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Abstract— Successful and meaningful human-robot interac-
tion requires robots to have knowledge about the interaction
context – e.g., which objects should be interacted with. Unfor-
tunately, the corpora of interactive objects is – for all practical
purposes – infinite. This fact hinders the deployment of robots
with pre-trained object-detection neural networks other than in
pre-defined scenarios. A more flexible alternative to pre-training
is to let a human teach the robot about new objects after
deployment. However, doing so manually presents significant
usability issues as the user must manipulate the object and
communicate the object’s boundaries to the robot. In this work,
we propose streamlining this process by using automatic object
location proposal methods in combination with human gaze
to distill pertinent object location proposals. Experiments show
that the proposed method 1) increased the precision by a factor
of approximately 21 compared to location proposal alone, 2)
is able to locate objects sufficiently similar to a state-of-the-art
pre-trained deep-learning method (FCOS) without any training,
and 3) detected objects that were completely missed by FCOS.
Furthermore, the method is able to locate objects for which
FCOS was not trained on, which are undetectable for FCOS
by definition.

I. INTRODUCTION

In today’s modern world, interaction between human
and machines is omnipresent, e.g. in the figure of Alexa
and Siri. Moreover, the significant progress in augmented
reality is also pushing the boundaries of the cooperation
between human and robots. For instance, this emerging kind
of human-robot interaction (HRI) has already helped to
optimize manufacturing steps in production as well as been
applied in factories [1] and for assembly guidance [2]. The
great majority of such technological developments has been
strongly fueled by machine learning methods, such as neural
networks. The collection of huge databases allows us to train
and continuously improve (deep) neural networks in order to
fulfill challenging tasks. However, these use cases typically
operate under the assumption that there are sufficient data
sets for training available. But what if the training data is
biased (e.g., geographically [3]) or not labeled, for example
in many production processes – such as, the assembly of a
recently developed electric engine of a car? Furthermore, in
some application scenarios such as search and rescue work
with unmanned aerial vehicles (UAVs) or the classification
of medical images, there might be very few or no available
training instances. For example for UAVs, aerial footage is
simply difficult to obtain [4], whereas for medical images,
storage is often prohibited due to patient privacy [5].

In addition, labeling data is a costly process due to the
amount of human effort involved. Drawing a high quality
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bounding box in an image, including quality and coverage
verification, can take a human from 7 up to 42 seconds per
object [6], [7]. With multiple objects in a scene this can
quickly add up to prohibitive amounts.

In this paper we address this challenge by connecting
findings from two research areas: eye tracking and robotics.
On the human side, we use the gaze modality to enable the
exchange of information for a specific problem on the robot
side, namely the detection of unknown objects. Our goal
is to enable the deployment of a robot in a non-predefined
scenario and to explain an interaction context to the robot,
e.g., the class of an object after detection. That is, rather
than using a neural network for object detection, we resort
to the human gaze and want the robot to detect which object
the human is looking at, even though its class is not yet
known (see Figure 1). Moreover, interaction requires online
operation – in contrast to post processing. To the best of our

Fig. 1: Without specialized pre-training, the robot does not know
the objects in front of it. Nonetheless, through our proposed
approach, the robot is capable of detecting these unknown objects
based on gaze-based human-robot interaction without any training
instances.

knowledge, this is the first work to combine the well known
technique of selective search [8], which outputs thousands
of class-independent object location proposals, with human
gaze information to separate useful and useless areas of
interest in a scene image. Thus, the proposed approach
enables us to detect and process objects in an image without
training but still in an efficient way. In summary, our most
important contributions are:

1) A novel method towards the deployment of robots in
non-predefined scenarios.

2) We are the first to connect eye tracking and robotics
to detect unknown objects without the usage of neural
networks, alleviating training-data dependency.



3) As a proof of concept we conduct an experiment and
demonstrate the validity and feasibility of our method.

II. RELATED WORK

Mapping gaze data from a head-mounted eye tracker
with moving point of view, i.e. coordinate system, to a
known reference frame is a well-known and open problem
in current research. Most works, such as [9], [10], that were
confronted with this issue solved it by using fiducial markers.
Even though [11] additionally tested feature matching and
achieved reasonable results, markers provided better stability
and reliability at significantly less computational cost in all
of their test cases. Apart from that, their purpose was to
match a picture of an image displayed on a screen to a planar
reference image, which was very similar to the one displayed
on the screen. As described in [12], feature matching reaches
its limit when applied to a three-dimensional target object.
Accordingly, in our case it is more difficult to find and match
features than with a simple painting or a poster, especially
when the viewing perspectives differ significantly. In [13] the
authors succeeded in mapping the gaze by utilizing velocity
features. However, this was limited to the user looking at
one of several pre-defined key points.

In recent years, object recognition has been one of the
most intensively researched areas in computer vision. The
availability of better hardware led to the emergence of deep
neural networks as a go-to solution for object detection.
YOLO [14], Mask R-CNN [15], SSD [16] and FCOS [17]
are great examples of the extensive use of neural networks
that constantly have been pushing the boundaries of object
detection. These networks typically rely on fully supervised
learning methods and the existence of large annotated data
sets, such as PASCAL VOC [18], Microsoft COCO [19] and
Imagenet [20]. This means that they do not generalize well
and lack reliability on unknown domains [21].

Moreover, with increasing climate-related public aware-
ness, there has been some research focusing on energy
efficiency of neural networks [22] and its environmental
impact [23]. [24] analyzed the power consumption of popular
image classification models. Consequently, we follow the
recommendation of [23] and prioritize a simple non-deep-
learning approach instead.

A few works have already investigated the combination
of eye tracking and computer vision tasks. The authors of
[25] performed gaze guided object recognition by matching
features around human fixations to features from known
objects in a database. After a database was created, it was
possible to classify an image, but not to determine the
position of the object within the image. [26] concentrated
on annotating images with bounding boxes. They utilized
fixation points to extend existing training data with gaze in-
formation. Subsequently, a model was trained that predicted
bounding boxes from the fixations while viewing an image.
A strategy for superpixel segmentation with eye tracking data
was proposed by [27]. Just like the previous method, training
data was already required right from the start. In addition,
both methods require multiple gaze points. In contrast, our

method is able to operate with as few as one gaze point, thus
being applicable in an online fashion.

In this paper, we build on existing work and benefit from
collaborative working with a robot. In this context, eye
tracking can play an important role and connect humans
and robots in a natural and intuitive manner, offering an
additional communication channel available even when tra-
ditional channels, such as speech and gestures [28], might
not be available for HRI – e.g., during microsurgery [29].
We use the human gaze to enable a robot to interact with
its unknown environment by letting it recognize objects we
are looking at. Thereby, we bridge the gap between existing
approaches for object detection and data independence with
eye tracking.

III. METHOD

In this work, we propose finding pertinent and accurate
location proposals of unknown objects through gaze informa-
tion. This process can be thought of as three building blocks:
1) estimating the human partner’s gaze in the robot’s frame
of reference, 2) generating location proposals for unknown
objects, and 3) distilling the location proposals using the gaze
information. Throughout this section, we assume the robot
to be equipped with at least one camera.

A. Gaze Estimation

The most straightforward and inexpensive way of estimat-
ing the partner’s gaze in the robot’s frame of reference is
by estimating the gaze directly through the robot’s sensors
– e.g., through appearance or model-based remote gaze
estimation methods [30], [31]. However, this poses a key
limitation as the partner must be facing the robot, severely
limiting the perspectives from which gaze-based HRI can
happen.

This limitation can be alleviated through multiple remote
eye trackers distributed around the environment or the usage
of a head-mounted eye tracker. However, in both cases, it
is necessary to map the estimated gaze from the eye tracker
frame of reference to the robot’s. This transformation can be
achieved in multiple ways, for example by 1) directly finding
the eye tracker’s pose in the robot’s camera or vice versa, or
2) indirect co-location, by finding at least four corresponding
points in images of the eye tracker’s and robot’s cameras1.

In this work, we favor the usage of a head-mounted
eye tracker due to the reduced costs (i.e., only a single
eye tracker is required) and user constraints. Moreover, we
employ fiducial markers [32] for co-location as these provide
a robust and inexpensive solution to the gaze mapping issue
that can be employed in traditional HRI scenarios such as in
factories, care facilities, or individual homes.

B. Unknown Object Location Proposal

Location (or region) proposal methods consist of deter-
mining candidate object locations (e.g., bounding boxes, or

1By finding the plane defined by the these four points, one can estimate
the pose of each camera relative to the plane and, thus, the pose of one
camera relative to the other.



segmentation masks) that might contain an object. This task
can be realized, for example, through segmentation [33],
randomly-sampled boxes classification [34], jumping win-
dows [35], and selective search [8]. Such methods are
typically used as an alternative to exhaustive search for
object detection to reduce the search space, speeding up the
detection and reducing the associated computing costs.

The cardinality of the proposed locations set is, naturally,
image-dependent but tends to be in the order of thousands.
Normally, each location proposal is run through a pre-
trained classifier to detect whether an object is present in it.
However, many of these methods, such as the ones proposed
by [8], [34], have a particularly interesting property: The
proposed locations are class-independent. In other words,
within the proposed regions there are objects that a computer
vision system might not have been trained to identify – i.e.,
unknown objects. This begs the question: Can we identify
pertinent locations from the set of proposals for interaction
or to teach a robot about new objects in a natural way?

C. Distillation Through Gaze Information

In this work, we approach the task of identifying location
proposals that are pertinent for a human-robot interaction
from the full set of class-independent proposals by using gaze
information from the human partner. This distillation process
can be activated through multimodal interactions – e.g.,
through touch or voice. Nevertheless, we also envision an
automatic approach in which the robot notices the human’s
gaze continously attending to a region where no known
object has been identified yet.

In order to obtain an initial set of candidate bounding
boxes, we resort to selective search [8]. Selective search
uses the segmentation method from Felzenszwalb and Hut-
tenlocher [36] to analyze the intensity of the pixels of the
image and perform segmentation. The segmented parts and
groups of adjacent segments are then used to calculate and
propose regions of interest. In other words, this algorithm-
based approach combines the high recall of exhaustive search
with the image guided sampling process of segmentation and
outputs bounding boxes in a hierarchical order. The benefits
here are two-fold: the method can capture all possible object
locations and the region proposals are guided by the structure
of the image, such as color, texture, size and shape, leading
to a reduced number of proposed locations. In this paper, we
will refer to the position with respect to the order in which
the boxes appear in the output set of region proposals as
position index.

Although the number of bounding boxes is reduced in
comparison to an exhaustive search approach, this does not
effect the high recall we need to ensure that we can find
a suitable box for each object. Moreover, it is possible to
further distill the regions into a smaller and more-pertinent
set of proposals: Since we know that the gaze coordinate has
to lie within the searched bounding box, we can employ this
information as a filtering mechanism. Let (x
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This subset Bg contains only bounding boxes that have an
intersection with the object marked by the gaze point. As
we will see later, to achieve satisfactory results, we are
dependent on a high gaze-tracking accuracy and a robust
gaze mapping.

Note that getting multiple (but hierarchically-sorted)
bounding boxes proposals is not a disadvantage but an
advantage in our use case. As previously mentioned in [8],
an object can consist of different colors, multiple objects can
have the same color, or the object could be indistinguishable
from its background. In Figure 2 one can see that this could
lead to problems if the detection fails in terms that the only
proposed bounding box is not correct or the object is not
detected at all.

(a) table tennis racket (b) sharpener

(c) toy (d) cup

Fig. 2: Objects can vary in shape and size, have different back-
grounds and can consist of multiple colors. This may cause errors
regarding the detection. The green boxes in the figure indicate
proposed regions. In (a) the red part is proposed earlier, meaning
the corresponding bounding box has a lower position index than
the whole racket. (d) shows the first three proposals we receive
for the blue cup. The first two (green) are not as accurate as the
third (blue). Through interaction it is possible to communicate the
preferred bounding box.

Moreover, we strive for a more human-like learning pro-
cess, in the sense of an interaction between robot and human,
similar to that of a human with another human. Multiple
proposals also mean that we can decide to choose the second
or third proposed and more accurate box instead of the first
one (see Figure 2d). Interaction between robot and human
makes these decisions possible and brings us closer to a
natural learning process.

IV. EXPERIMENTAL SETUP

In order to showcase a working proof of concept of the
proposed application, we collected a session for a participant
(one of the system’s designers) with the whole system



working in real-time2. This session serves as basis for our
initial evaluation of the system.

On a table, we placed different objects, including partially
overlapping objects to some extent. To have a wide appear-
ance range, we selected objects with distinct sizes, colors,
and shapes. In Figure 3, one can see the robot and his view
in front of the table with all objects he is supposed to detect.
For the sake of simplicity and for later evaluation, we have
used ordinary office and household items that are all part of
the Microsoft COCO data set [19].

Fig. 3: With a Microsoft Kinect v2 the robot sees different objects
on a table: Keyboard, scissors, cups, bottle, fork, knife, spoon,
mouse and a small toy car.

As hardware, we used the first generation of Pupil Core
[37], a head mounted eye tracker developed by Pupil Labs.
Although Pupil Labs provides a software solution called
Pupil Capture and Pupil Player, we decided to utilize Eye-
RecToo [38], an open-source software for real-time pervasive
head-mounted eye-tracking. The main reasons were the cali-
bration method CalibMe [39], the robust detection of ArUco
markers, and slippage robustness [40]. EyeRecToo’s pupil
tracking pipeline was set to use PuRe [41] / PuReST [42].
Our robot counterpart is a Scitos G5 from MetraLabs [43]
equipped with a Microsoft Kinect for XBox One. We ac-
cessed the RGB channels of the Kinect v2 using ROS [44],
libfreenect2 [45], and iai kinect2 [46]. For the implementa-
tion, we make extensive use of the OpenCV [47] library.

V. EVALUATION

To establish reference ground-truth values for the object
locations, we have employed the Fully Convolutional One-
Stage Object Detector (FCOS) [17] trained on Microsoft
COCO [19], using the ResNeXt-64x4d-101 backbone with
deformable convolutions. This serves as a baseline represent-
ing a state-of-the-art object detection for supervised learning.
Given an image viewed from the robot’s perpective, the
output of FCOS is shown in Figure 5a. It is worth noting

2Eye tracking and gaze mapping working at about 30 frames per second.

that the bottle was detected twice; in this case, we opted
to ignore the smaller inaccurate bounding box. Moreover,
neither the knife that overlaps with the spoon nor the scissor
placed on the keyboard are recognized by FCOS, despite all
of these classes being present in the training data. Thus, we
discuss these separately.

A. Qualitative Analysis

Both eye tracking and marker detection work in real time,
as well as the subsequent gaze mapping. Therefore, our
method is suitable for real-time human-robot interaction. As
long as the accuracy in all three steps is high enough, the
robot knows at any time where we are looking at. The human
is even unrestricted in his movements. Figure 4 shows two
attempts of pointing out an object to the robot. One was
successful and the other one failed. Although the human from

(a) Failed

(b) Successful

Fig. 4: A failed and a successful attempt of mapping the human
gaze (left) on the robot’s view (right).

whom the gaze point in Figure 4a originated actually looked
at the glass and his gaze was tracked correctly, the gaze
point in the robot’s view is not on the glass, i.e. the mapping
procedure was problematic in this case. This exemplifies that
enough markers have to be detected to guarantee reliable
mapping and usability. This could be ensured, for example,
by using more accurate markers such as infrared tokens. In
addition, the tracking of the human gaze must work reliably
to achieve satisfactory usability. Therefore, we have carefully
calibrated the eye tracker to achieve the desired accuracy.
During interaction, however, the device is likely to slip [48]
such that slippage robustness is paramount.

In contrast to the gaze mapping, the region proposal
achieves real-time operation only at lower frame rates. The
calculation of all the 2198 region proposals on our picture of
the robot’s view with a resolution of 1900x1080 took about
2.7 seconds with the “quality” method. Nonetheless, this is
not a problem, as region proposal is not required for each
frame but only sporadically. Once a correct bounding box for
the intended object has been found, it can be tracked with
well-known tracking algorithms like KCF [49] or CSRT [50].



B. Quantitative Analysis

To evaluate the efficiency of our method we compare the
position indices of each bounding box within the complete
hierarchical set of region proposals from the selective search
algorithm with the indices we have distilled. Of course these
boxes should not only be easy and fast to find but have to be
accurate as well. For this reason, we need to investigate the
similarity of the proposed boxes w.r.t. the ground truth. As
measurement for accuracy, we calculate the Jaccard index
J(B1, B2), also known as Intersection over Union (IoU).
This means that the closer the Jaccard index is to 1, the
greater the similarity between the boxes. For object detection,
if the Jaccard index is more than 0.5, a detection is typically
considered correct [18]. Nevertheless, in general, a higher
value is desirable. [51] provides a comparison of different
values of the Jaccard index and describes 0.5 as very loose,
0.9 as very strict and 0.7 as reasonable compromise in
between. Therefore, we set 0.7 as threshold and characterize
bounding boxes with at least this value as “sufficient”. This
allows us to analyze whether the selective search algorithm is
a good choice and provides region proposals that are accurate
enough, i.e. sufficient, for our use case.

In Table I the Jaccard index between the boxes predicted
by FCOS and the best box in our set of proposals is listed
for each item. Note that the knife and scissor placed on
the keyboard are omitted from Table I because they are
not recognized by FCOS, which means we do not have any
reference values for these items. We will discuss these items
separately at the end of this section. Besides, depending on
whether we want to consider the mouse cable or not, the
values in Table I naturally change. Even though we can
distill boxes for both cases, here we stick to the output of
FCOS and only consider the mouse without cable. One must
keep in mind, however, that the composition of the mouse
from two sub objects leads to different predictions being
made. For example, if the cable had not been bundled up,
the relevant position index would indeed be smaller or the
mean Jaccard index would be larger. In our test, the use
of a second gaze point allowed the delimitation to boxes
containing the cable and the mouse body alone. Compared
to regular object detection, we are not bound to fixed ideas
of objects but can vary the object’s bounding box depending
on the situation. It is worth noting that this is a good example
where our method surpasses all pre-trained object detectors
in terms of flexibility. In this particular case, there is not
only one correct box, but two. Gaze allows us to resolve
such ambiguities.

We can observe that the Jaccard indices with few excep-
tions are all above 0.85 and the vast majority is even above
0.9 (see column 4). This is highlighted visually in Figure 5b,
which shows the bounding box detected by FCOS and by the
proposed approach. With a mean value of the Jaccard indices
of 0.919, the proposed boxes are highly relevant. This value
can also be used as upper bound for the accuracy of our
fast distillation. Also worth noting are the massively high
indices of the respective best box in each category. Whereas

(a) (b)

(c) (d)

Fig. 5: (a) shows the objects detected with FCOS. The confidence
of the prediction can also be seen in Table I. (b) shows a comparison
of the total best bounding box (green) with the ground truth given
by FCOS (purple). (c) shows a comparison of the best bounding
box among the first 15 proposals (blue) with earlier sufficient boxes
(yellow). Note that these boxes are identical for the cup and the fork.
The knife and scissors on the keyboard have been omitted as they
are handled separately. (d) shows the best bounding boxes distilled
for the knife and the scissor on the keyboard.

the position index of the best box of the bottle in the full set
is the lowest at 292, the mean value of the position index
is about 1315. Through distillation, we managed to improve
that value to an average of 61.5. Figure 6 illustrates that the
vast majority of the boxes in the full set of proposals has an
Jaccard index below 0.1 and is therefore irrelevant.

Fig. 6: The violin plot shows the distribution of the Jaccard indices
for the full and the distilled set of bounding boxes using the example
of the bottle and the toy.

As Table I and Figure 5c show, we do not have to find
exactly the best boxes. With our fast distillation method, we
were able to provide a proposal among the first 15 boxes
of each distilled subset with at least 94 % accuracy to the
best. That is, with an average accuracy of even 97.91 %, we
were almost as accurate as the best possible box, with a
much smaller position index. Therefore, we need much less
communication with the robot to reach the desired box.



TABLE I: Comparison between the full and our distilled set of bounding boxes.

Item FCOS Best total #Boxes First sufficient Best among first 15 Recall Precision F1 score
Confidence Index IoU Dist. Index IoU Acc.1 Index IoU Acc. Full Dist. Full Dist. Full Dist.

Bottle 0.69 2922 0.943 98 1 0.851 90.24 % 12 0.943 100 % 1 1 0.012 0.265 0.023 0.419
Cup (black) 0.88 1748 0.863 221 3 0.828 95.94 % 3 0.828 95.94 % 1 1 0.029 0.29 0.057 0.449
Cup (blue) 0.74 1199 0.918 110 3 0.870 94.77 % 15 0.899 97.93 % 1 1 0.014 0.273 0.027 0.429
Fork 0.83 1873 0.945 34 1 0.939 99.37 % 1 0.939 99.37 % 1 1 0.013 0.824 0.025 0.903
Glass 0.82 1429 0.935 110 3 0.896 95.83 % 4 0.922 98.61 % 1 1 0.020 0.391 0.038 0.562
Keyboard 0.55 1839 0.988 189 1 0.751 76.01 % 9 0.981 99.29 % 1 1 0.046 0.529 0.087 0.692
Mouse 0.88 883 0.968 231 1 0.714 73.76 % 11 0.955 98.66 % 1 0.96 0.011 0.104 0.023 0.188
Scissor 0.68 1137 0.954 89 2 0.880 92.24 % 9 0.898 94.13 % 1 1 0.018 0.449 0.036 0.620
Spoon 0.61 670 0.727 118 3 0.720 99.04 % 3 0.720 99.04 % 1 1 0.002 0.034 0.004 0.066
Toy car 0.52 2079 0.946 68 3 0.712 75.26 % 5 0.909 96.09 % 1 1 0.021 0.662 0.040 0.797

Ø 0.72 1314.9 0.919 126.8 2.1 0.816 89.25 % 7.2 0.899 97.91 % 1 0.996 0.018 0.382 0.036 0.512
1 Accuracy compared to the best box in the full set (ratio of the two Jaccard indices).
2 Bold indices within the same line indicate identical boxes.

In addition, we have considered earlier sufficient boxes
in the sense of boxes with a Jaccard index of at least 0.7.
Figure 5c shows these bounding boxes along with the best
boxes among the first 15 described above. Their position
index is of course lower and, in our particular case, never
higher than three. As highlighted in Table I, it is often
sensible to fall back to earlier boxes. For instance, in the
case of the blue cup, it is possible to reduce the position
index from 15 to 3 while reducing the Jaccard index only by
0.03. In contrast, the toy car’s position index is acceptable
either way, and a significant drop in accuracy results if the
position index is lowered from 5 to 3. In general, the average
accuracy is about ten percent lower compared to the best
possible box, but, as previously mentioned, it is found early
since it is one of the first three proposals.

Considering that the sufficient boxes (Jaccard index > 0.7)
are the relevant ones, we define a) recall as the ratio between
relevant boxes retrieved by our method and all relevant
boxes, as well as b) precision as the ratio of boxes retrieved
by our method that are relevant. The per-object recall and
precision are reported in Table I together with the F1 score
(2 · precision·recall

precision+recall ), which is the harmonic mean of precision
and recall. Whereas the recall remained virtually the same,
the precision increased significantly due to the distillation
using the proposed method. To be more specific, while on
average not even 2% of the boxes in the full set could be
considered as sufficient, almost 40% of the distilled boxes
have a Jaccard index of at least 0.7. Moreover, the resulting
mean F1 value is about 14 times higher for the distilled sets
compared to the full set.

Finally, we would like to discuss the objects that were
not recognized by FCOS. The knife and the spoon lying on
top of each other was a difficult task. Both FCOS and our
proposed method struggled on this part. Although FCOS was
not able to detect the knife at all, we at least managed to get
a sufficient box with a high position index of 75. Figure 5d
shows our best possible result. However, we needed several
attempts to match the human gaze point with the knife since
the knife’s width is relatively small.

Detecting the dark blue scissor on the black keyboard was
on the other hand quite easy in terms of mapping the gaze
point on the object. Even though it was generally an even

harder task with respect to the color of the background,
unlike FCOS, the proposed method was able to find one
sufficient and one best bounding box with the position index
of 45 and 99, respectively. These bounding boxes were also
relatively late to reach but far earlier than 635 and 1251,
their indexes in the full set.

C. Limitations

Our method is based on a high accuracy in each partial
step. This is an issue if we have either bad gaze tracking or
mapping, which could result by too small or too few markers,
low-quality hardware, or external disturbances. Even if the
mapping part is accurate, a sloppy gaze estimation can lead
to a gaze point that does not overlap with the object. With an
inaccurate gaze point in the robot’s view, accurate bounding
box proposals are difficult and sometime impossible to distill.
In this case, we have to repeat pointing out to the object.

Furthermore, with one exception (scissors on the key-
board), the proof of concept was carried out on a plain
white table. Although we would expect more candidate boxes
in less homogeneous settings, our experiments suggest that
there would still be highly relevant boxes due to the high
recall that is in the nature of the method.

VI. CONCLUSION

In this work, we have proposed and evaluated a novel
method that enables the deployment of robots in non-
predefined scenarios. The proposed method combines auto-
matic object location proposals with human gaze to distill
pertinent location proposals. Just by looking at an object and
some human robot communication, we can find a bounding
box with a Jaccard index of almost 0.9 compared to the
ground truth. These boxes can then be used to quickly extend
the robot’s object detection neural network.

Out of thousands of possible region proposals, we suc-
cessfully distilled useful object-independent bounding boxes,
increasing the precision of the location proposals by over
21 times with virtually no recall loss. Despite challenging
scenarios, our method was consistently applicable and does
not need any training at all. Relative to a state-of-the-art
object detector (FCOS) trained on the Microsoft COCO data
set, we achieved an average Jaccard index of almost 0.9 for
at least one box out of the first 15 proposals. Looking only at



the first sufficient box of each object, we observed an average
accuracy of 89.25% compared to the respective best possible
box in the full set of proposals.

Since our gaze method significantly improved the position
index of important bounding boxes compared to the large
initial number of region proposals, it enables concentrating
exclusively on relevant boxes. This allows the robot to find
the intended object more quickly and to generally reduce
the necessary communication, improving the human-robot
interaction. In addition, we could find bounding boxes to
objects that could not even been detected by FCOS.

In summary, our proposed method is therefore a broadly
applicable and natural way to achieve unknown-object de-
tection by a robot in HRI scenarios. However, a significant
amount of work remains for future work as we plan to
extend our proof of concept by evaluating our method with
more participants and additionally investigate the impact of
imperfect labels on the training of neural networks.
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