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Abstract

Many cameras implement auto-focus functionality; however, they typically require the user to manually identify the location to
be focused on. While such an approach works for temporally-sparse autofocusing functionality (e.g., photo shooting), it presents
extreme usability problems when the focus must be quickly switched between multiple areas (and depths) of interest – e.g., in a
gaze-based autofocus approach. This work introduces a novel, real-time auto-focus approach based on eye-tracking, which enables
the user to shift the camera focus plane swiftly based solely on the gaze information. Moreover, the proposed approach builds a
graph representation of the image to estimate depth plane surfaces and runs in real time (requiring≈ 20ms on a single i5 core), thus
allowing for the depth map estimation to be performed dynamically. We evaluated our algorithm for gaze-based depth estimation
against state-of-the-art approaches based on eight new data sets with flat, skewed, and round surfaces, as well as publicly available
datasets.
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1. Introduction

Human vision is a foveated vision, i.e., sharpest vision is pos-
sible only in the central 2◦ of the field of view. Therefore, in
order to perceive our environment, we perform eye movements,
which allow us to focus on and switch between regions of inter-
est sequentially [23]. Modern digital microscopes and cameras
share a similar problem, in the sense that the auto focus is only
applied to the center of the field of view of the camera.

For various applications – such as microsurgery, microscopi-
cal material inspection, human-robot collaborative settings, se-
curity cameras – it would be a significant usability improvement
to allow users to adjust the focus in the image to their point of
interest without reorienting the camera or requiring manual fo-
cus adjustments. This would not only generate a benefit for
the user of the optical system, but also to non-users – for in-
stance, patients would benefit from a faster surgery and a less
strained surgeon. For a security camera, the security staff could
watch over a complete hall with eye movement speed, quickly
scanning the environment for suspicious activity. Applied to
different monitors, the efficiency gain would be even greater.

In this work, we used a commercial eye tracker to capture
the subject’s gaze. This gaze is then mapped to a screen where
the camera images (two images are overlaid in red and cyan
for a 3D impression) are presented. The gaze position on the
image is mapped to the estimated depth map, from which the
focal length of the camera is automatically adjusted. This en-
ables the user to quickly explore the scene without manually
adjusting the camera’s focal length. The depth map creation for
the complete scene takes≈20ms (single core from i5), whereas
the preprocessing for each image takes ≈15ms. For depth map

creation, we record 20 images with different focal lengths, al-
though this process can be completed with fewer images by
trading off accuracy. This leads to a system update time of
332ms based on our cameras frame rate (60Hz or 16.6ms per
frame), but buffering delays increase this time to ≈450ms. It is
worth noticing that this process can be sped-up through a faster
camera, multiple cameras, and GPU/multicore processing but is
limited by the reaction time of the optotune lens (2.5ms [17]),
which is used to change the focus.

In the following sections, we use depth as an index in relation
to the acquired image set. The real world depth can be calcu-
lated using the resulting focal length (acquired from the index)
and the camera parameters.

2. Related work

To compute a 3D representation of an area given a set of
images produced with different camera focal lengths, two steps
have to be applied. The first step is measuring or calculating
how focused each pixel in this set is. Afterwards, each pixel is
assigned an initial depth value (usually the maximum response)
on which the 3D reconstruction is performed.
In the sequence, we describe the shape-from-focus measuring
operators briefly, grouping then similarly to Pertuz et al. [19] –
which we refer the reader to for a wider overview.

• Gradient-based measure operators are first or higher order
derivatives of the Gaussian and are commonly applied for
edge detection. The idea here is that unfocused or blurred
edges have a lower response than sharp or focused edges.
The best performing representatives according to [19] are
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first-order derivatives [21, 8], second central moment on
first order derivatives [18], and the second central moment
on a Laplacian (or second order derivatives) [18].

• Statistics-based measurements are based on calculated
moments of random variables. These random variables are
usually small windows shifted over the image. The idea
behind statistics for focus measurements is that the mo-
ments (especially the second central moment) reach their
maximum at focused parts of the image. According to
[19], the best representatives are [32] using Chebyshev
moments, second central moment of the principal com-
ponents obtained from the covariance matrix [28], second
central moment of second central moments in a window
[18], and second central moment from the difference be-
tween the image and a blurred counterpart [9, 24, 26, 12].

• Frequency-based measures transform the image to the fre-
quency domain, which is usually used in image compres-
sion. These transformations are
Fourier, wavelet or curvelet transforms. Afterwards, the
coefficients of the base functions are summed [31, 30, 11]
or the statistical measures are applied on the coefficients
[19]. The idea behind frequency-based focus measure is
that the need for many base functions (or non zero coeffi-
cients) to describe an image is a measure of complexity or
structure in the image. This amount of structure or com-
plexity is the measure of how focused the image is.

• Texture-based measures use recurrence of intensity values
[10, 24, 26], computed locally binary patterns [13], or the
distance of orthogonally computed gradients in a window
[12]. The idea here is equivalent to the frequency-based
approaches, meaning that the amount of texture present
(complexity of the image) is the measure of how focused
the image is.

Regarding 3D reconstructions, common methods are:

• Gaussian and polynomial fit: These techniques fit a
Gaussian [16] or polynomial [25] to the set of focus mea-
sures. To accomplish this, samples are collected outgoing
from the maximum response of a pixel in the set of mea-
surements (for each image, one measurement) in both di-
rections. The maximum of the resulting Gaussian or poly-
nomial is then used as depth estimate.

• Surface fitting: Here the samples for the fitting procedure
are volumes around a pixel of focus measures. The surface
is fitted to those samples, and the value aligned (in direc-
tion of the set of measurements) to the pixel is used as a
new value. The improvement to the Gaussian or polyno-
mial fit is that the neighborhood of a pixel influences its
depth estimation too. This approach together with a neu-
ronal network for final optimization has been proposed by
[4].

• Dynamic programming: In this approach, the volume is
divided into subvolumes. For each sub-volume, an optimal

Figure 1: The system for image recording consisting of a digital camera
(XIMEA mq013mge2) and an optotune lens (el1030). On the left side, the
subject with eye tracker looking at the image visualization is shown. The same
subject with 3D goggles is shown on the right.

focus measure based on the result of a least squares opti-
mization technique is computed. These results are com-
bined and used as depth estimation [1, 2, 27, 14].

• Surface fitting: Here the samples for the fitting procedure
are volumes around a pixel of focus measures. The surface
is fitted to those samples, and the value aligned (in direc-
tion of the set of measurements) to the pixel is used as a
new value. The improvement to the Gaussian or polyno-
mial fit is that the neighborhood of a pixel influences its
depth estimation too. This approach together with a neu-
ronal network for final optimization has been proposed by
[4].

3. Setup description

As shown in Figure 1, the setup consists of a binocular Dik-
ablis Professional eye tracker [6], a conventional computer vi-
sualizing the image from the camera, and an optotune lens. The
optotune lens has a focal tuning range of 50mm to 120mm [17],
which can be adjusted online over the lens driver (serial com-
munication). The reaction time of the lens is 2.5ms [17]. We
used the XIMEA mq013mge2 digital camera shown in Figure 1
with a frame rate of 60 Hz and resolution 1280x1024 (we used
the binned image 640x512).

For estimating the subjects gaze we used the software Ey-
eRec [22] and the pupil center estimation algorithm ElSe [7].
The calibration was performed with a nine-point grid, fitting a
second order polynomial to the pupil center in the least squares
sense.

Additionally, it has to be noted that our setup includes a set
of fixed lenses between the optotune lens and the object, which
could not be disclosed at the time of writing (due to a Non-
Disclosure Agreement).

4. Application

The Graphical User Interface (GUI) of the system can be
seen in Figure 2; in this GUI, the subjects gaze is mapped to the
viewing area through marker detection and transformation be-
tween the eye tracker coordinates to screen coordinates. The top
two images are from two cameras with optotune lenses. Their
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Figure 2: The GUI of the system. In the top row, the images from the two
cameras with optotune lenses are shown. The depth map for those is on the
right. The correspondence is marked by an arrow. Markers on the left side
are used to map the gaze coordinates from the head-mounted eye tracker to the
subjects view area. For a 3D representation to the user, we overlay the images
from both cameras in red and cyan, which can be seen in the subjects viewing
area.

Figure 3: The algorithmic workflow. The gray boxes are in an output of the
algorithm. White boxes with rounded corners are algorithmic steps.

depth maps can be seen on the right side and the correspon-
dence is indicated by an arrow. Based on a slight shift of both
cameras it is possible to use the red-cyan technique, to achieve a
3D impression for the user too (Figure 1 on the right side). The
focal length of both cameras is automatically set to the depth at
the users gaze position.

5. Method

All steps of the algorithm are shown in Figure 3. The input
to the algorithm is a set of grayscale images recorded with dif-
ferent focal length. The images have to be in the correct order
otherwise the depth estimation will assign wrong depth values
to focused parts of the volume. The main idea behind the al-
gorithm is to estimate the depth map only based on parts of the
image in which the focus is measurable, and interpolate it to the
surrounding pixels if possible. Regions, where the focus is mea-
surable, are clear edges or texture in an image. Plain regions,
for example, usually induce erroneous depth estimations, which
have to be filtered out afterward, typically using a median filter

(a) Input (b) Magnitude

(c) Edges (d) Filtered magnitude

Figure 4: Canny edge based in focus estimation for one input image 4a. In 4b
and 4c the output of the canny edge filter is shown and the filtered magnitude
image in 4d.

in classical shape-from-focus methods. Therefore, we use the
Canny edge detector [5] as focus measure. The applied filter is
the first derivative of a Gaussian. The resulting edges are used
to filter the magnitude response of the filter, allowing only val-
ues with assigned edges to pass. For each filtered pixel magni-
tude, a maximum map through the set of responses is collected.
In this map, most of the pixels have no value assigned. Addi-
tionally, it has to be noticed that the same edge can be present
in this map multiple times because the changing focal length
influences the field of view of the camera. This leads to tracing
edges in the maximum map.

After computing and filtering the focus measures of the im-
age set, they have to be separated into parts. Therefore, we
need candidates representing a strong edge part and their cor-
responding edge trace to interpolate the depth estimation for
the candidate pixel. The candidate selection is performed by
only selecting local maxima using an eight-connected neigh-
borhood in the maximum map. These local maxima are used
to build a graph representing the affiliation between candidates.
This graph is build using the Delaunay triangulation, connect-
ing candidates without intersections.

The separation of this graph into a maximum response and
edge trace responses is performed by separating nodes that are
maximal in their neighborhood from those that are not. For
interpolation of the depth value of maximal nodes, nonmaxi-
mal nodes are assigned based on their interconnection to the
maxima and to an additional nonmaximal node. Additionally
the set of responses is searched for values at the same location
since the influence of the field of view does not affect all values
in the image, and, as a result, centered edges stay at the same
location. The interpolation is performed fitting a Gaussian (as
in [16]) to all possible triple assignments and using the median
of all results.
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(a) Magnitude of maximum val-
ues

(b) Depth of maximum values

(c) Local maxima (d) Graph representation

Figure 5: Maximum responses in the set of images. In 5a the maximum magni-
tude for each location collected in the image is shown (black means no measure-
ment collected) and the corresponding depth values in 5b. 5c shows the local
maxima (pixels increased for visualization) of the maximum magnitude map 5a
on which a Delaunay triangulation is applied resulting in a graph representation
5d.

The graph spanned by the maxima nodes and the correspond-
ing interpolated depth values are now the representation of the
depth map. For further error correction, an interdependent me-
dian filter is applied to each node and its direct neighbors in a
non-iterative way to ensure convergence. The last part of the al-
gorithm is the conversion of this graph into a proper depth map.
It has to be noticed that this graph is a set of triangles spanned
between maximal nodes. Therefore, each pixel in the resulting
depth map can be interpolated using its barycentric coordinates
between the three assigned node values of the triangle it is as-
signed to. Pixels not belonging to a triangle have no assigned
depth value. All steps are described in the following subsec-
tions in more detail.

5.1. Focus Measurement
Figure 4 shows the first step of the algorithm for one input

image 4a. We used the canny edge filter [5] with the first deriva-

tive of a Gaussian as kernel (N′(x,y) = 1
2πσ2 e

x2+y2

2σ2 ∂

∂x
∂

∂y ). The
response (magnitude) of the convolution with this kernel is vi-
sualized in the Figure 4b. For σ , which is the standard deviation
of the Gaussian, we used

√
2. After adaptive threshold selec-

tion (95% are not edges) and nonmaximum suppression of the
Canny edge filter, we use the resulting edges (Figure 4c) as fil-
ter mask. In other words, only magnitude values assigned to a
valid edge are allowed to pass. The stored magnitude responses
for the input image are shown in Figure 4d. The idea behind
this step is to restrict the amount of information gathered per
image, consequently reducing the impact of noise on the algo-
rithm. These two parameters (σ and non-edge ratio) are the
only variables of the proposed method.

(a) Magnitude trace
, (b) Depth trace

Figure 6: Maximum magnitude responses (6a) and the assigned depth index
(6b) in the set of images. In comparison to figure 5 were only 19 images in the
input set where used, here the set consist of 190 images to show the traces more
clear.

5.2. Graph Representation
After in each image the focus measure was applied and fil-

tered, the maximum along z of each location is collected in a
maximum map (Figure 5a, Equation 1).

M(x,y) = maxz(V (x,y,z)) (1)

D(x,y) =

{
z M(x,y) ∈ V(x,y,z)
0 M(x,y)=0

(2)

Equation 1 calculates the maximum map M (Figure 5a) where
V represents the volume of filtered focus measures (one for each
image). The coordinates x,y correspond to the image pixel lo-
cation, and z is the image index in the input image. Equation 2
is the corresponding depth or z-index map D (Figure 5b) where
an image set position is assigned to each maximum value.

In Figure 5a and its corresponding depth map 5b, it can be
seen that not every pixel has a depth estimation. Additionally,
most of the collected edges have traces, meaning that the edge
was collected in images recorded with different focal length.
The trace occurs because changes in focal length induce a scal-
ing of the field of view of the camera. In Figure 6, these traces
and their occurrences are shown more clear due to the increased
amount of the input image set (190 images). For Figure 5, we
used 19 images in the input set. The bottom right part of Fig-
ure 6a shows that the occurrence of those traces is not present
as strongly as in the other parts. This is due to the lens center
(in our setup bottom right) from which the field of view scale
impact increases linearly in distance.

The next step of the algorithm is the computation of local
maxima (Figure 5c) and, based on those, setting up a graph by
applying the Delaunay triangulation (Figure 5d). The idea be-
hind this step is to abstract the depth measurements, making it
possible to estimate the depth of plain surfaces (as long as their
borders are present) without the need of specifying a window
size. Additionally, this graph is used to assign a set of depth
estimations to one edge by identifying connected traces. These
values are important because the set of input images does not
have to contain the optimal focus distance of an edge. There-
fore, the set of depth values belonging to one edge are used to
interpolate its depth value.
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(a) Nodes Gmax (b) Nodes Gnonmax

Figure 7: White dots represent node locations (pixels increased for visualiza-
tion). In 7a the nodes which have an equal or larger magnitude value compared
to their connected neighbors in Gall are shown. 7b show the remaining non
maximal nodes of Gall after removing those in Gmax.

The local maxima (5) are computed based on a eight con-
nected neighborhood on the maximum magnitude map ( 5a).
Based on those points, the Delaunay triangulation (5d) sets up
a graph, where each triple of points creates a triangle if the cir-
cumcircle does not contain another point. This graph Gall (Fig-
ure 5) contains multiple maxima from the same edge on dif-
ferent depth plains. To separate those, we introduce two types
of nodes: a maximal response set Gmax (Figure 7a) and a non
maximal response set Gnonmax (Figure 7b).

Gmax = ∀i ∈ Gall ,∀ j ∈CN(Gall , i),

V ( j)≤V (i)
(3)

Gnonmax = ∀i ∈ Gall , i < Gmax (4)

Equation 3 is used to build the maximal response set Gmax (Fig-
ure 7a) where i is a Node in Gall and CN(Gall , i) delivers all
connected neighbors of i. Therefore only nodes with an equal
or higher magnitude value compared to their connected neigh-
bors belong to Gmax. Gnonmax (Figure 7b) consists of all nodes
in Gall which are not in Gmax and specified in equation 4.

5.3. Node Correspondence Collection

Algorithm 1 performs the candidate selection. Candidates
are possible node correspondences and marked by CAN(a),
where a is the index node for the assignment. For each node in
Gmax, connected nodes in Gnonmax with a different depth value
are collected. Since we want to collect all nodes that could pos-
sibly build a line over a trace and the maximum could be the last
or first measurement, we have to collect the connected nodes to
the node from Gnonmax too. In case the node from Gmax is close
to the lens center, where the scaling has low to none impact, we
have to search in the volume of responses (V ) as well.

After all candidates are collected, each pair has to be in-
spected to be a possible line trace or, in other words, a valid
pair of corresponding focus measures.

COR(a) = ∀b,c ∈CAN(a),
b , c
D(a) , D(b) , D(c)
~ab]~ac = π

(5)

Algorithm 1 Algorithm for candidate selection where CAN(a)
are all candidates for node a, CN(a) are the connected neigh-
bors to node a, V the set of focus measure responses for each
input frame, z the frame index, D(a) the depth index of node a,
Gall all local maxima, Gmax all maximal nodes and Gnonmax all
not maximal nodes.
Require: Gall ,Gmax,Gnonmax,V

function Selectcorrespondences(Gall ,Gmax,Gnonmax)
for a ∈ Gmax do

for b ∈CN(Gall ,a), b ∈ Gnonmax do
if D(a) , D(b) then add(CAN(a),b)
end if
for c ∈CN(Gall ,b) AND c ∈ Gnonmax do

if D(a) , D(c) then add(CAN(a),c)
end if

end for
end for
for z ∈V (a), V (a,z)> 0 do

if D(a) , z then add(CAN(a),z)
end if

end for
end for
return CAN

end function

Equation 5 describes the correspondences collection based on
the collected candidates (CAN(a)) belonging to node a. The
equations after the large bracket are the conditions, where D(a)
is the depth index of node a and ~ab]~ac is the angle between
the two vectors ~ab and ~ac. In our implementation, we used
−0.95 (-1 corresponds to π) because an image is a solid grid
and floating point inaccuracy.

5.4. Interpolation
For estimating the real depth of a node in Gmax, we used

the three point Gaussian fit technique proposed by Willert and
Gharib [29] and first used for depth estimation by Nayar et
al. [16]. The assumed Gaussian is M = Mpeake−0.5 D−D̄

σ where
M is the focus measure response, D the depth, and σ the stan-
dard deviation of the Gaussian. This can be rewritten with the
natural logarithm ln(M) = ln(Mpeak)−0.5 D−D̄

σ
. D̄ is the depth

value where the Gaussian has the highest focus measure (mean)
and obtained using equation 6.

M+(a,b) = ln(M(a))− ln(M(b))

M−(a,b,c) = M+(a,b)+M+(a,c)

D2−(a,b) = D(a)2−D(b)2

∆D(a,c) = 2|D(a)−D(c)|

D̄(a,b,c) =
M+(a,c)∗D2−(a,b)
∆D(a,c)∗M−(a,b,c)

(6)

In equation 6, a,b,c are node triples obtained from COR(a),
where M is the focus measure, and D is the depth value (we
used the same letters as in equation 1 and 2 for simplification
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Figure 8: The graph build on Gmax using Delaunay triangulation.

and want to note that it is not valid for nonmembers of Gall ,
which are obtained through the response volume (1) ).

Since COR(a) can have more than one pair of possible in-
terpolations, we use the median over all possible interpolation
values (D(a) = Median({D̄(a,b,c)}), ∀b,c ∈COR(a)).

5.5. Rebuild Graph
For using those interpolated nodes in Gmax as image repre-

sentation, we have to rebuild the graph. Again we use the De-
launay triangulation with the result shown in Figure 8. Due
to possible errors from the interpolation or the focus measure-
ment, we apply a median filter on the depth of the node and
its neighborhood (D(a) = Median({D(CN(a)),D(a)})). This
median interpolation is performed interdependently; in other
words, the values are stored directly into the depth map D,
therefore influencing the median filtering of its neighbors. We
used this way of median filtering because it delivered slightly
better results. A more time-consuming approach would be iter-
atively determining the median. However, such an iterative ap-
proach could lead to oscillation and therefore no convergence.

5.6. Depth Map Creation
For depth map creation, the graph in Figure 8 has to be trans-

formed into a surface. This is done by assigning each pixel in
a triangle the weighted value of the depth estimations from the
corner nodes. The weights are determined using the distance to
each node. The idea behind this is to have linear transitions be-
tween regions with different depth values. This makes it more
comfortable for the subject to slide over the scene with their
gaze, without having an oscillatory effect of the focal length
close to region borders. This can be achieved very fast using
barycentric coordinates (Figure 9a) to linearly interpolate (Fig-
ure 9b) those three values, which is usually applied in computer
graphics to 3D models.

P(a,b,c)

a =
∆PBC
∆ABC

,b =
∆PAC
∆ABC

,c =
∆PAB
∆ABC

(7)

Equation 7 describes the transformation from Cartesian coordi-
nates to barycentric coordinates, where A,B and C are the cor-
ner nodes of a triangle (Figure 9a), ∆ is the area of the spanned

(a) Barycentric (b) Interpolation

Figure 9: In 9a the barycentric coordinates of a triangle spanned by nodes A,B
and C is shown. The gray dot P in the middle of this triangle has coordinates
a,b and c which is related to its distance to A, B and C. 9b shows an exemplary
interpolation in such a triangle, where the numbers next to each corner are the
intesity value of the corner pixel.

(a) Depth map (b) 3D model

Figure 10: In 10a (normalized) white is closer, dark gray is further away and
black means that the depth measure could not estimate a depth value. The 3D
model in 10b is generated with the depth map from 10a using matlab.

triangle and a,b and c are the barycentric coordinates. An ex-
emplary interpolated triangle can be seen in 9b.

D(P) = a∗D(A)+b∗D(B)+ c∗D(C) (8)

For depth assignment to point P equation 8 is used where D
is the depth value. The resulting depth map after linear in-
terpolation of all triangles can be seen in Figure 10a. In this
depth map, white is closer to the camera and dark is further
away. Comparing Figure 10a to Figure 8 it can be seen that
areas for which no enclosing triangle exists are treated as not
measurable (black regions in Figure 10a). If an estimation for
those regions is wanted, it is possible to assign those pixels the
depth value of the closest pixel with depth information or to in-
terpolate the depth value using barycentric coordinates of the
enclosing polygon. The 3D reconstruction based on the depth
map from Figure 10a can be seen in Figure 10b.

6. Data sets

In Figure 11, all objects of the new data sets are shown. We
scanned each object in 191 steps over the complete range (focal
tuning range of 50mm to 120mm [17]) of the optotune lens.
Therefore each object set contains 191 images with a resolution
of 640x512.

The objects plastic towers, lego bevel, lego steps, and glass
are coated with a grid of black lines which should simplify the
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Figure 11: Shows all objects used to generate the datasets. Below each object image stands the title which will be used further in this document.

depth estimation. For the objects tape bevel and tape steps,
we used regular package tape to reduce the focus information
for different focal length. Objects cup, raspberry pi, foam, tin,
and CPU cooler are real objects where tin and raspberry pi are
scanned in an oblique position. All objects except CPU cooler
are used for evaluation, whereas the said object is used in limita-
tions because the laminate is interpolated to a flat surface (with-
out modification of the algorithm). This is due to the oppression
of the not maximal responses along the laminate (which do not
represent real edges).

For evaluation we also used zero motion from Suwajanakorn
et al. [27] and balcony, alley and shelf from Möller et al. [14].

7. Evaluation

For the evaluation, we used 20 images per object from the
set of 191. Those images were equally spread, meaning that the
change in focal length between consecutive images is constant.
In addition to the objects in Section 6, we used the data sets
provided by Suwajanakorn et al. [27] and Moeller et al. [14],
which are recorded with a professional camera in the real world.

For the evaluation, we did not change any parameter of our
algorithm. We used the algorithm variational depth [14] with
the parameters as specified by the authors on a GeForce GT 740
GPU. The shape-from-focus (SFF) measures we evaluate are
modified gray level variance (GLVM), modified Laplacian [15]
(MLAP), Laplacian in 3D window [3] (LAP3d), variance of
wavelets coefficients [31] (WAVV) and ratio of wavelet coeffi-
cients [30] (WAVR) as Matlab implementation from Pertuz et
al. [19, 20], since these are the best performing SFF measures
in [19]. For optimal parameter estimation, we tried all focus
measure filter sizes from 9 to 90 in a stepwise search of 9 as
for the median filter size. Additionally, the Gauss interpolation
was used.

7.1. Algorithm evaluation
Since human perception of sharpness varies between sub-

jects, it is very challenging to make exact depth measurements
for all objects and to manually label those. Therefore, we de-
cided to show the depth map for each algorithm (proposed, vari-
ational depth [14] and SFF) and the timings. In addition, we
provide an evaluation against the best index in the image stack
as seen by the authors.

Furthermore, in the supplementary material, we provide the
parameter settings for SFF. Since SFF was implemented in
MATLAB, a comparison with regard to the runtime is not abso-
lutely fair, but we argue, the results are close to what could be
reached by a C implementation. For visualization and compari-
son purposes we normalized the depth maps, based on the input
stack with a step size of 10 (between consecutive frames, i.e.,
the first frame has focus value 1 and the second would have 11).
Invalid regions are colored red. The normalization of the algo-
rithm variational depth [14] is always over the complete range
because the implementation returns no corresponding scale.

Figure 12 shows the results of our proposed method and the
state-of-the-art. The first four rows represent the results of ob-
jects, where the surface is marked with a grid. The purpose
here is to have a comparison based on more objects. For the
plastic tower, the irregular transitions between the four regions
are due to the triangle interpolation and, therefore, a result as
accepted. The corresponding 3D map is shown in Figure 10b.
In the third row (lego steps), it can be seen that our method
is able to correctly detect not measurable regions. The closest
result is WAVR with 60 times our runtime.

For the tape bevel, we see a superior performance of GLVM,
but our method is closest to its result in comparison to the oth-
ers. For the tape steps object, our method outperforms related
approaches in a fraction of runtime. The most difficult object in
our data set is the cup, which contains a big reflection and only
a small part is textured. The other methods estimate the rim to
be closer to the camera than the body of the cup which (is not
correct, our method labels large parts as not measurable). The
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Figure 12: The results on all new data sets in terms of the depth map and the runtime are shown. Red regions represent areas that are marked by the algorithm to be
not measurable. Brighter means closer to the camera.
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Figure 13: The results on the data sets alley [14], balcony [14], shelf [14] and zeromotion [27]. The first three data sets have a resolution of 1920x1080, whereas
the last one has a resolution of 774x518 pixel. In the top row, each algorithm is named as shown in figure 12. In addition to the depth maps, we show the processing
time of each algorithm. Red regions represent areas that were marked by the algorithm as not measurable. Brightness represents the distance to the camera (the
brighter, the further away).

valid region is estimated appropriately with a negligible error
(white spot).

The Raspberry PI is estimated correctly by all methods ex-
cept for GLVM. For foam, all methods perform well. The last
object of the new data set is a tin. The two bright spots on the
left side of the result of our method are due to dust particles
on the lens which get sharp on a closer focal length. The best
performing algorithm for the tin is GLVM.

Figure 13 presents the results on the data sets provided by
Suwajanakorn et al. [27] and Moeller et al. [14]. In comparison
to the related algorithms, the results achieved by our approach
are not as smooth. For the data set balcony [14] our algorithm
did not get the centered leaf correctly but the depth approxi-
mation of the remaining area is comparable to that achieved by
the state of the art, while our result does not look as smooth.
For the shelf [14] and zeromotion [27] datasets, our algorithm
performs better because it detects the not measurable regions.
For the algorithm variational depth [14], it was not possible to
provide a depth map for zeromotion from [27] because of the
algorithm crashes (we tried to crop the center out of the image
with 640x512 and 640x480 but it is still used to crash).

The purpose of this evaluation is not to show an algorithm
which is capable of estimating correct depth maps for all sce-
narios but to show that our algorithm can produce comparable
results in a fraction of runtime without changing any parameter.

We provide all depth maps in the supplementary material and
as a download, together with a Matlab script to show them in
3D.

7.1.1. Best index evaluation
For evaluation against the best index in the image stack, we

selected a region and an index in which the authors see this re-
gion as best focused. It has to be mentioned that we recorded
for each data set 191 images with different focal length. For the
depth map reconstruction, we used 19 equally spaced images.
For evaluation we used the image stacks from "lego steps",

Method R1 R2 R3 R4
GLVM 3.40 3.88 6.76 17.33
LAPM 6.06 3.80 11.48 21.92
LAP3 12.01 3.87 13.47 22.02
WAVV 19.10 4.33 19.87 30.87
WAVR 27.15 4.59 32.53 57.54

VARDEPTH 28.25 18.14 10.29 35.22
Proposed 12.96 4.07 6.96 5.61

Table 1: Results for the data set tin. The values represent the mean absolute
errors over the marked regions. The regions are named R1-4 and visualized as
red for R1, green for R2, blue for R3 and cyan for R4.

"plastic tower", "tape steps" and "tin" (see Figure 12). The same
parameters as for the images in Figure 12 and 13 are used.

The tabels 1, 2, 3, and 4 show the mean absolute error
( 1

n |vi− vgt |) for the data sets "tin", "lego steps", "tape steps",
and "plastic tower", respectively. Over each table we placed
an image for the specific data set with the evaluated regions
marked by different colors. Regions without depth estimation
(marked red in Figure 12) are excluded in the calculation of the
mean absolute error. Our methods shows similar performance
to the state of the art with less computational time.

9



Method R1 R2 R3 R4
GLVM 8.26 4.65 3.78 14.86
LAPM 12.85 5.28 3.75 11.68
LAP3 12.77 5.27 3.61 11.80
WAVV 12.98 5.33 3.57 11.77
WAVR 14.13 4.92 3.09 11.76

VARDEPTH 19.61 0.72 2.68 12.98
Proposed 3.67 4.14 5.28 12.90

Table 2: Results for the data set lego steps. The values represent the mean abso-
lute errors over the marked regions. The regions are named R1-4 and visualized
as red for R1, green for R2, blue for R3 and cyan for R4.

8. Limitations

The algorithm is capable of determining plain surfaces if
valid measures surrounding this surface are present. This ad-
vantage comes at the same time with the drawback that a nonex-
isting surface is interpolated in case of invalid measures in a re-
gion. This effect is depicted in Figure 14d, where the laminate
of the CPU cooler is interpreted as a plain surface. The pro-
posed algorithm could determine the lower path in the center of
the image but, as can be seen in Figure 14e, all Gmax nodes are
on the top of the laminate resulting in a wrong interpretation.

For a better reconstruction of the CPU cooler, we adapted the
proposed algorithm by simply not removing the Gnonmax nodes
for the second graph building step (meaning we used all nodes
in Gall). As can be seen in Figure 14f, the resulting depth map
got the laminate correctly but still fails for the right-skewed
part, which is because there was no valid focus measurement.
This can be seen in the graph shown in Figure 14g.

The disadvantages of using all nodes are the slightly in-
creased runtime (296ms instead of 283ms) due to additional
costs introduced by interpolation. Additionally, some nodes are
faulty because they either belong to an edge trace or are an in-
valid measurement. To avoid this, an iterative median filter over
should be applied resulting in even higher runtimes. Another
approach for improvement would be filtering nodes which have
been selected for interpolation. However, this would not reduce
the number of faulty measurements.

For comparison, we used the modified gray level variance
with filter size 18, median filter size 63 and Gaussian inter-
polation, which delivered the best result. The runtime was
7.06sec (Matlab implementation from Pertuz et al. [19, 20])
and is shown in Figure 14b. The black regions are added to the
depth map because of zero reliability, otherwise, the focus mea-
sure has everywhere a result. The algorithm variational depth
[14] produced the result in Figure 14c with default parameters

Method R1 R2 R3 R4
GLVM 21.56 14.05 25.83 2.18
LAPM 45.86 62.75 39.90 63.64
LAP3 45.86 62.75 39.90 63.64
WAVV 34.84 59.93 24.33 43.74
WAVR 56.53 65.62 95.51 112.41

VARDEPTH 52.89 61.42 104.43 109.43
Proposed 12.39 19.14 6.27 15.93

Table 3: Results for the data set tape steps. The values represent the mean abso-
lute errors over the marked regions. The regions are named R1-4 and visualized
as red for R1, green for R2, blue for R3 and cyan for R4.

and a runtime 6.91sec on a GeForce GT 740 GPU.
For calculation, we used 20 images as for the evaluation and

did not change the Canny parameters for the proposed algo-
rithm.

9. Conclusion

In this paper, we showed the use of eye tracking for automat-
ically adapting, focus to the presented image. Due to the real-
time capability, our methods can be beneficial in various ap-
plications where autofocus facilitates interaction (e.g. surgery,
security, human-robot collaboration, etc.). The algorithm pro-
posed here shows similar performance as the state of the art
but requires minimal computational resources and requires no
parameter adjustment.

In our future work, we will further optimize our method and
provide a GPU implementation to make it computationally pos-
sible to use more than only one focus measuring method (e.g.
GLVM). For evaluation purpose, we also have to increase the
data sets by different materials and structures.
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