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1 Abstract 
Driving is a complex and highly visual task. With the development of high-end eye-
tracking devices, numerous studies over the last two decades have investigated eye 
movements of the driver to identify deficits in visual search patterns and to derive  
assistive, informative, and entertainment systems. However, little is known about  
the visual behavior during autonomous driving, where the driver can be involved in 
other tasks but still has to remain attentive in order to be able to resume control of the 
vehicle. 

This work aims at exploiting the potential of eye movement analysis in the autono-
mous driving context. In a pilot study, we investigated whether the type of the sec-
ondary task in which the driver is involved, can be recognized solely from the eye 
movement parameters of the driver. Furthermore, we will discuss several applications 
of eye movement analysis to future autonomous driving approaches, e.g., to automati-
cally detect whether the driver is being attentive and – when required – to guide her 
visual attention towards the driving task.  

2 Introduction 
The eye movements of the driver have been investigated in numerous studies with dif-
ferent purposes [Bergasa et al. (2006), Kasneci (2013), Mourant and Rockwell (1972), 
Pérez et al. (2010), Smith et al. (2003), Underwood et al. (2003)]. However, little is 
known about the visual behavior of the driver during fully automated driving, where 
the automated driving system is expected to performs the driving task [Brandenburg 
and Skottke (2014)]. In such a scenario, the driver can be engaged with other tasks, 
but has to remain attentive in order to be able to resume control of the vehicle within 
shortest time [Jamson et al. (2013), Merat et al. (2014)]. According to a recent study 
[Merat et al. (2014)] employing eye movements analysis, vehicle and eye-tracking 
measures drivers need ∼15 seconds to resume control and up to 40 seconds to stabi-
lize vehicle control. Other authors have reported that the driver is able to resume con-
trol over the vehicle within 10 seconds [Petermann-Stock et al. (2013)]. Clearly, take-
over time depends on the driver's current attentive state at the time of the take-over 
request. Drivers that are aware of the current driving situation are likely to resume 
control faster. Although there is no consensus on the take-over time during fully  
automated driving, the above findings clearly underline the need for new paradigms 
on how to keep the drivers engaged and attentive to the driving task and on how to  
inform them of their obligation to resume control over the vehicle. 

This work focuses on the question whether eye movement measures can be used to 
automatically detect the type of secondary task in which the driver is being involved. 
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This knowledge can be then used to estimate the driver’s level of attentiveness and, 
consequently, as input to an informative system that recaptures the driver’s visual  
attention and directs it towards the driving task. 

This paper is organized as follows. Section 3 introduces a workflow for the automated 
recognition of the type of the secondary task based solely on the eye movements of 
the driver. This workflow was evaluated on eye-tracking data derived from an auton-
omous driving experiment in a driving simulator. The evaluation results are presented 
in Section 4. Section 5 discusses the developed method regarding its limitations and 
potential and gives an overview over other application scenarios. Section 6 concludes 
this paper.  

3 Methods 
To automatically detect secondary 
tasks during autonomous driving, 
we developed the work-flow pre-
sented in Figure 1. [Bulling et al. 
(2011)] proposed a similar work-
flow to distinguish between five 
different tasks: copying a text, 
reading a printed paper, taking 
handwritten notes, watching a 
video and browsing the Web.  

In contrast to the approach in 
[Bulling et al. (2011)], where 
electrooculography (EOG) was 
used to record eye movements of 
a subject, we recorded the eye 
movements by means of a mobile 
Dikablis video based eye tracker 
(Ergoneers GmbH, Manching). 
Compared to the EOG recording 
technique, video based eye-
trackers are more comfortable to wear, but they come along with challenges concern-
ing the quality of the eye-tracking signal. Poor signal quality becomes a bottleneck, 
especially during on-road driving, where due to changing illumination conditions ro-
bust gaze position estimation of the driver is challenging. The reliable, image-based 
detection of the pupil is, however, an essential prerequisite for the development of 
gaze-based assistive or informative systems.  

Figure 1: Adapted architecture for detecting  
secondary tasks 
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3.1 Pupil Detection 

The multitude of different sources of noise that are present during driving render ac-
curate signal acquisition a challenging problem, e.g., changing illumination condi-
tions, reflections on driver’s glasses, individual features of the eye, etc. Our approach 
is based on edge filtering and refinement. 

The algorithm is based on decision rules and consists of two main calculation paths. 
One path handles images in which the pupil is expected to be bright (Step 2.2 in  

Figure 3). The second path handles dark 
images (Step 2.3 in Figure 3).  

The decision of the calculation path is 
based on an intensity histogram of the im-
age (Step 2.1 in Figure 3). The ratio of 
bright bins (intensity value >200, where the 
threshold value 200 is set empirically) and 
the remaining bins of the histogram is first 
calculated. If the algorithm expects the  
pupil to be bright, it tries to find an edge 
belonging to the pupil. Therefore, a Canny 
edge filter is applied to the image (Figure 2 
(a)).  

                                                              

All thin edges are then removed by analyz-
ing each edge pixel’s angle relative to its 
neighbor edge pixels. The remaining edges 
are thinned and orthogonal superimposed 
edges are separated using morphologic 
pixel operations. All remaining edge pixels 

now belong either to a curved or to a straight line. We expect edges belonging to the 
pupil border to be strongly curved. To remove straight lines, the distance of each edge 
pixel to the edge's centroid is calculated. Edges with a small distance towards their 

Figure 2: The work-flow for pupil detection. 
Decision points are represented by light gray
cells, dark gray stands for termination, and 

white for processing steps. Dashed  
arrows represent a NO decision, others a 

YES. 

Figure 3: (a) Canny edge filtered image, (b) 
remaining curved edges and (c) selected  

curved edge. 
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centroid are straight and will be removed. From the remaining curved lines (Figure 
2(b)), the longest line with the lowest interior intensity value is chosen (Figure 2(c)). 

For pupil center estimation, a least squares ellipse fit is calculated using the positions 
of the line pixels. In case no adequate pupil boundary can be determined, the second 
calculation path is applied (Step 2.3 in Figure 3). For images of normal and dark aver-
age intensity the algorithm calculates an intensity threshold using the variance and 
mean of the intensity values. The threshold is then applied on the image and four in-
tensity histograms rotated by 0, 45, 90, and 135 degree are calculated (via angular in-
tegral projection function [Mohammed et al. (2012)]). For each histogram, the highest 
value over a range of bins closest to the center of the image is chosen. The intersec-
tions between the histograms for 0 and 90 degree as well as 45 and 135 degree are 
calculated. A coarse pupil center position is estimated as the mean between these  
intersections. To refine this position, a small area around the coarse position is  
extracted from the image. The centroid for all pixels in this area with intensity lower 
or equal to their neighbors is calculated and used as updated position estimation  
(Step 2.4 in Figure 3). 

This optimization step is important because the following calculations require the po-
sition estimation to be contained within the pupil area. A threshold and an edge filter 
image is created for the area around the pupil center estimation (Figure 4(a) and (b)) 
using a higher threshold than in the previous steps. For the threshold image the border 
is calculated (Figure 4(c)) by inspecting the neighbors of each pixel. These are used to 
remove edge pixels in the edge image which are not close to the border (Step 2.5 in 
Figure 3). The resulting edge image (Figure 4(d)) is filtered using the steps described 
in the calculation path for bright images except for the best edge selection step. All 
remaining edge pixels belong to curved lines describing the pupil boundary (Figure 
4(c)). Starting from the coarse position eight rays are cast out with an angular step 
width of 45 degree (this step is inspired by the Starburst algorithm [Li et al. (2005)]). 
If the rays hit a curved line (Figure 4 (f)) all pixel positions from this line are collected 
and the ray is stopped. All collected pixel positions are used to calculate a least 
squares ellipse fit and therefore estimate the pupil center. 

Figure 4: (a) Threshold image, (b) canny edge filtered image, (c) threshold border, (d) edge 
pixels near threshold border, (e) remaining curved lines, and (f) curved line with ray hits as  

white dots. 
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3.2 Eye Event Detection 

Among all types of eye movements, fixations, saccades, and smooth pursuits are the 
most studied in driving scenarios [Kasneci et al. (2015)]. During a fixation the gaze 
position is kept relatively stable on an area of interest (AOI). Fixations usually have a 
duration of about 200−300 ms, although much longer fixations are possible. The dura-
tion of fixations varies depending on the visual task. Furthermore, fixation durations 
show inter- and intra-subject variability. In contrast, saccades correspond to rapid eye 
movements enabling the retinal part of sharpest vision (fovea) to fixate different areas 
of the scene. They occur at a maximum frequency of about 4Hz (e.g., during reading) 
and maximum velocity of approximately 500°/s [Land and Tatler (2009)]. Smooth 
pursuits occur whenever the eye follows a moving target, usually at velocities of  
approximately 15°/s.  

The reliable detection of fixations, saccades, and smooth pursuits from the  
eye-tracking protocol is a crucial step towards the development of assistive and in-
formative systems that are based on the driver’s gaze. Before extraction of such 
events, the eye-tracking signal is preprocessed, i.e., blinks and invalid data points are 
not considered for event detection. 

Eye blinks are usually not explicitly detected but modeled from the data. Sequences 
where the eye-tracker was unable to detect a pupil can be labeled as a blink event of a 
certain duration ݐ if the following threshold criteria is fulfilled: 

ℎݐ   ≤ ݐ ≤ ℎ௫ݐ ℎݐ݅ݓ ℎݐ = ,	ݏ	0.1 ℎ௫ݐ = 0.4  ݏ

 

(1) 

The threshold values from (1) were chosen according to [Milo et al. (2010)] and  
represent the average minimum and maximum duration of an eye blink. 

The event detection algorithms, i.e., the automated recognition of fixations, saccades, 
and smooth pursuits, consists of two steps: In the first step, a Bayesian online mixture 
model is employed to distinguish saccades from data points that might represent fixa-
tions and smooth pursuits [Tafaj et al. (2012), Kasneci et al. (2014)]. In a second step, 
a fine-grained Principal Component Analysis (PCA), revealing the main axes of vari-
ance, is conducted to distinguish fixations from smooth pursuits [Tafaj et al. (2013)].  

The sequence of eye movements performed during driving is also known as visual 
scanpath. Visual scan patterns are highly individual and vary with the task and scene. 
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3.3 Feature Extraction and Classification 

Since our aim was to produce independent data samples, we selected the same 90 fea-
tures as in [Bulling et al. (2011)] but without the use of a sliding window. Instead, we 
calculated the features over each complete sequence of the performed secondary tasks. 
The features fall into four categories: saccade features, blink features, fixation  
features, and wordbook features (i.e., sequences of saccades). All features were  
normalized to the range [0 … 1]. 

To classify the type of the secondary task, we employed a Support Vector Machine 
(SVM) as implemented by the library LIBSVM using a radial basis function kernel 
[Chang and Lin (2011)]. To perform a multi-class classification, LIBSVM uses the 
“one-against-one” approach [Knerr et al. (1990)]. 

4 Experimental Evaluation 

4.1 Data Collection 

We evaluated our approach on data collected during an autonomous driving experi-
ment with 57 drivers (female ⁄ male=27⁄30, mean age=37.7 years) in the Mercedes-
Benz Driving Simulator. The drive of 30 minutes was highly autonomous on a two-
lane highway. Furthermore, the driver was instructed to perform secondary tasks, i.e., 
listening to music, reading news articles and watching movies, between four different 
take-over situations. The order and number of tasks varies and can be seen as random-
ly distributed among the drivers. To provide a more comfortable interface, the news 
articles and movies were presented on a touchscreen integrated in the driver’s cabin. 
Eye movements of the driver were recorded by means of a Dikablis eye tracker at a 
sampling rate of 25Hz. Three additional video cameras installed in the driver’s cabin 
recorded every action of the driver and the current content of the touchscreen. 

4.2 Tasks 

Aim of this study was to evaluate whether three different tasks, namely watching a 
video, listening to music, and reading a document, can be classified based on the eye 
movements of the driver. Indeed, such tasks are considered as typical tasks that might 
be performed by the driver while driving highly autonomous. Although watching a 
video and reading a document are both visual tasks, we consider them separately since 
the level of engagement differs between these tasks. On the other hand, listening to 
music is an auditory task, where we do not expect any special patterns in the eye 
movements. Thus, listening to music could also be considered as “no activity”, in 
terms of no specific visual processing is required. 
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4.3  Evaluation and Results 

Before training the model and evaluating the proposed architecture we preprocessed 
the data samples. It needs to be ensured that we use a balanced data set for training 
and a driver independent evaluation for testing. For this purpose, we applied the  
approach outlined in Figure . We evaluated in terms of the leave-one-out cross-
validation technique, i.e., by taking one driver for the testing phase and the remaining 
56 drivers to train the classifier.  

Since the number of performed tasks varied over all subjects, i.e., there is not the 
same duration of video watching, listening to music, and reading sequences, we ob-
tained an imbalanced data set. Since this would strongly influence the feature calcula-
tion, all recorded situations with duration less than 120 second were not considered 
further. On the other hand, sequences with a duration longer than 120 seconds were 
cut down to 120 seconds. In the next step, we equalized the amount of sequences per 
task by setting the number of sequences per task to the minimum over all tasks. Fol-
lowing these steps, we obtained a balanced training data set with an average number 
of 100 sequences per task with equal durations for training our classifier.  

 

 

 

 

The result of the evaluation in terms of the detection accuracy is presented in Table 1. 
The proposed algorithmic workflow is capable of detecting reading sequences at an 
average accuracy of over 80%. This is associated with the structure of visual patterns 
during reading, namely repetitive patterns of short fixations followed by saccades of 
short amplitude. The recognition of the music and movie tasks is in contrast less accu-
rate. While “listening to music” could be detected at an accuracy of 73%, the task of 
“watching a movie” showed a very low detection rate of 59% accuracy. This is due to 
a large amount of movie sequences misclassified as music sequences. The reason  
behind it becomes clear from the analysis of the additional driver recordings in the 
driving simulator. Many subjects performed control fixations, i.e., fixations towards 
the road in order to check the current driving scene and, consequently, did not focus 

Figure 5: Structure for a balanced data sample and a driver independent evaluation 
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performed saccades

on the presented movie for a relevant amount of time. Thus, their eye movement pat-
terns during “listening to music” and “watching a movie” are more similar the longer 
and more frequent the control fixations occur. 

 

 Predicted 
Movie 

Sequence 

Predicted 
Music 

Sequence 

Predicted 
Reading 
Sequence 

Movie 59% 34% 7% 

Music 19% 73% 8% 

Reading 10% 8% 82% 

Table 1: Average accuracy of secondary task detection for 57 subjects. 

To separate the movie and music sequence more reliably, we performed an additional 
analysis based on these control fixations. More specifically, we looked at the saccadic 
amplitudes during the secondary tasks, which show a distribution into the three  
distinct clusters as depicted in Figure . 

The two outer clusters in Figure  consist of large saccades. The saccades of the top left 
cluster can be assigned to saccades starting at the touchscreen and ending on the 
street. Saccades at the bottom right cluster redirect the driver’s gaze from the driving 
scene towards the touchscreen. 

Figure 6: Saccade amplitude while watching a movie 
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We analyzed all data samples that were originally classified as music sequences and 
tried to extract the cluster patterns by means of the DBSCAN (density-based spatial 
clustering of applications with noise) algorithm [Ester et al.(1996)]. If such a pattern 
was found in the extracted clusters, we re-classified the current music sequence as a 
movie sequence. The results are shown in Table 2. 

 

 Predicted 
Movie 

Sequence 

Predicted 
Music 

Sequence 

Predicted 
Reading 
Sequence 

Movie 69% 24% 7% 

Music 22% 70% 8% 

Reading 10% 8% 82% 

Table 2: Classification accuracy with additional clustering. 

The percentage of correctly classified movie sequences increased from 59% to 69% 
while the correctly classified music sequences decreased only by 3%. In total 119 mu-
sic sequences, 148 movie sequences and 98 reading sequences have been classified 
correctly. By means of the above clustering, we were able to correctly classify 15  
additional movie sequences while misclassifying four music sequences. 

5 Discussion 
Especially during the last two decades, several studies have investigated the visual 
behavior of drivers to derive driver assistance or information systems. However, less 
is known about the visual behavior when driving highly autonomous. In a highly au-
tonomous driving scenario, the driver will be able to draw his attention to secondary 
tasks, such as reading, writing, etc. Such tasks, however, will bind the driver’s cogni-
tive resources and may interfere with the capability of the driver to resume control 
over the vehicle within shortest time, e.g., in case of a system failure. 

An arising challenge in this context will be the question on how to keep the driver  
attentive to the driving task and scene without disturbing the secondary task. We be-
lieve that the investigation of the visual behavior of the driver can give precious in-
sights to face this challenge. In the present work we studied whether eye movement 
measures can be used to automatically detect the type of secondary task in which the 
driver is being involved.  
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We presented a workflow to best process eye-tracking data and classify secondary 
tasks based on eye movement parameters. We found that the analysis of eye move-
ment parameters allows an accurate recognition of the type of secondary task. The 
presented method was evaluated on a pool of 57 drivers. Despite the large number of 
sessions where secondary tasks were performed, an evaluation with more subjects is 
still required. Beyond this, for the detailed analysis of further eye movement parame-
ters (e.g., frequency of smooth pursuits) mobile eye trackers with higher sampling 
rates would have to be employed. Although the driving simulator allows a very realis-
tic driving experience, further evaluation in on-road experiments will also give better 
insights into the present research question. Overall, our results are quite promising 
and underlie the need for more investigations in this realm. 

Future research will extend the variety of secondary tasks and also include session 
where no defined secondary task is conducted by the driver. Hence, we will be able to 
study whether there is a difference in gaze patterns during “hearing music” and “no 
activity”. Furthermore, in our future work we will including features that are not time-
integrated but derived from complex, repetitive gaze patterns, e.g., shoulder checks or 
repeated short saccades towards the right side during reading a line of text, followed 
by a large saccade to the left when jumping to the next line [Kübler et al. (2014)]. 
Such features are likely to contribute to higher classification rates, especially with  
regard to a broader range of secondary tasks. 

6 Conclusion 
Our findings indicate that observing the eye movements of the driver can be a power-
ful means towards the automated estimation of the driver’s level of attention in fully 
automated driving. Although preliminary in nature, our results show that the second-
ary task with which the driver is engaged can be recognized by analyzing gaze-related 
parameters. The current challenge is to efficiently use such knowledge to derive new 
paradigms of informative systems, especially on how to best recapture the driver’s 
visual attention and direct it towards the driving task. 
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