
occluded.

(a) (b) (c) (d) (e) (f)

Fig. 6. Exemplary eyelid and pupil annotations. The red dots are on the pupil bound-
ary, green dots represent the upper eyelid, blue dots the lower eyelid, and the turquoise
dots are on the eye corners.

We annotated all eyes on these images using a modified version of EyeLad
from [19]. Eyes that are occluded by approximately 50% were not annotated. We
labeled the smallest enclosing eye boxes: The pupil outline with five points, and
for the eye corners and the upper and lower eyelid, we used three points each. The
pupil annotation consists of five points on the outline with sub-pixel accuracy
(Figure 6). This new data contains different kind of occlusions: For instance,
reflections (Figure 6(d)), the nose of the subject (Figure 6(f)), occlusion due
to steering (Figure 6(e)), and occlusion of the pupil or eyelids due to eyelashes
(Figure 6(b)). Therefore, we believe that our data set is a valuable contribution
to the research community in the realm of object detection, specifically for gaze
tracking.

Table 1. Eye detection results (recall; T=true, F=false) for the first, middle and last
iteration. Subject 6 (images on the left) has many unannotated frames, since eyes are
occluded by approximately 50% (100% of the error is on non-annotated locations). The
red star represents a detection by our algorithm that was not annotated and the green
star represents an annotation that was successfully found.

Detector 10 annotations
Dataset Subject First Mid Last First Mid Last

T F T F T F T F T F T F

P
ro

p
o
se

d Sub1 .99 0 1 0 1 0 .95 0 1 0 1 0
Sub2 .94 0 1 .01 1 .01.59 0 .90.01 1 .01
Sub3 .71.01.96.02.97.02.30 0 .85.06.95.02
Sub4 .99 0 .99 0 .99 0 .78 0 .99 0 .99 0
Sub5 .60 0 .93.03.98.02.46.01.82.03.97.03
Sub6 .59.01.91.03.98.09.73.01.99.14 1 .28

GI4E [55] .36 0 .95 0 .96 0 .22 0 .58 0 .92 0
[17] .43 0 .55.01.92.03.48 0 .84.02.93.04
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Table 2. Head mounted pupil center detection results error up to five pixels [21].

Dataset ExCuSe [18] ElSe [21]
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Swirski .05 .23 .06 .34 .78 .19 .39 .41 .23 .30 .20 .71 .61 .51 .62 .18 .66 .15 .09 .22 .08 .02 .96 .43
ExCuSe .71 .39 .37 .79 .75 .59 .48 .55 .75 .78 .58 .79 .69 .68 .55 .34 .78 .23 .23 .57 .52 .26 .93 .45

ElSe .85 .65 .63 .83 .84 .77 .59 .68 .86 .78 .75 .79 .73 .84 .57 .59 .89 .56 .33 .78 .47 .52 .94 .52
Proposed.89.81.79.93.93.89.82.88.90.93.94.88.84.91.69.92.98.62.53.89.82.73.98.69

Table 3. Remote pupil center detection results (3 and 6 are the pixel error).

GI4E [55]BioID [27][17]Sub1Sub2Sub3Sub4Sub5Sub6

ElSe 3 .07 .16 .26 0 .45 .01 0 .01 0
6 .50 .43 .63 .04 .67 .14 .06 .14 0

Proposed3 .94 .85 .64 .93 .83 .82 .95 .92 .61
6 .98 .93 .81 .98 .99 .90 .96 .98 .71

5 Evaluation

We evaluated our algorithm on several publicly available data sets ([55, 17, 64,
18, 21, 17, 27]) for self learning together with our proposed dataset. The first
evaluation is without the grid of detectors to demonstrate the performance of
the aging approach itself. Table 1 shows the results for the eye detection task
(without grid). We ran the algorithm for a maximum of 15 iterations. Most
of the error in the proposed data set stems from unlabeled images due to the
annotation criteria of labeling only eyes with less than 50% occlusion. This error
is apparent especially for subject 6, where the error reaches 28% in relation to all
possible correct detections. The same applies for subject 2 and 5. The subsequent
evaluations refer to pixel-precise object recognition.

Table 2 shows the results for comparing our approach to the state-of-the-
art algorithms [49], ExCuSe [18], and ElSe [21]. The results support that our
approach, for all datasets, had the highest detection performance. Here, the
maximum of iterations was set to 15. For initialization of our algorithm, we
selected ten annotations. The distance between the selected annotations was
again ten frames (i mod 10 = 0). Though our algorithm outperforms all the
competitors, the results provide a basis for even further improvement. The input
to the algorithm was each entire data set, except for data set XIX. Here, we
performed the same selection of ten frames from 13,473 images as with the other
sets, but for the iterations, we divided it into three sets. They were set sizes of

Table 4. Remote eyelid point detection results (3 and 6 are the pixel error).

Proposed [30]
Left Right Upper Lower Left Right Upper Lower
3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6

Sub1.91 .98 .87.97.31.50.80.99 .88 .99.01.21.29 .48 .32 .94
Sub2 .75 .95 .66.89.43.70.69.96.77.99.28.82.10 .27 .56 .96
Sub3.64.90.59.88.35.61.68 .93 .28 .77 .32.57.18 .45 .64 .94
Sub4.46.93.82.98.34.72.80.98 .39 .76 .39.73.03 .12 .66 .94
Sub5.46.73.58.91.30.61.63 .79 .43 .73.41.65.18 .45 .54 .85
Sub6 .29 .58 .31.53.30.60 .40 .68 .34.69.24.52.23 .54 .52.83
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5,000 and 3,473 images for the first two sets and the last set respectively. This
division was made due to the original size of the data set exceeding the memory
capacity of our server.3

For comparison in remote pupil detection, we chose the best competitor in
[17], which is the second part of ElSe [21], since it outperformed all the other
algorithms [9, 53, 22] on all datasets. For data sets GI4E [55], BioID [27], and
[17], we used the labeled eye boxes and increased the size by twenty pixels in
each direction: In order to increase the challenge. For the proposed dataset, we
selected the eye center and extracted a 161× 161 area surrounding it. We only
used the left eye (from the viewer perspective) for the pupil center evaluation to
reduce the data set size. For the proposed approach, we initially selected again
ten images with a fixed distance of ten (i mod 10 = 0). As indicated in Table 3,
the proposed approach surpasses the state-of-the-art. Moreover, the effect of the
increased eye boxes is shown for ElSe.4

For the eyelid experiment, we evaluated our approach against the shape de-
tector from [30]. This predictor was trained on all data sets except the one for
evaluation; for example, the evaluation for subject 1 involved training the pre-
dictor on subjects 2 through 6. The defined eyelid shape is constructed by four
points as illustrated in the image next to Table 4. The left and right eye corner
points are used as the ground truth data. For the upper and lower eyelid point,
we interpolated the connection using Bezier splines and selected the center point
on both curves. The images were the same as in the previous experiment. For the
point selection, we again used ten points with distance ten (i mod 10 = 0). We
selected different starting locations to give a more broad spectrum of possible
results of the algorithm. As can be seen in Table 4, our algorithm is more often
the most accurate, even for the condition to detect each point separately with-
out any global optimization between the points. In addition, it should be noted
that we optimize the evaluation for the approach from [30]. This means that [30]
expects to receive an equally centered bounding box on the object to estimate
the outline, otherwise it fails. For our approach, it does not change anything if
the eye box is shifted.4

6 Conclusion

We proposed a novel algorithm for automatic and accurate point labeling in
various scenarios with remarkable performance. While our algorithm is capable
of generating detectors in addition to the annotation, it remains difficult to
evaluate their generality: Hence, we refer to them as specialized detectors. In
addition to the proposed algorithm, we introduced a dataset with more than
16,000 manually labeled images with annotated eye boxes, eye lid points, eye
corner, and the pupil outline, which will be made publicly available together
with a library.

3
Parameters: detection window size 65 × 65, cell size cs = 8, the grid shift gs = 5; SVM: ε = 0.01, C = 1

4
Parameters: detection window size 31 × 31, cell size cs = 4, the grid shift gs = 2; SVM: ε = 0.01, C = 1
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