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Figure 1: Our approach’s workflow. The raw gaze data is encoded into Emoji space using a GAN generator, and the resulting
Emoji is used for scanpath classification, improving classification accuracy.

ABSTRACT demonstrate the applicability and potential of unsupervised feature
To this day, a variety of information has been obtained from human learning to scanpath classification in a humorous and entertaining
eye movements, which holds an imense potential to understand way.

and classify cognitive processes and states - e.g., through scanpath

classification. In this work, we explore the task of scanpath classifi- CCS CONCEPTS

cation through a combination of unsupervised feature learning and « Computing methodologies — Batch learning; Neural net-
convolutional neural networks. As an amusement factor, we use an works; Reconstruction;

Emoji space representation as feature space. This representation is
achieved by training generative adversarial networks (GANs) for KEYWORDS

unpaired scanpath-to-Emoji translation with a cyclic loss. The re- Generative Adversarial Networks, Eye Tracking, Scanpath, Emoji,
sulting Emojis are then used to train a convolutional neural network Image Generation

for stimulus prediciton, showing an accuracy improvement of more
than five percentual points compared to the same network trained
using solely the scanpath data. As a side effect, we also obtain novel
unique Emojis representing each unique scanpath. Our goal is to

ACM Reference Format:

Wolfgang Fuhl, Efe Bozkir, Benedikt Hosp, Nora Castner, David Geisler,
Thiago C. Santini, and Enkelejda Kasneci. 2019. Encodji: Encoding Gaze
Data Into Emoji Space for an Amusing Scanpath Classification Approach ;).
In 2019 Symposium on Eye Tracking Research and Applications (ETRA ’19),

Permission to make digital or hard copies of all or part of this work for personal or June 25-28, 2019, Denver , CO, USA. ACM, New York, NY, USA, 4 pages
classroom use is granted without fee provided that copies are not made or distributed . L ’ ; ; : ’ ’ ’ ’ ’
for profit or commercial advantage and that copies bear this notice and the full citation https://doi.org/10.1145/3314111.3323074
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 1 INTRODUCTION

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org. Eye movements can reveal information about a person’s cognitive
ETRA 19, June 25-28, 2019, Denver,, CO, USA processes and states — e.g., identifying mental disorders, separating
© 2019 Association for Computing Machinery. . .

ACM ISBN 978-1-4503-6709-7/19/06.... $15.00 novices from experts, and detecting a performed task. Therefore,

https://doi.org/10.1145/3314111.3323074 fixation and saccade spatio-temporal patterns, also called scanpaths,


https://doi.org/10.1145/3314111.3323074
https://doi.org/10.1145/3314111.3323074

ETRA ’19, June 25-28, 2019, Denver , CO, USA

hold valuable information. Multiple studies have identified such
patterns in using gaze data: a) In the arts, viewing differences
were found between experts and novices in abstract as well as
realistic artworks [Zangemeister et al. 1995]. In addition, it was
found that bottom-up features of the artwork and top-down beliefs
affect the gaze behavior [Locher et al. 2015; Massaro et al. 2012].
b) In the medical domain, scanpath differences have been used
to separate novices from expert microneurosurgeons [Eivazi et al.
2012; Kiibler et al. 2015a] as well as radiologists [Manning et al.
2006; Van der Gijp et al. 2017]. A finer granular distinction was also
made for dental students [Castner et al. 2018]. In addition, humans
suffering from schizophrenia [Loughland et al. 2002] and autism
spectrum disorder [Horley et al. 2004; Pelphrey et al. 2002] were
also identified by their scanpath. Therefore, scanpaths have a high
potential for training, diagnostic, and treatment monitoring in the
medical domain. ¢) In the automotive domain, studies examining
scanpath during driving were also made [Braunagel et al. 2017; Ji
et al. 2004; Kasneci et al. 2014; Kiibler et al. 2015b; Palinko et al.
2010]. Unsafe drivers can be robustly identified for humans suffering
from visual field defects [Kasneci et al. 2014; Kiibler et al. 2015b]. In
autonomous driving, the take over readiness can also be estimated
using the scanpath as an information source [Braunagel et al. 2017]
as well as for measurements regarding cognitive load [Palinko et al.
2010] or fatigue [Ji et al. 2004] estimation.

2 RELATED WORKS

The first automated metric for scanpath classification was proposed
in the nineties [Brandt and Stark 1997]. Following this publication,
a variety of approaches have been presented and are summarized
in [Anderson et al. 2015]. Modern approaches use machine learning
in combination with statistically computed features [Boisvert and
Bruce 2016; Crabb et al. 2014; French et al. 2017; Hoppe et al. 2018;
Kiibler et al. 2017; Liao et al. 2018; Zhang and Le Meur 2018]. Most
algorithms rely on an agglomeration of time-aggregated features
and sequence alignment. Newer methods use the transitions as an
information source [Burch et al. 2018; Cristino et al. 2010; Dewhurst
et al. 2018; Hoppe et al. 2018; Kiibler et al. 2017]. These transitions
have been shown to be a reliable feature for multiple tasks [Kiibler
et al. 2017] and were already applied in combination with Hidden
Markov Models [Coutrot et al. 2018].

The recent progress in machine learning through convolutional
neural networks (CNNs) [LeCun et al. 1998] has brought signifi-
cant improvements in classification, detection, and segmentation.
These improvements include the formulation of novel transposed
convolution layers [Long et al. 2015], a softmax cross entropy loss
formulation [Bishop 1994] as well as architectural enhancements.
Modern architectures are based on residual [He et al. 2016], incep-
tion [Krizhevsky et al. 2012], or hybrid [Szegedy et al. 2016] layouts.
These new architectures made it possible to train deeper and larger
networks, which lead to high demand for annotated data. However,
data annotation or developing realistic simulation able to generate
labeled data are expensive and challenging to create, new ways to
acquire training data are desirable. Thus, an alternative solution is
to train CNNs to generate new training data out of existing images
and easily generated data [Goodfellow et al. 2014] - i.e., generative
adversarial networks (GANSs). This training process required an
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image generator and a discriminator that decided whether the gen-
erated image is real or simulated [Goodfellow et al. 2014]. However,
this training requires effort to determine the right learning param-
eters. With the cyclic loss function [Zhu et al. 2017], this effort
has been significantly reduced and also makes unpaired training
possible. In this work, we use GANs with the cyclic loss function
for style transfer between images created based on gaze recordings
and Emojis. Afterwards, the generated Emojis are used for scanpath
classifiction using a CNN to predict the stimulus class.

3 METHOD

The proposed approach is illustrated in Figure 1. In this section, we
describe the scanpath image generation, the employed networks
architectures, and the training parameters and procedure. Each step
is explained in a separate subsection for a better overview.

3.1 Scanpath Image Creation

Blue channel

Red channel

Figure 2: Scanpath image creation: the raw gaze data is en-
coded using RGB images, where the red, green, and blue
channels hold the spatial, temporal, and connectivity path
informations, respectively.

We employed the provided challenge data from the 2019 ACM
Symposium on Eye Tracking Research & Applications [McCamy
et al. 2014; Otero-Millan et al. 2008]. Only the free viewing data
was used as the fixation data might unecessarily add extra noise
due to errors in the eye movement classification algorithms. As
shown in Figure 2, the raw data was encoded to an RGB image. The
raw (normalized to the image size) gaze points coordinates were
set as one in the red channel of the image (spatial information).
In the green channel, these coodinates values were set based on
the gaze point timestamps divided by the time of the recording
(temporal information). In the blue channel, we interpolated all raw
points to form connecting lines between subsequent gaze points
(connectivity information).

3.2 Training Data Description

To generate the training sets, we used the images of the first four
subjects (50% of the subjects from the provided dataset) created
as described in section 3.1. These were augmented using elastic
distortions [Simard et al. 2003] with scaling factors « = 44 and
o = 5, resulting in 5,000 augmented scanpath images (henceforth
the Direct training set). For the GANS, the Direct training set was
used as source space. The target space was generated using the
Emojis shown in Figure 3, augmented by a) randomly shuffling the
color channel per Emoji and b) adding random blur and contrast
changes. In total, we generated 5,000 augmented Emoji images.
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Figure 3: Initial Emoji set for the training.

3.3 GANs Structure and Training
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Figure 4: Generator and discriminator of the used GAN.
Batch normalization (BN) and rectifier linear units (ReLu)
are after each convolution and deconvolution block.

The used architecture for our GANs is shown in Figure 4. For sim-
plification, we omitted the placement of rectifier linear units (ReLu)
and batch normalization (BN), which are placed behind each convo-
lution layer respectively. The training parameters for discriminators
and generators were BatchSize = 1, Solver = Adam, Momentum =
0.5, LearningRatePolicy = fixed, and LearninRateBase = 0.0002. We
trained for ninety epochs, which are 450,000 iterations using the
Caffe framework [Jia et al. 2014]. The two generators and two dis-
criminators were unsupervisedly trained using a cyclic loss function
with CycleLossWeight = 10. After the GANs were trained, the Direct
training set was fed to the scanpath-to-Emoji generator network,
resulting in 5,000 Emoji-encoded scanpath images (henceforth the
Emoji training set). The best generated Emojis are shown in Fig-
ure 5; the largest variations are in the color space due to the training
augmentation.

3.4 Classifier Structure and Training

We tried multiple classification architectures, and the best perform-
ing model (based on the Direct training set) is shown in Figure 6.
This architecture was then trained to generate two classifiers: one
using the Direct training set, and the other using the Emoji train-
ing set. Training was performed for ten epochs with the same
hyperparameter set in both cases: BatchSize = 8, Solver = Adam,

Momentum = 0.5, LearningRatePolicy = fixed, and LearningRateBase =

0.0001.

4 RESULTS

Table 1 shows the classification results. As can be seen, the Emoji
generation can be useful to improve the classification accuracy. In
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Figure 5: Best Emojis the GAN generated.
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Figure 6: The architecture of our classification network.

our evaluation, we gained five percentual points over all classes
(Direct 84% X Emoji 89%). The reason why this approach works
and the general idea behind this improvement stems from unsu-
pervised feature learning [Hu et al. 2018; Wu et al. 2018], in which
every image gets a vector as target label. These vectors are equally
spaced on a sphere to maximize the distance between each other.
Afterwards, the vector can be classified linearly. In our case, this
vector is represented by the Emoji space. Since our generated Emoji
images do not follow any linearity, they cannot simply be separated
linearly. Therefore, our generated images are more beautiful to look
at.

Table 1: Results for the scanpath classifier using the Direct
approach versus the Emoji one.

Blank Natural Puzzle Waldo Accuracy

. Blank 16 14 0 2 0.5
S Natural 2 50 0 4 0.89
A Puzze 1 1 58 0 0.96
Waldo 0 9 0 51 0.85
Blank 19 12 0 1 0.59
‘S Natural 3 52 0 1 0.92
E] Puzzle 1 1 58 0 0.96
Waldo 0 2 1 57 0.95
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5 CONCLUSION

In this work, we showed how to generate new emojis based on raw
gaze data using GANs with a cyclic loss function, which lead to
better scanpath classification results due to the maximization of the
inter-feature-vector distance. This paper shows in a humorous way
that modern machine learning approaches in combination with
findings from the field of unsupervised learning can be used for
scanpath classification. In addition, the approach can be used to
generate new Emojis with amusing results (see Figure 5).
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