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(a) Fixation sequence on the
painting An Unexpected Visitor from Ilya Repin.

(b) Regular gaussian like fixation heatmap. (c) GBVS
attention map with incorporated gaze signal.

Figure 1: (a) shows the sequential fixation signal, where the size of the circles encodes the fixation time. (b) shows the corresponding
gaussian like fixation heatmap. (c) shows the output of the proposed approach, where the tracked fixations are incorporated into the
GBVS attention map calculation.

ABSTRACT
Analyzing visual perception in scene images is dominated by two
different approaches: 1.) Eye Tracking, which allows us to measure
the visual focus directly by mapping a detected fixation to a scene
image, and 2.) Saliency maps, which predict the perceivability of a
scene region by assessing the emitted visual stimulus with respect to
the retinal feature extraction. One of the best-known algorithms for
calculating saliency maps is GBVS. In this work, we propose a novel
visualization method by generating a joint fixation-saliency heatmap.
By incorporating a tracked gaze signal into the GBVS, the proposed
method equilibrates the fixation frequency and duration to the scene
stimulus, and thus visualizes the rate of the extracted visual stimulus
by the spectator.

CCS CONCEPTS
• Human-centered computing → Heat maps; Visualization toolk-
its; Scientific visualization; Information visualization; User models.
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1 INTRODUCTION
Our eyes move around to perceive and understand the scene in order
to compensate for our limited- but clearest- foveal vision. When view-
ing a scene, we frequently focus our attention, known as a fixation,
before shifting to another area with a rapid eye movement known as
a saccade. The selectivity of the focused scene locations is a highly
optimized and developed process, mainly driven by two factors: 1.)
visual scene features, extracted by the retina (bottom-up), and 2.)
the interpretation of the extracted features regarding their semantic
value by higher cognitive processes, and subsequent identification
of the next fixation target (top-down) [Itti and Koch 2000; Itti et al.
1998; van Renswoude et al. 2019]. Modeling and understanding this
reciprocal process is a long-term core topic in cognitive psychology
and the computer vision community [Kotseruba and Tsotsos 2018].
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While retinal feature extraction can be modeled using saliency
maps such as GBVS [Harel et al. 2007], the selectivity of visual atten-
tion can be measured using eye tracking. Saliency maps are predom-
inantly bio-physiologically inspired algorithms to predict potential
fixation targets [Zhao and Koch 2013]. Therefore, regions emitting
a strong, recognizable visual stimulus are identified and emphasized
by replicating the retinal visual stimulus processing. Eye tracking,
on the other hand, often tracks the pupil center and extrapolates the
line of sight to a scene image. A subsequent typical visualization is
to illustrate the extracted fixations as a heatmap overlay on the scene
image. This is used to investigate the visual attention on the scene,
and to identify areas of particular interest.

However, fixation heatmaps are subject to some limitations. For
instance, slight shifts in the eye-tracking signal make it difficult to
identify the scene parts that attracted the visual attention and which
information of the scene was actually perceptible. In addition, de-
pending on the implementation, long or frequent fixations on the
same scene region may lead to a high density in the fixation heatmap.
Hence, it is assumed that these regions are particularly relevant to the
spectator since a comparatively high amount of visual information
was extracted. However, frequent or long fixations may also be caused
by difficult scene conditions such as low contrasts. Thus, the visual
information may be harder to extract, and therefore requires longer
or more frequent fixations to be perceived.

In this work, we propose to incorporate detected fixations from an
eye tracking signal into the calculation of the GBVS attention map.
The resulting heatmap equilibrates the measured visual attention to
the retinal-perceivable stimulus, and thus visualizes the density of
perceived information in the scene more accurately as pure fixation
or saliency heatmaps.

Structure of the Paper: Section 2 gives a short introduction into
state-of-the-art eye tracking visualization and saliency methods. Sec-
tion 3 contains a comprehensive description of how the proposed
approach takes place in the GBVS algorithm. Section 4 shows the
exemplary application of the proposed visualization to different types
of stimuli. The final sections 5 state the limitations of the presented
approach and the final remarks.

2 RELATED WORK
The eye tracking community is a research powerhouse. Continu-
ous improvements in tracking accuracy, precision, and availability
over the last decades made eye tracking to one of the most eminent
sensors in numerous research fields: Psychology, HCI, medicine, neu-
roscience, marketing, and many more. In particular, the success of
recent years in the field of vision-based eye tracking has boosted the
technology in terms of affordability, convenience, and usability for
a broad community [Hosp et al. 2019; Santini et al. 2017b,a, 2019].
However, the ability to conduct comprehensive eye-tracking studies
led to increasing demand for sophisticated methods for visualization
and qualitative evaluation of the acquired data [Blascheck et al. 2015].

An initial exploratory step in eye tracking studies is often to ex-
amine the spatial location, duration, and frequency of fixations as a
heatmap over the stimulus [Bylinskii et al. 2015]. This can be effi-
ciently calculated over a large amount of data and gives a first impres-
sion of the distribution of visual attention on the stimulus [Dao et al.
2014; Duchowski et al. 2012]. But, in order to gain deeper insights
into the data, an extensive repertoire of different visualization tech-
niques is available, such as various saccade metrics [Burch et al. 2014;
Kübler et al. 2016; Raschke et al. 2014], AOI hierarchies [Blascheck

et al. 2016; Kurzhals et al. 2016b], or extensive interactive visualiza-
tions including stimulus and time domains [Kurzhals et al. 2016a,
2015; Kübler et al. 2015; Raschke et al. 2016], etc. A comprehen-
sive overview can be found in the survey of [Blascheck et al. 2014]
and [Blascheck et al. 2017].

Saliency maps assess the stimulus by modeling the retinal signal
processing to determine whether a scene area is particularly promi-
nent in its immediate neighborhood, and therefore more likely to be
perceived. The stimulus is evaluated by its intensity and its opponent
color spaces: Driven by the neuronal circuit of the photoreceptors.
Additionally, further feature spaces can be formed, such as edge orien-
tation and difference formation of sequential images [Bian and Zhang
2008; Geisler et al. 2017; Harel et al. 2007; Hou and Zhang 2007;
Itti et al. 1998; Zhang and Sclaroff 2013]. While these bottom-up
approaches mainly reproduce the feature extraction of the retina per-
ception, newer deep-learning-based approaches show great success in
modeling the whole processes, from the retinal feature extraction up
to the semantic interpretation of the visual cortex and higher cognitive
levels. They include the recognition and evaluation of abstract forms
regarding their object-relatedness and semantic relevance [Chen et al.
2017; Dubey et al. 2015; John et al. 2014; Kümmerer et al. 2014; Lee
et al. 2016; Li and Yu 2015; Liu and Han 2016; Zhao et al. 2015; Zou
and Komodakis 2015].

The proposed approach combines the worlds of fixation heatmaps
and salience maps, as a novel visualization technique. The resulting
heatmap provides insights into the extracted information rate of the
scene and extends the existing visualization techniques towards a
more stimulus-driven paradigm.

3 METHOD
Similar to most saliency map approaches, the GBVS algorithm is
divided into 3 consecutive steps [Harel et al. 2007]:

(1) Extraction of a feature map 𝑀𝑡 on a given image 𝐼𝑡 .
(2) Calculation of an activation map𝐴𝑡 based on 𝑀𝑡 .
(3) Normalization and combination of the activation map𝐴𝑡 .

Our approach amends step (2) by injecting the gaze signal 𝑔𝑡 into the
calculation of the activation map𝐴𝑡 . Steps 1 and 3 remain unchanged
to the GBVS publication [Harel et al. 2007] and not further discussed
here. The subscript 𝑡 indicates the time domain since the gaze signal
is given as a time series of consecutive fixation points. However, it
also simplifies the handling with dynamic stimuli, such as videos. In
the following, we assume that for each 𝑡 exists a corresponding gaze
signal 𝑔𝑡 , as well as a stimulus 𝐼𝑡 , respectively a feature map 𝑀𝑡 .

The GBVS interprets the activation map as a state vector of a
Markov model. The transition between two states is defined by a dis-
similarity score over the feature map𝑀𝑡 . Thus, a random walk over the
Markov model empowers those states that are dissimilar in the respec-
tive feature map. Analogous to the original GBVS, the dissimilarity be-
tween the two states 𝑖 and 𝑗 in the feature map𝑀𝑡 is defined as follow:

𝑑𝑡 (𝑖, 𝑗)=
����log𝑀𝑡 (𝑖)

𝑀𝑡 ( 𝑗)

����, (1)

where 𝑀𝑡 (𝑖) is the 𝑖-th value of the corresponding feature map 𝑀𝑡 .
The transition weight𝑤𝑡 (𝑖, 𝑗) between the two states 𝑖 and 𝑗 is defined
as the product of their dissimilarity score𝑑𝑡 (𝑖, 𝑗) and a distance weight
𝐹𝑤 (𝑖, 𝑗):

𝑤𝑡 (𝑖, 𝑗)=𝑑𝑡 (𝑖, 𝑗) ·𝐹 (𝑖, 𝑗). (2)
The distance weight adds a local sensitivity to the dissimilarity score.
Thus, states that are dissimilar to their immediate neighborhood are
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Figure 2: Influence of the parameters 𝜎 (horizontal) and 𝑘 (vertical) on the adaptation of the fixations heatmap to the text stimulus. The
input is the same as used in figure 3. For large 𝑘 , the injected visual attention is increasingly distributed across the entire stimulus. The
parameter 𝜎 should be chosen depending on the desired level of detail of the visualization. Using a text stimulus, it is usually reasonable
to choose a high degree of detail (here 𝜎 ≤ 8), in order to visualize the perception rate of single words or lines.

emphasized while the impact of the dissimilarity score is attenu-
ated with increasing distance. 𝐹 (𝑖, 𝑗) is defined as an exponentially
weighted square distance between the states 𝑖 and 𝑗 in their spatial
dimension in the input image 𝐼𝑡 :

𝐹 (𝑖, 𝑗)=exp
(
− (𝑥 (𝑖)−𝑥 ( 𝑗))2+(𝑦 (𝑖)−𝑦 ( 𝑗))2

2·𝜎

)
, (3)

where 𝑥 (𝑖) and𝑦 (𝑖) is the 𝑥- and𝑦-coordinate of the 𝑖-th state in the
respective input image 𝐼𝑡 . The free parameter 𝜎 controls the shape
of the exponential distance weight. The larger 𝜎 is chosen, the more
weight is given to the dissimilarities of more remote states.

The final Markov transition matrix𝑇𝑡 is then assembled as follows:

𝑇𝑡 =

©«
1 𝑤𝑡 (0,1) ... 𝑤𝑡 (0,𝑛)

𝑤𝑡 (1,0) 1
. . . 𝑤𝑡 (1,𝑛)

.

.

.
. . .

. . .
.
.
.

𝑤𝑡 (𝑛,0) 𝑤𝑡 (𝑛,1) ... 1

ª®®®®®¬
, (4)

where 𝑛 is the number of elements in the feature map 𝑀𝑡 respective
the input image 𝐼𝑡 .

The activation map𝐴𝑡 is then calculated by 𝑘 repeated multiplica-
tion with the transition matrix𝑇𝑡 :

𝐴
(𝑘)
𝑡 =𝑇𝑡 ·𝐴(𝑘−1)

𝑡 . (5)

Incorporate Gaze: Up to this step, the procedure follows the orig-
inal GBVS algorithm. However, instead of initializing𝐴(0)

𝑡 equally
distributed, the gaze position is encoded as initial activation map:

𝐴
(0)
𝑡 =𝑞 ·𝐴(𝑘)

𝑡−1+(1−𝑞) · (𝐹 (0,𝑔𝑡 ),...,𝐹 (𝑛,𝑔𝑡 )), (6)
where 𝐹 (𝑖,𝑔𝑡 ) is the exponential weighted square distance between the
recorded gaze position 𝑔𝑡 and the spatial location of the 𝑖-th element
in the activation map. In other words, the activation map is initialized
by the measured visual activation from the eye tracking signal. Ad-
ditionally, parameter 𝑞 ∈ [0,1] controls the influence of the previously
calculated activation map𝐴𝑡−1 into the initialization of𝐴(0)

𝑡 . Thus,

for 𝑞 > 0, 𝐴(0)
𝑡 encodes the recently measured visual attention, but

also the history of previous predicted attention areas. This smooths
the resulting activation map𝐴(𝑘)

𝑡 in the temporal domain, and makes
noise in the gaze signal less significant. However, it also poses the
risk to generate a distorted activation map. For instance, on a dynamic
stimulus: the previous predicted attentive area in frame 𝐼𝑡−1 is located
somewhere in frame 𝐼𝑡 . Yet,𝐴(0)

𝑡 provides values at this area and the
Markov model will adapt it to the next salient region – which may not
have ben actually focused on. Nevertheless, this effect only occurs

if the content of the scene changes significantly, for instance on scene
cuts in movies, or opening a new web page while browsing.

When generating static heat maps (such as Figure 1), it is common
to ignore the temporal domain completely. In this case,𝑞 is set to zero.
The overall heatmap A(𝑘) is then the weighted sum over𝐴(𝑘)

𝑡 :

A(𝑘) =
∑
𝑡

𝐴
(𝑘)
𝑡 ·𝑏𝑡 , (7)

where the weighting 𝑏𝑡 , for instance, can be chosen in relation to the
fixation time.

Parameters: On regular gaussian like gaze heatmaps, 𝜎 models the
area of visual attention (foveal perception) and/or the expected noise
of the eye tracking signal, and thus controls the acuity of the resulting
heatmap. In the proposed approach, 𝜎 controls the distribution of
visual attention deduced from the fixation signal. But also how far
the Markov model may adopt this distribution to the underlying stim-
ulus in each iteration. The number of iterations is controlled by the
parameter 𝑘 . Whereby for 𝑘 =0,𝐴(0)

𝑡 =𝐴
(𝑘)
𝑡 corresponds to a regular

gaussian like fixation heatmap of a single fixation point (respectively
A(0) overall fixation points). Figure 2 shows how the initial gaze
heatmap𝐴(0)

𝑡 is gradually distorted to the stimulus for each additional
iteration over equation 5.

Implementation Details: The main limitation of GBVS is runtime
and memory consumption. The transition matrix𝑇𝑡 grows in quadratic
size with the input size𝑛, and thus quickly exceeds the available mem-
ory (e.g. > 9.4 · 1010 elements on a VGA resolution). Additionally,
the initialization of𝑇𝑡 requires a runtime complexity of O

(
𝑛2

)
. Both

together, limit the GBVS to very low input resolutions, which leads
to a loss of acuity. Thus, the standard parametrization of the GBVS
toolbox limits the internal resolution to an edge length of 32px [Harel
et al. 2006].

On closer examination, however, it is apparent that most values in
𝑇𝑡 are extremely small and have no significant impact to the resulting
activation map𝐴(𝑘)

𝑡 . Thus, after applying a threshold 𝑙 , the transition
matrix𝑇𝑡 becomes predominantly sparse. Furthermore, assuming that
𝑀𝑡 ∈ [0,1], the elements of𝑇𝑡 , which potentially exceed the threshold
𝑙 can be determined in relation to 𝜎:

𝑙 <𝐹 (𝑖, 𝑗), (8)
and resolves to:√

−2·𝜎 ·log(𝑙) ≥
√
(𝑥 (𝑖)−𝑥 ( 𝑗))2+(𝑦 (𝑖)−𝑦 ( 𝑗))2, (9)
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Input fixation map & stimuli

Gaze Heatmap (𝜎 =32.0) GBVS Heatmap (𝜎 =4.0, 𝑘 =2)
Figure 3: The top image shows the recorded fixation sequence on
the ETRA 2020s Call for Papers website. The bottom left image
shows a regular gaussian fixation heatmap (A(0) ). The bottom
right image shows the output of the proposed method (A(𝑘=2) ).

where the right term is the euclidean distance between the the 𝑖-th and
𝑗-th element in the feature map 𝑀𝑡 . Thus, initializing𝑇𝑡 only requires
the calculation of 2 ·

√
−2·𝜎 ·log(𝑙) elements per row, since all other

elements are not exceeding the threshold 𝑙 . This reduces the actual
runtime from O

(
𝑛2

)
to O(𝑛). Similar considerations can be made for

the initialization of𝐴(0)
𝑡 (although this is not a bottleneck). However,

due to the sparseness of 𝑇𝑡 and 𝐴
(0)
𝑡 , solving equation (5) is much

faster [Yuster and Zwick 2005].

4 EXPERIMENTAL DEMONSTRATION
Figures 1, 3, and 4 demonstrate the application of the proposed vi-
sualization on different stimulus types: the An Unexpected Visitor
painting from Ilya Repin, the Call for Papers website from ETRA
2020 as text, and a short video snippet of Big Buck Bunny from the
Peach open movie project [Roosendaal 2008]. The gaze signal was
recorded by a Tobii Pro Spectrum at 1200Hz. The fixation locations
and duration were extracted using the fixation filter I-VT provided by
Tobii Pro Lab and default parametrization [Olsen 2012]. All stimuli
were presented as full screen on the Monitor at 1920×1080 pixels.

On the text stimulus, it is recognizable how the Markov model
depicts the measured visual attention to paragraphs, lines, down to
single words and characters. Therefore, the acuity of the heatmap is
increased, and consequently, interpretations about the perception rate
to text passages are simplified. For instance, in the field of web design
and advertising, the proposed model can help to analyze whether a
certain area attracts the desired level of visual attention and whether
the presented information was easily visual accessible to the spectator.

However, in this context, text reading is a relatively unambiguous
challenge, since the text is very salient to its background. At the same
time, the text is often the only element that attracts the visual attention
of the reader. The strength of the proposed method of visual attention
visualization is particularly evident in more complex stimuli as shown
in figures 1 and 4. Considering the An Unexpected Visitor painting,
the fixations are mainly on the faces in the scene, but also on some
miscellaneous areas, such as hands, the paintings in the background,
or feet. However, the regular fixation heatmap has a particularly pro-
nounced fixation cluster on the face of the woman in the background.
This can be attributed to the fact that this face is particularly difficult
to perceive due to its low contrast. Yet, the long and frequent fixations
in this area lead to a suppression of all other fixations, which can lead

Input fixation map & stimuli

Gaze Heatmap (𝜎 =16.0) GBVS Heatmap (𝜎 =8.0, 𝑘 =2)
Figure 4: The top image shows the recorded fixation sequence on
a short snippet of the video clip Big Buck Bunny from the Peach
open movie project [Roosendaal 2008]. The bottom left image
shows a regular gaussian fixation heatmap (A(0) ). The bottom
right image shows the output of the proposed method (A(𝑘=2) ).

to the interpretation that this area was of higher interest for the specta-
tor. The GBVS generated fixation heatmap incorporates not only the
fixation duration and frequency but also how accessible the stimulus
in the region is to the observer. The result is a much more balanced
fixation heatmap, where all the fixated heads are clearly pronounced.

5 FINAL REMARKS
The proposed method extends the well-known GBVS saliency algo-
rithm by incorporating the measured visual attention. The resulting
heatmap visualizes a predicted perception rate of scene areas for an
individual or multiple spectators. However, as the most bottom-up
saliency algorithm, GBVS uses exclusively intrinsic scene features
to predict whether certain scene content is attractive for fixation. It
turns out, this is very accurate for a free viewing scenario. Yet, various
tasks may require the spectator to direct their visual attention to less
saliency scene areas. The proposed algorithm might distort these
fixation points to a close salient region and thus weigh the perception
rate based on the wrong stimuli. This limitation can be compensated
by using a small 𝜎 and high-resolution scene images but requires a
high accuracy of the fixation point.

In practice, however, it has been shown that the proposed visualiza-
tion generates more intuitive heatmaps than pure fixation heatmaps.
Thus, the presented visualization provides an ingenious overview of
the scene areas with a distinctive high rate of visual awareness.
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