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Tübingen,Sand 14, Tel.: +49 70712970492, Wolfgang.Rosenstiel@uni-tuebingen.de

cSCHUFA InnovationLab, SCHUFA Holding AG, Germany, 65201 Wiesbaden, Kormoranweg 5,
Tel.: +49 611 92780, gkasneci@googlemail.com

Abstract

Real-time, accurate, and robust pupil detection is an essential prerequisite for

pervasive video-based eye-tracking. However, automated pupil detection in real-

world scenarios has proven to be an intricate challenge due to fast illumination

changes, pupil occlusion, non-centered and off-axis eye recording, as well as

physiological eye characteristics. In this paper, we approach this challenge through:

I) a convolutional neural network (CNN) running in real time on a single core, II)

a novel computational intensive two stage CNN for accuracy improvement, and

III) a fast propability distribution based refinement method as a practical alterna-

tive to II. We evaluate the proposed approaches against the state-of-the-art pupil

detection algorithms, improving the detection rate up to ≈ 9% percent points on

average over all data sets. This evaluation was performed on over 135,000 images:

94,000 images from the literature, and 41,000 new hand-labeled and challenging

images contributed by this work.
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1. Introduction

For over a century now, the observation and measurement of eye movements

have been employed to gain a comprehensive understanding on how the human

oculomotor and visual perception systems work, providing key insights about cog-

nitive processes and behavior Wade and Tatler [1]. Eye-tracking devices are rather

modern tools for the observation of eye movements. In its early stages, eye track-

ing was restricted to static activities, such as reading and image perception Yarbus

[2], due to restrictions imposed by the eye-tracking system – e.g., size, weight,

cable connections, and restrictions to the subject itself. With recent developments

in video-based eye-tracking technology, eye tracking has become an important in-

strument for cognitive behavior studies in many areas, ranging from real-time and

complex applications (e.g., driving assistance based on eye-tracking input Kasneci

[3] and gaze-based interaction Turner et al. [4]) to less demanding use cases, such

as usability analysis for web pages Cowen et al. [5]. Moreover, the future seems

to hold promises of pervasive and unobtrusive video-based eye tracking Kassner

et al. [6], enabling research and applications previously only imagined. Whereas

video-based eye tracking has been shown to perform satisfactorily under labora-

tory conditions, many studies report the occurrence of difficulties and low pupil

detection rates when these eye trackers are employed for tasks in natural envi-

ronments, for instance driving Kasneci [3], Liu et al. [7], Trösterer et al. [8] and

shopping Kasneci et al. [9]. The main source of noise in such realistic scenarios is

an unreliable pupil signal, stemming from intricate challenges in the image-based

pupil detection. A variety of difficulties occurring when using video-based eye
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trackers, such as changing illumination, motion blur, and pupil occlusion due to

eyelashes, are summarized in Schnipke and Todd [10]. Rapidly changing illumi-

nation conditions arise primarily in tasks where the subject is moving fast (e.g.,

while driving) or rotates relative to unequally distributed light sources, while mo-

tion blur can be caused by the image sensor capturing images during fast eye

movements such as saccades. Furthermore, eyewear (e.g., spectacles and con-

tact lenses) can result in substantial and varied forms of reflections (Fig. 1a and

Fig. 1b), non-centered or off-axis eye position relative to the eye-tracker can lead

to pupil detection problems, e.g., when the pupil is surrounded by a dark region

(Fig. 1c). Other difficulties are often posed by physiological eye characteristics,

which may interfere with detection algorithms (Fig. 1d). It is worth noticing that

such unreliable pupil signals can not only significantly disturb algorithms for the

automatic identification of eye movements Santini et al. [11] but also result in

inaccurate gaze estimates. As a consequence, the data collected in such studies

must be post-processed manually, which is a laborious and time-consuming pro-

cedure. Additionally, this post-processing is impossible for real-time applications

that rely on the pupil monitoring (e.g., driving or surgery assistance). Therefore,

a real-time, accurate, and robust pupil detection is an essential prerequisite for

pervasive video-based eye-tracking.

State-of-the-art pupil detection methods range from relatively simple methods

such as combining thresholding and mass center estimation Peréz et al. [12] to

more elaborated methods that attempt to identify the presence of reflections in the

eye image and apply pupil-detection methods specifically tailored to handle such

challenges Fuhl et al. [13] – a comprehensive review is given in Section 2. De-

spite substantial improvements over earlier methods in real-world scenarios, these
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Figure 1: Images of typical pupil detection challenges in real-world scenarios: (a) and (b) reflec-

tions, (c) pupil located in dark area, and (d) unexpected physiological structures.

current algorithms still present unsatisfactory detection rates in many important

realistic use cases (as low as 34% Fuhl et al. [13]). However, in this work we show

that carefully designed and trained convolutional neural networks (CNN) Domin-

gos [14], LeCun et al. [15], which rely on statistical learning rather than hand-

crafted heuristics, are a substantial step forward in the field of automated pupil

detection. CNNs have been shown to reach human-level performance on a multi-

tude of pattern recognition tasks (e.g., digit recognition Ciresan et al. [16], image

classification Krizhevsky et al. [17]). These networks attempt to emulate the be-

havior of the visual processing system and were designed based on insights from

visual perception research.

We propose a dual convolutional neural network pipeline for image-based

pupil detection. The first pipeline stage employs a shallow CNN on subregions

of a downscaled version of the input image to quickly infer a coarse estimate of

the pupil location. This coarse estimation allows the second stage to consider

only a small region of the original image, thus, mitigating the impact of noise and

decreasing computational costs. The second pipeline stage then samples a small

window around the coarse position estimate and refines the initial estimate by
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evaluating subregions derived from this window using a second CNN. We have

focused on robust learning strategies (batch learning) instead of more accurate

ones (stochastic gradient descent) LeCun et al. [18] due to the fact that an adap-

tive approach has to handle noise (e.g., illumination, occlusion, interference) ef-

fectively. The motivation behind the proposed pipeline is (i) to reduce the noise

in the coarse estimation of the pupil position, (ii) to reliably detect the exact pupil

position from the initial estimate, and (iii) to provide an efficient method that can

be run in real-time on hardware architectures without an accessible GPU.

A further contribution of this work is a new hand-labeled data set with more

than 40,000 eye images recorded in real world experiments. This data set consists

of highly challenging eye images containing scattered reflections on glasses cover-

ing the parts or the complete pupil, pupils in dark areas whereby the contrast to the

surrounding area is low, and additional black blobs on the iris, which may result

from eye surgery. In addition, we propose a method for generating training data

in an online-fashion, thus being applicable to the task of pupil center detection in

online scenarios. We evaluated the performance of different CNN configurations

both in terms of quality and efficiency and report considerable improvements over

stat-of-the-art techniques.

2. Related work

During the last two decades, several algorithms have addressed image-based

pupil detection. Peréz et al. [12] first thresholded the image and compute the mass

center of the resulting dark pixels. This process was iteratively repeated in an area

around the previously estimated mass center to determine a new mass center until

convergence. The Starburst algorithm, proposed by Li et al. [19], first removed
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the corneal reflection and then located pupil edge points using an iterative feature-

based approach. Based on the RANSAC algorithm Fischler and Bolles [20], a

best fitting ellipse is determined, and the final ellipse parameters are selected by

applying a model-based optimization. Long et al. [21] first down sampled the im-

age and search there for an approximate pupil location. The image area around

this location was further processed and a parallelogram-based symmetric mass

center algorithm is applied to locate the pupil center. In another approach, Lin

et al. [22] thresholded the image, removed artifacts by means of morphological

operations, and applied inscribed parallelograms to determine the pupil center.

Keil et al. [23] first located corneal reflections; afterwards, the input image was

thresholded, the pupil blob was searched in the adjacency of the corneal reflec-

tion, and the centroid of pixels belonging to the blob was taken as pupil center.

San Agustin et al. [24] threshold the input image and extract points in the contour

between pupil and iris, which were then fitted to an ellipse based on the RANSAC

method to eliminate possible outliers. Świrski et al. [25] started with a coarse po-

sitioning using Haar-like features. The intensity histogram of the coarse position

was clustered using k-means clustering, followed by a modified RANSAC-based

ellipse fit. The above approaches have shown good detection rates and robustness

in controlled settings, i.e., laboratory conditions.

Three recent methods, SET Javadi et al. [26], ExCuSe Fuhl et al. [13], and

ElSe Fuhl et al. [27], explicitly address the aforementioned challenges associated

with pupil detection in natural environments. SET Javadi et al. [26] first extracts

pupil pixels based on a luminance threshold. The resulting image is then seg-

mented, and the segment borders are extracted using a Convex Hull method. El-

lipses are fit to the segments based on their sinusoidal components, and the ellipse
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closest to a circle is selected as pupil. ExCuSe Fuhl et al. [13] first analyzes the

input image with regard to reflections based on intensity histograms. Several pro-

cessing steps based on edge detectors, morphologic operations, and the Angular

Integral Projection Function are then applied to extract the pupil contour. Finally,

an ellipse is fit to this line using the direct least squares method. ElSe Fuhl et al.

[27] is based on the same edge based approach as ExCuSe Fuhl et al. [13] with fur-

ther modifications like improved morphologic operations and line segment filter-

ing by applying an ellipse fit. In addition the Angular Integral Projection function

is replaced by a weighted blob detector. Although the latter three methods report

substantial improvements over earlier methods, noise still remains a major issue.

Thus, robust detection, which is critical in many online real-world applications,

remains an open and challenging problem Fuhl et al. [28].

Recent developments in machine learning, especially in the field of neuronal

networks, had a big breakthrough by learning cascaded filter banks, e.g., Krizhevsky

et al. [17], LeCun et al. [15]. In particular for computer vision, there are three main

advantages of CNNs when compared to fully connected neuronal networks. First,

the convolution layers, which are linear filter banks learned by the CNN can be

seen as neuronal network layers with shared weights.In image processing, this is

achieved by convolving the weights with the input layer. As a result, these filters

are shift-invariant and applicable to the entire image (since image statistics are sta-

tionary). Furthermore, only the local neighborhood of a location has an influence

on the result, i.e, the spatial information of the response remains through to the

neuron position. Each convolution layer has many of these filters and is usually

followed by a pooling layer. The pooling layer subsamples the data and therefore

reduces noise. The second advantage is the topological structure of a CNN, which
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arises from cascading multiple convolution layers. This allows to learn features

from lower level features, which is generally known as deep learning. The third

advantage is the consecutive reduction of the parameters in comparison to a fully

connected neuronal network, which results from the topological structure.

Recent developments in CNNs are multi scale layers Gong et al. [29], Cai et al.

[30], the inclusion of transposed convolutional layers (approximated deconvolu-

tion) Xu et al. [31], Long et al. [32] and recurrent CNNs Liang and Hu [33], Pin-

heiro and Collobert [34]. For example, the multi scale approach by Gong et al.

[29] is based on spatial pyramid matching from Lazebnik et al. [35]. The input

image is processed on multiple scales using ImageNet from Krizhevsky et al. [17].

The extracted feature vectors are than feed into a CNN. This approach was evalu-

ated for classification, recognition, and image retrieval. Cai et al. [30] proposed a

CNN architecture with fixed input size capable of handling multiple object sizes.

This multi scale CNN follows the idea of training multiple detectors for each

object size summarized in one CNN. For training they used a multi-task loss for-

mulation where each label consists of the class and the enclosing bounding box.

Another interesting development is the use of recurrent neuronal networks Car-

penter and Grossberg [36] as convolution layer. The idea behind recurrent neu-

ronal networks is the usage of information from previous computations. Liang

and Hu [33] proposed the recurrent convolution layer based approach and showed

its applicability for image recognition. For scene labeling Pinheiro and Collobert

[34] proposed an architecture, which corrects itself due to this recurrence infor-

mation. If it is about detection all mentioned architectures have to be applied to

multiple image locations in a sliding window approach, due to the fact that each

layer reduces the output size. CNNs with transposed convolutional layers address
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this problem by spreading the convolution of one location to multiple positions

in the output. These layers approximate a deconvolution. The architecture with

transposed convolutional layers was first proposed by Long et al. [32]. Alterna-

tively Xu et al. [31] trained a CNN to learn real deconvolution filters for image

restoration. The architecture of the net consists of large one dimensional kernels

which represent the separable deconvolution filters.

In our scenario, we want to train a CNN for real time pupil center detection

based on the CPU. Therefore most of the extensions like recurrent neuronal net-

works, deconvolution or multi scale networks remain prohibitively expensive. We

used the classical window based approach with coarse and fine positioning to re-

duce the computational costs of convolutions. In addition, we propose a fast direct

approach.

3. Proposed single- and two-stage CNN approaches

The overall workflow for the proposed algorithm is shown in Fig. 2. In the first

stage, the image is downscaled and divided into overlapping subregions. These

subregions are evaluated by the first CNN, and the center of the subregion that

evokes the highest CNN response is used as a coarse pupil position estimate. Af-

terwards, this initial estimate is fed into the second pipeline stage. In this stage,

subregions surrounding the initial estimate of the pupil position in the original

input image are evaluated using a second CNN. The center of the subregion that

evokes the highest CNN response is chosen as the final pupil center location. This

two-step approach has the advantage that the first step (i.e., coarse positioning) has

to handle less noise because of the bicubic downscaling of the image and, conse-

quently, involves less computational costs than detecting the pupil on the complete
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Figure 2: Workflow of the proposed algorithm. First a CNN is employed to estimate a coarse

pupil position based on subregions from a downscaled version of the input image. This position is

upsampled to the full resolution of the input image (upsampled position in the workflow diagram).

This position is then refined using subregions around the coarse estimation in the original input

image by a second CNN.

upscaled image. In the following subsections, we delineate these pipeline stages

and their CNN structures in detail, followed by the training procedure employed

for each CNN.

3.1. Overview of all CNNs

Table 1 shows an overview of all CNN configurations with their assigned

names. All coarse CNNs follow the core architecture presented in Section 3.1.1,

and each candidate has a specific number of filters in the convolution layer as well

as perceptron weights in the fully connected layer. Their names (CKXPY ) are
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Table 1: Overview of all evaluated CNN configurations. In row CNN the assigned names can

be seen. C stands for convolution filter size, K is the amount of kernels (or filters), D stands for

the pooling layer where D comes from down sampling and P stands for the amount of perceptron

weights in the fully connected layer.

Layer 1 Layer 2

CNN C K D C K D P

Coarse

CK8P8 5 8 4 5 8 - 8

CK8P16 5 8 4 5 16 - 16

CK16P32 5 16 4 5 32 - 32

Fine FCKXPY
20 8 5 14 8 - 8

Direct SK8P8 6 8 4 5 8 - 8

Fine FSK8P8 20 8 5 14 8 - 8

prefixed with C (Coarse) using X Kernels in the first layer and Y connections to

the final Perceptron in the fully connected layer. The second stage CNN (see Fig-

ure 2) is named Fine CNN. The name (FCKXPY
) specifies also the assigned coarse

positioning CNN. This CNN is further described in Section 3.1.2. The last CNN

is the direct pupil center estimation approach SK8P8, where only one Single stage

is used based on the downsampled image. Those are described in Section 3.2.3.

However, we evaluated SK8P8 also with the two step approach (FSK8P8).

3.1.1. Coarse positioning CNN (CK8P8, CK8P16, CK16P32)

The grayscale input images generated by the mobile eye tracker used in this

work are sized 384× 288 pixels. Directly employing CNNs on images of this size

would demand a large amount of resources and, thus, would be computationally
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(a) (b)

Figure 3: The downscaled image is divided in subregions of size 24 × 24 pixels with a stride of

one pixel (a), which are then rated by the first stage CNN (b).

expensive, impeding their usage in state-of-the-art mobile eye trackers. Thus, one

of the purposes of the first stage is to reduce computational costs by providing a

coarse estimate that can in turn be used to reduce the search space of the exact

pupil location. However, the main reason for this step is to reduce noise, which

can be induced by different camera distances, changing sensory systems between

head-mounted eye trackers Boie and Cox [37], Dussault and Hoess [38], Reibel

et al. [39], movement of the camera itself, or the usage of uncalibrated cameras

(e.g., out of focus, unbalanced white levels). To achieve this goal, first the input

image is downscaled using a bicubic interpolation, which employs a third order

polynomial in a two dimensional space to evaluate the resulting values. In our

implementation, we employ a downscaling factor of four times, resulting in im-

ages of 96 × 72 pixels. Given that these images contain the entire eye, we chose

a CNN input size of 24 × 24 pixels to guarantee that the pupil is fully contained

within a subregion of the downscaled images. Subregions of the downscaled im-
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age are extracted by shifting a 24 × 24 pixels window with a stride of one pixel

(see Fig. 3a) and evaluated by the CNN, resulting in a rating within the interval

[0,1] (see Fig. 3b).

These ratings represent the confidence of the CNN that the pupil center is

within the subregion. Thus, the center of the highest rated subregion is chosen as

the coarse pupil location estimation. The core architecture of the first stage CNN

is summarized in Table 1. The first layer is a convolutional layer with filter size

5 × 5 pixels, one pixel stride, and no padding. The convolution layer is followed

by an average pooling layer with window size 4× 4 pixels and four pixels stride.

The subsequent stage is an additional convolution layer with filter size 5 × 5,

reducing the size of the feature map to 1 × 1 × 8, which is fed into the last fully

connected layer with depth one. The last layer can be seen as a single perceptron

responsible for yielding the final rating within the interval [0,1]. The size of the

filter in combination with the pooling size is a trade-off between the information

the CNN can hold and its computational costs. Many small convolution layers

would increase the processing time of the net; in contrast, higher pooling would

reduce the information held by the CNN.

We have evaluated this architecture for different amounts of filters in the con-

volutional layers as well as varying the quantity of perceptrons in the fully con-

nected layer; these values are reported in Section 5. The main idea behind the

selected architecture is that the convolutional layer learns basic features, such as

edges, approximating the pupil structure. The average pooling layer makes the

CNN robust to small translations and blurring of these features (e.g., due to the

initial downscaling of the input image). The second convolution layer incorpo-

rates deeper knowledge on how to combine the learned features for the coarse
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detection of the pupil position. The final perceptron learns a weighting to produce

the final rating.

3.1.2. Fine positioning CNN (FCKXPY
and FSK8P8)

Although the first stage yields an accurate pupil position estimate, it lacks pre-

cision due to the inherent error introduced by the downscaling step. Therefore, it

is necessary to refine this estimate. This refinement could be attempted by apply-

ing methods similar to those described in Section 2 to a small window around the

coarse pupil position estimate. However, since most of the previously mentioned

challenges are not alleviated by using this small window, we chose to use a sec-

ond CNN that evaluates subregions surrounding the coarse estimate in the original

image.

The second stage CNN employs the same architecture pattern as the first stage

(i.e., convolution ⇒ average pooling ⇒ convolution ⇒ fully connected) since

their motivations are analogous. Nevertheless, this CNN operates on a larger input

resolution to increase accuracy and precision. Intuitively, the input image for

this CNN would be 96 × 96 pixels: the input size of the first CNN input (24 ×

24) multiplied by the downscaling factor (4). However, the resulting memory

requirement for this size was larger than available on our test device; as a result,

we utilized the closest working size possible: 89 × 89 pixels. The size of the

other layers were adapted accordingly. The convolution filters in the first layer

were enlarged to 20 pixels to compensate for increased noise and motion blur.

The dimension of the pooling window was increased by one pixel, leading to a

decreased input size on the second convolution layer and reduced runtime.

This CNN uses eight convolution filters in the first stage and eight perceptron

weights due to the increased size of the convolution filter and the input region
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size. Subregions surrounding the coarse pupil position are extracted based on

a window of size 89 × 89 pixels centered around the coarse estimate, which is

shifted in a radius of 10 pixels (with a one pixel stride) horizontally and vertically.

Analogously to the first stage, the center of the region with the highest CNN rating

is selected as fine pupil position estimate. Despite higher computational costs

in the second stage, our approach is highly efficient and can be run on today’s

conventional mobile eye-tracking systems.

3.1.3. Direct coarse to fine positioning CNN (SK8P8)

Unfortunately, the fine positioning CNN requires computational capabilities

that are not always found in state-of-the-art embedded systems. To address this

issue, we have developed one additional fine positioning method for this evalua-

tion that employs a CNN similar to the ones used in the coarse positioning stage.

However, this CNN uses an input size of 25 × 25 pixels to obtain an even center.

As a consequence, the first convolution layer was increased to 6 × 6 filters. This

method is used as an inexpensive single stage approach (SK8P8) as well as in

combination with the fine positioning CNN (FSK8P8).

3.2. CNN training methodology

Both CNNs were trained using supervised batch gradient descent LeCun et al.

[18] with a dynamic learning rate from 10−1 to 10−6. The learning rate was

dropped after each ten epochs by 10−1. In the first round we trained for 50 epochs

and selected the best performing CNN on the validation set. This was repeated

four times and in each new round the starting learning rate was decreased by a

factor of 10−1. After the last round we did fine tuning by inspecting each iteration

additionally. For each round we generated a new training set. The batch size for
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one iteration was 100 and all CNNs’ weights were initialized using a Gaussian

with standard deviation of 0.01. While stochastic gradient descent searches for

minima in the error plane more effectively than batch learning when given valid

examples Heskes and Kappen [40], Orr [41], it is vulnerable to disastrous hops

if given inadequate examples (e.g., due to poor performance of the traditional al-

gorithm). On the contrary, batch training dilutes this error which is why we have

opted for this method.

3.2.1. Coarse positioning CNN (CK8P8, CK8P16, CK16P32)

Figure 4: Nine valid (top right) and 32 invalid (bottom) training samples for the coarse position

CNN extracted from a downscaled input image (top left).

The coarse position CNN was trained on subregions extracted from the down-

scaled input images that fall into two different data classes: containing a valid

(label = 1) or invalid (label = 0) pupil center. Training subregions were ex-

tracted by collecting all subregions with center distant up to twelve pixels from

the hand-labeled pupil center. In the first round of training we only used half of the

distance to reduce the amount of invalid examples. Subregions with center distant

up to one pixel were labeled as valid examples while the remaining subregions

were labeled as invalid examples. As exemplified by Fig. 4, this procedure results
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in an unbalanced set of valid and invalid examples therefore we only used sam-

ples on the diagonal (top left to bottom right) where every second was discarded

for the invalid samples. This reduces the amount of samples per frame. Due to

the huge size difference of the data sets we reduced the amount of samples per

set to 20,000 for the first round and 40,000 for the others. Therefore we picked

randomly two thousand images per data set, created the samples and dropped the

overflow. If the data set was to small we copied the samples to reach the 20,000

or 40,000.

3.2.2. Fine positioning CNN (FCKXPY
and FSK8P8)

The fine positioning CNN (responsible for detecting the exact pupil position)

is trained similarly to the coarse positioning one. However, we extract only valid

subregion up to a distance of three pixels from the hand-labeled pupil center and

selected samples up to a distance of twenty four pixels with a step size of three.

Afterwards the valid examples where again copied to balance the amount of valid

and invalid examples. This reduced amount of samples per hand-labeled data ad

is to constrain learning time, as well as main memory and storage consumption.

3.2.3. Direct coarse to fine positioning CNN (SK8P8)

For these CNNs, training and evaluation were performed in an analogous fash-

ion to the previous ones, with the exception that training samples were generated

from both diagonals (top left to bottom right and top right to bottom left).

3.3. Fast fine accuracy improvement

The main idea here is to use the response of the CNN surrounding the maxi-

mum value to refine the pupil center estimation. For a fast accuracy improvement

of all CNNs the response surrounding the maximum position is converted into a
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Figure 5: The work flow of the accuracy improvement. On the top left the input image is shown,

on the top right is the output of the CNN. For accuracy improvement the surrounding area of the

maximum position is converted to a distribution and a shift vector is computed. This distribution

is shown in the green box on the bottom right. On the bottom left the maximum position (red dot)

and the shifted position (green dot) are shown.

probability distribution. Such a response of a CNN is shown in figure 5 on the

top left. The converted area is surrounded by a green square. In our implementa-

tion we used an 7 × 7 (N ×M ) square centered at the maximum position. The

resulting distribution is shown in Figure 5 on the bottom right. To convert the

response into a distribution each value is divided by the sum of all values in the

square (equation (1)).

D(x, y) =
R(x, y)∑N

i=0

∑M
j=0R(i, j)

(1)

In equation (1) D(x, y) is the distribution value at location x, y and R(x, y) is

the CNN response at location x, y. Each value in this distribution is weighted by
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the displacement vector to the maximum position. The calculation is shown in

equation (2).

−→
SV =

N
2∑

i=−N
2

M
2∑

j=−M
2

D(
N

2
+ i,

M

2
+ j) ∗

 i

j

 (2)

In equation (2)
−→
SV is the vector shifting the initial maximum position (red dot

in figure 5 on the bottom left) to the new more accurate position (green dot in

figure 5 on the bottom left). D(i, j) is the result of equation (1) at location i, j and i

j

 is the displacement vector to the center.

4. Data sets

In this study, we used the data sets provided by Fuhl et al. [13, 27], comple-

mented by five additional new hand-labeled data sets contributed by this work. In

total, over 135,000 manually labeled eye images were employed for evaluation.

Our data sets introduced with this work include 41,217 images collected during

driving sessions in public roads for an experiment Kasneci [3] that were not re-

lated to pupil detection and were chosen due the non-satisfactory performance of

the proprietary pupil detection algorithm. These new data sets include fast chang-

ing and adverse illumination, spectacle reflections, and disruptive physiological

eye characteristics (e.g., dark spot on the iris); samples from these data sets are

shown in Fig. 6.

5. Evaluation

Training and evaluation figures reported in this paper were obtained on an

Intel R© CoreTMi5-4670 desktop computer with 8GB RAM. This setup was chosen
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Figure 6: Samples from the data sets contributed by this work. Each column belongs to a distinct

data set. The top row includes non-challenging samples, which can be considered relatively similar

to laboratory conditions and represent only a small fraction of each data set. The other two rows

include challenging samples with artifacts caused by the natural environment.

because it provides a performance similar to systems that are usually provided

by eye-tracker vendors, thus enabling the actual eye-tracking system to perform

other experiments along with the evaluation. The algorithm was implemented us-

ing MATLAB (r2015b) combined with caffe Jia et al. [42]. We report our results

in terms of the average pupil detection rate as a function of pixel distance between

the algorithmically established and the hand-labeled pupil center. Although the

ground truth was labeled by experts in eye-tracking research, imprecision cannot

be excluded. Therefore, the results are discussed for a pixel error of five (i.e.,

pixel distance between the algorithmically established and the hand-labeled pupil
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center), analogously to Fuhl et al. [13], Świrski et al. [25].

We performed a per data set cross validation guaranteeing that the CNNs are eval-

uated on distinct images from those it was trained on. In addition this gives us the

advantage for a more detailed comparison between PupilNet and the state-of-the-

art algorithms.

5.1. Coarse positioning

Figure 7: Performance for the evaluated coarse CNNs using the per data set cross validation

showing the downscaled error (∗4 for real error). Each data set is weighted equally meaning that

the average result over all data sets is shown independent of their image count.

We start by evaluating the candidates from Table 1 for the coarse positioning

CNN. Fig. 7 shows the performance of the coarse positioning CNNs when trained

using the per data set cross validation. As can be seen in figure 7, the number

of filters in the first layer (CK8P8, and CK8P16) have only a small impact to the

detection rate. Increasing the amount for both convolutions (CK16P32) improves

the result slightly but also increases the computational costs (Fig. 7 shows he
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average detection rate over all data sets meaning that one percent improvement

means an betterment on all data sets). However, it is important to notice that this

is the most expensive parameter in the proposed CNN architecture in terms of

computation time and, thus, further increments must be carefully included.

5.2. Fine positioning

Figure 8: All CNNs were trained and evaluated using the per data set cross validation. The average

detection rate over all data sets is shown. The result for SK8P8 is with accuracy improvement from

section 3.3.

The FCKXPY
was evaluated using all the previously evaluated coarse CNNs

(i.e., CK8P8, CK8P16, and CK16P32). In addition the direct approach SK8P8 was

evaluated with the accuracy correction from Section 3.3. Similarly to the coarse

positioning, these were also evaluated through the per data set cross validation.

As baseline, we evaluated five state-of-the-art algorithms, namely, ElSe Fuhl

et al. [27], ExCuSe Fuhl et al. [13], SET Javadi et al. [26], Starburst Li et al. [19],

and Świrski et al. [25]. The average performance of the evaluated approaches is

shown in Fig. 8.
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Table 2: Five pixel error for the proposed CNNs and the state-of-the-art per data set.

ElSeExCuSeSK8P8FCKXPY
FSKXPY

I 0.86 0.72 0.77 0.78 0.82
II 0.65 0.40 0.80 0.79 0.79
III 0.64 0.38 0.62 0.60 0.66
IV 0.83 0.80 0.90 0.90 0.92
V 0.85 0.76 0.91 0.89 0.92
VI 0.78 0.60 0.73 0.78 0.79
VII 0.60 0.49 0.73 0.80 0.73
VIII 0.68 0.55 0.84 0.83 0.81
IX 0.87 0.76 0.86 0.86 0.86
X 0.79 0.79 0.80 0.78 0.81
XI 0.75 0.58 0.85 0.74 0.91
XII 0.79 0.80 0.87 0.85 0.85
XIII 0.74 0.69 0.79 0.81 0.83
XIV 0.84 0.68 0.91 0.94 0.95
XV 0.57 0.56 0.81 0.71 0.81
XVI 0.60 0.35 0.80 0.72 0.80
XVII 0.90 0.79 0.99 0.87 0.97
XVIII 0.57 0.24 0.55 0.44 0.62
XIX 0.33 0.23 0.34 0.20 0.37
XX 0.78 0.58 0.79 0.73 0.79
XXI 0.47 0.52 0.81 0.67 0.83
XXII 0.53 0.26 0.50 0.52 0.58
XXIII 0.94 0.93 0.86 0.87 0.90
XXIV 0.53 0.46 0.46 0.55 0.55
new I 0.62 0.22 0.69 0.56 0.69
new II 0.26 0.16 0.44 0.35 0.45
new III 0.39 0.34 0.45 0.44 0.49
new IV 0.54 0.48 0.83 0.77 0.82
new V 0.75 0.59 0.78 0.76 0.81

As can be seen in the figure, all two-stage CNNs surpass the best performing

state-of-the-art approach ElSe Fuhl et al. [27] by ≈ 4% and ≈ 9%. Although the

proposed two stage approaches (FCKXPY
and FSK8P8) reach the best pupil detec-

tion rate in average per data set at a pixel error of five, it is worth highlighting

the performance of the SK8P8 (≈ 7% over the state-of-the-art) with its reduced

computational costs (runtime of 7ms on a intel i5-4570 3.2GHz single core). This
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low runtime was reached by only evaluating every second image position in the

first step and afterwards extracting the CNN responses on a per pixel level only

surrounding the found maximum. The final optimization applied to this region is

described in section 3.3. In comparison ElSe has a runtime of 7ms, ExCuSe 6ms

and Świrski et al. [25] 8ms. Starburst and SET are not comparable because we

used the MATLAB implementation. FCKXPY
has a runtime of 1.2 seconds where

in the first step CK8P8 is used with a runtime of 6ms. Due to the lower accu-

racy of CK8P8 in comparison to SK8P8 we had to increase the search region of

FCKXPY
(49 × 49). This large search region and the high computational costs of

FCKXPY
forced us to only evaluate every second image position. For FSK8P8 we

used SK8P8 as coarse positioning CNN followed by a fine positioning in a 21×21

search region. FSK8P8 has a runtime of 850ms. Due to the architecture of CNNs

both approaches FCKXPY
and FSK8P8 are fully parallelizable with a runtime per

patch (89 × 89) of 2ms. For a finer comparison at a pixel error of five, all results

are shown in Table 2.

6. Conclusion

We presented a naturally motivated pipeline of specifically configured CNNs

for robust pupil detection and showed that it outperforms state-of-the-art approaches

while avoiding high computational costs. For the evaluation we used over 135,000

hand labeled images – 41,000 of which were contributed by this work – from real-

world recordings with artifacts such as reflections, changing illumination condi-

tions, and occlusions. Specially for these challenging data sets, the CNNs reported

considerably higher detection rates than state-of-the-art techniques. Looking for-

ward, we are planning to investigate the applicability of the proposed pipeline to
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online scenarios, where continuous adaptation of the parameters is a further chal-

lenge. For further research and usage, data sets, source code for data generation

and training, as well as the trained CNNs will be made available for download.
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