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Figure 1: The virtual environment setup for VR locomotion.

Abstract
VR locomotion is one of the most important design features of VR applications and is widely studied. When evaluating lo-
comotion techniques, user experience is usually the first consideration, as it provides direct insights into the usability of the
locomotion technique and users’ thoughts about it. In the literature, user experience is typically measured with post-hoc ques-
tionnaires or surveys, while users’ behavioral (i.e., eye-tracking) data during locomotion, which can reveal deeper subcon-
scious thoughts of users, has rarely been considered and thus remains to be explored. To this end, we investigate the feasibility
of classifying users experiencing VR locomotion into L-UE and H-UE (i.e., low- and high-user-experience groups) based on
eye-tracking data alone. To collect data, a user study was conducted in which participants navigated a virtual environment
using five locomotion techniques and their eye-tracking data was recorded. A standard questionnaire assessing the usability
and participants’ perception of the locomotion technique was used to establish the ground truth of the user experience. We
trained our machine learning models on the eye-tracking features extracted from the time-series data using a sliding window
approach. The best random forest model achieved an average accuracy of over 0.7 in 50 runs. Moreover, the SHapley Additive
exPlanations (SHAP) approach uncovered the underlying relationships between eye-tracking features and user experience, and
these findings were further supported by the statistical results. Our research provides a viable tool for assessing user experience
with VR locomotion, which can further drive the improvement of locomotion techniques. Moreover, our research benefits not
only VR locomotion, but also VR systems whose design needs to be improved to provide a good user experience.

CCS Concepts
• Computing methodologies → Classification and regression trees; • Human-centered computing → Empirical studies in
HCI; Virtual reality;
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1. Introduction

In recent years, with the proliferation of consumer-grade head-
mounted displays (HMDs), virtual reality (VR) has become in-
creasingly integrated into entertainment and education, and thus
into people’s everyday lives [TGT∗21, RMFW20]. VR applica-
tions, especially those for entertainment, should not only provide
users with an immersive user experience but also enable the ex-
ploration of large and unlimited virtual environments in a limited
physical space, such as the popular VR theme and amusement parks
on Oculus Rift and Steam. This is made possible by VR locomo-
tion techniques. VR locomotion is an essential technique that en-
ables users to move effectively in virtual environments. It is one of
the pillars of a great VR experience and has been studied exten-
sively by designers and researchers recently due to the increasing
popularity of VR-based entertainment [CMS20]. To date, a wide
variety of VR locomotion techniques have been developed for dif-
ferent purposes and scenarios in the VR domain, and can be cat-
egorized into controller-based (e.g., joystick [LLS18], teleporta-
tion [FMF∗19], dash [BMF18]) and motion-based (e.g., walking-
in-place (WIP) [TFY∗22], arm swing [WKMW16]) locomotion. A
locomotion technique that performs the intended locomotion func-
tion should also provide a good experience for users, i.e., it should
be easy to use and not impose much additional cognitive load on
users performing primary tasks in VR. Therefore, when evaluat-
ing a VR locomotion technique, it is important to evaluate the user
experience.

Previous literature has primarily focused on the development
of new locomotion techniques for various use cases in VR ap-
plications [BSB11, vWSM∗20], but in recent years more em-
phasis has been placed on the evaluation of locomotion tech-
niques [CBCWS18, FSW17]. Various aspects of locomotion tech-
niques have been evaluated, such as locomotion effectiveness and
self-reported post-hoc user experience, presence, motion sickness,
etc [CBCWS18,LLS18,PKR∗19]. In terms of the locomotion tech-
nique itself, user experience is most valued in this research area
as it provides direct feedback on the usability of the locomotion
technique and how users feel about using it. This provides the de-
signer and researcher with concrete advice on how to improve the
locomotion technique. To date, most studies on VR locomotion
(or other VR systems design) have assessed user experience using
methods such as observational data during VR locomotion (or dur-
ing interaction with VR systems), post-hoc surveys, and question-
naires [TFY∗22]. However, such methods can be time-consuming,
especially for a large number of trials, and furthermore may lack
deeper insights into users’ subconscious thoughts and behaviors
during locomotion.

With this in mind, we are thinking about evaluating the
user experience with VR locomotion in alternative ways, to
which eye tracking can contribute. With the increasing pop-
ularity of eye-tracking studies in various research areas such
as education [GBH∗21], entertainment [HSHK21], daily activi-
ties [PPMW20, BGK19], and of course with the development of
HMDs that allow easy acquisition of eye-tracking data via inte-
grated eye trackers in the HMDs, eye tracking holds great poten-
tial to facilitate VR studies. Eye tracking, widely used as a reliable
tool to study human behaviors in real-time (e.g., cognitive process-

ing load and visual attention behavior) [HNA∗11, MJR∗22], has
already demonstrated its informality in classification tasks, using
machine learning to predict various human- and task-related goals
such as personality traits [BTK∗19], learning gains [MMDR20],
cognitive load [AGH∗21], and task performance [KKT∗22]. Al-
though studies on the use of eye-tracking in VR scenarios are lim-
ited, there is still literature that uses eye movements to study user
behavior during immersion in VR and provide insights to improve
VR systems [BOB∗19, GBH∗21]. However, eye tracking is rarely
used for evaluation purposes in VR locomotion studies. Overall, we
consider that eye tracking has the potential to be a viable tool for
evaluating user experience in VR locomotion research.

Therefore, in this study, we aim to propose a new approach to
detecting user experience with VR locomotion. In more detail, the
user experience evaluated in this study refers to the usability of the
VR locomotion technique and the user’s subjective perception and
thoughts about the locomotion technique they are using. Specifi-
cally, we explore the possibility of classifying participants experi-
encing VR locomotion techniques into L-EU (i.e., low user experi-
ence) and H-UE (i.e., high user experience) using machine learning
methods based on eye-tracking data alone. To this end, we designed
a user study involving a navigation task with different locomotion
techniques in a virtual environment for data collection. We col-
lected participants’ post-hoc user experiences of the usability of VR
locomotion techniques and their feelings and enjoyment of using
VR locomotion techniques as ground truth with a questionnaire. We
applied a sliding window approach [HLMB18, MMDR20] to ex-
tract features from time-series data, i.e., eye-tracking data; the ex-
tracted features include pupil diameter, fixations, and saccades. We
developed classification models using the random forest (RF) algo-
rithm based on the extracted eye-tracking features. The trained RF
model achieved an average accuracy of 0.71 in our binary classifi-
cation task, indicating that the user experience level is predictable
from eye-tracking data alone. In addition, we applied the SHapley
Additive exPlanations (SHAP) approach to further investigate how
eye-tracking features contribute to the model outputs. Our SHAP
results show that there are underlying explainable relationships be-
tween eye-tracking features and user experience (i.e., L-UE and
H-UE) and that these relationships can be further supported by the
statistical results of the eye-tracking metrics.

To our knowledge, this is the first study to predict user experi-
ences with VR locomotion using eye-tracking data, which can re-
veal human underlying cognitive and visual perceptual behaviors
that might be difficult to capture with questionnaires. Our study
provides a potential avenue for future studies to detect user experi-
ence using eye-tracking data not only in VR locomotion but also in
other VR contexts where user experience needs to be evaluated to
improve VR systems. Moreover, our results provide deep insights
into real-time user experience prediction that may be relevant and
important for interactive VR systems or intelligent user interfaces
for educational and entertainment purposes. By obtaining real-time
feedback from users regarding their experiences with the systems
they interact with, it is possible for such systems to provide users
with tailored and optimal experiences by adjusting system settings
accordingly.
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2. Related Work

2.1. VR Locomotion

Previous work has evaluated and compared locomotion techniques
from various aspects of the user experience, such as the locomo-
tion usability, users’ subjective thoughts about the locomotion tech-
nique, preference, etc. For instance, Frommel et al. [FSW17] evalu-
ated the impact of controller-based locomotion methods on user ex-
perience during a VR exploration task. Participants navigated a vir-
tual zoo using four locomotion methods, namely free teleport, fix-
point teleport, touchpad-based and guided automatic locomotion.
User experience was measured using a questionnaire that recorded
discomfort and enjoyment. Similarly, Coomer et al. [CBCWS18]
compared four commonly used locomotion methods, including joy-
stick, point-tugging, teleportation, and arm-cycling. Post-hoc ques-
tionnaires were used to determine the usability of each locomo-
tion method and the participants’ opinions about it. Compared
to [FSW17], user experience was assessed in more aspects and
detail. Questions were asked about the difficulty of understanding
and operating the locomotion method, the feeling of being in con-
trol, fatigue, and the feeling of enjoyment. Paris et al. [PKR∗19]
compared two joystick-like (i.e., skiing and magic carpet) and
two teleportation-like (i.e., grappling and teleportation) locomotion
methods in a navigation task. Results of task performance and post-
hoc questionnaires on simulator sickness, presence, and system us-
ability were reported. However, no significant difference was found
in system usability, which measures the ease of use of locomotion
methods.

In addition to quantitative questionnaires, qualitative sur-
veys were also conducted to measure user experience. Funk et
al. [FMF∗19] presented and evaluated three point & teleport lo-
comotion methods that differed in the way how their teleportation
trajectories were rendered in the virtual environment. Participants
reported their qualitative thoughts on these locomotion methods af-
ter VR locomotion. The post-hoc survey allows researchers to di-
rectly learn how users feel about the locomotion method they used,
which gives researchers further insight into how to improve loco-
motion methods, however, this could also be time-consuming.

In the aforementioned literature on VR locomotion research,
user experience has been assessed post-hoc with either quantitative
questionnaires or qualitative surveys. However, users’ real-time be-
havioral data during locomotion, which can provide direct insights
into their experiences, has rarely been considered and thus remains
to be explored. As such, our study aims to propose a novel way
to gain a deeper understanding of the user experience using time-
series data (i.e., eye-tracking). If the effectiveness of eye tracking
in predicting user experiences with VR locomotion can be demon-
strated, this will provide deep insights into predicting user experi-
ence in other VR applications (e.g., VR for training and education)
and thus provide clues for improving VR systems.

2.2. Eye Tracking

Eye tracking has long been used as a tool to study and im-
prove user experience [BS14], such as smartphone app develop-
ment [QZCD17], marketing [PPMW20], etc. Eye-tracking data
contains rich information about how users process visual scenes

and what cognitive processing load is simultaneously triggered dur-
ing information processing, and such information reveals the user’s
deep subconscious behavior and thoughts about the system they
are interacting with. For this motivation, many researchers are con-
sidering incorporating eye-tracking technology into machine learn-
ing studies, i.e., training machine learning models based on eye-
tracking features to predict various human- or task-related goals. In
fact, eye tracking has already made its way into the machine learn-
ing field and has proven its effectiveness as an informative feature.

For instance, in the work of Conati et al. [CLRT20], eye move-
ments were identified as informative features in machine learn-
ing models for predicting binary labels of different cognitive abili-
ties during a visualization task [LCC17]. Eye-tracking features re-
lated to pupil, fixation, saccade, and area-of-interest (AOI) were
calculated using various descriptive statistics. Random forest clas-
sifiers trained on eye-tracking features alone achieved accuracies
over 0.63 for various prediction targets (i.e., cognitive abilities).
With respect to cognitive behavior, Appel et al. [AGH∗21] trained
classification models to predict cognitive load in an emergency
simulation game using eye-tracking features of pupils, fixations,
blinks, and microsaccades. The trained models achieved accuracies
of 0.63 and 0.69 across participants and tasks in the binary clas-
sification task. In addition, eye movements also proved informa-
tive in predicting personality traits [HLMB18,BTK∗19] and exper-
tise [HSHK21]. Apart from these previous works, eye-tracking data
can also be used in conjunction with other task performance data or
questionnaire data to improve model accuracy [LCC17, KKT∗22,
ZYdW21]. Kasneci et al. [KKT∗22, KKA∗21], for example, used
eye-tracking and socio-demographic data to predict participants’
performance in solving an IQ task. Gradient boosting decision trees
(GBDT) models developed on eye movements alone were found
to be discriminative with a ROC-AUC of 0.63 and could be im-
proved to 0.65 with socio-demographic features. These previous
works have demonstrated the feasibility and effectiveness of eye
movements in revealing various underlying human behaviors, and
have shown that the underlying features of eye-tracking data can be
efficiently learned by machine learning models.

However, eye-tracking research in VR is still limited currently
due to hardware limitations and the lack of fine-grained data analy-
sis tools but is increasing with the advent of more and more HMDs
with integrated eye trackers. Although no research has yet used eye
tracking in VR locomotion for evaluation purposes, let alone to
evaluate the user experience with VR locomotion, there are few
studies that have used eye tracking to investigate user behavior
in VR scenarios under different environmental conditions. For in-
stance, Gao et al. [GBH∗21] investigated students’ cognitive and
visual attention behaviors during a virtual lesson in an immersive
VR classroom. Several VR environment design factors were eval-
uated to improve the design of the VR learning system. An ap-
proach for detecting eye movement events, i.e., fixations and sac-
cades, suited for VR was proposed. The results showed that stu-
dents’ eye movements were significantly affected by the environ-
mental factors of the VR classroom, and the underlying meaning of
such effects can be interpreted to provide further guidance for im-
proving the VR system. This study provides compelling evidence
that eye movements shed light on students’ perceptions of different
VR environmental configurations. Although VR classroom learn-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

591



H. Gao & E. Kasneci / Predict User Experience in VR Locomotion

ing is different from VR locomotion, this study reinforces our be-
lief that eye movements provide insight into how users perceive
different VR locomotion techniques and can further contribute to
classification models for predicting the user experience.

3. VR Locomotion User Study

In this section, we provide an overview of our VR locomotion
user study designed for data collection. Since our research goal
is to assess the feasibility of classifying participants who experi-
enced VR locomotion into L-UE and H-UE based on eye-tracking
data alone, we used five different VR locomotion techniques in our
study to obtain as diverse user experiences as possible. Consider-
ing that our study is an initial exploration of our research ques-
tion, we used well-studied and widely used controller-based loco-
motion techniques as the experimental setup rather than using a
niche or introducing new locomotion techniques. The locomotion
techniques used in this study are arm swing, dash, grapple, joystick,
and teleportation, which reportedly provide different experiences to
users [CBCWS18,PKR∗19,BMF18]. Our user study involved par-
ticipants navigating a designed virtual environment using different
locomotion techniques. They then provided feedback in a question-
naire about the usability of the locomotion techniques they were
currently using, as well as their personal thoughts, such as how they
felt and enjoyed the locomotion techniques. Details on the partic-
ipants, materials, experimental procedure, and data acquisition are
given below.

3.1. Participants

Fifteen university students (10 male, 5 female) with an average age
of 24.93 (SD = 2.84) participated in our experiment as volunteers.
All participants have normal or corrected-to-normal (with glasses)
vision. They all reported their experience with video games and
VR, with five reporting playing video games for more than 5 hours
per week, four playing video games for 0 to 5 hours per week,
and six reporting no experience with video games. In addition, one
participant regularly used VR HMDs, six had some VR experi-
ence, and eight had no VR experience. All participants provided
informed consent prior to data collection. Our study was approved
by the institutional review board (IRB).

3.2. Materials

In order to investigate participants’ experiences with different lo-
comotion techniques without the virtual environment exerting ad-
ditional effects on participants, we designed a very simple virtual
environment that simultaneously meets the navigation requirement.
The virtual environment consists of a green lawn area bordered by
houses and trees. To encourage locomotion, we developed a search
and collect task that is typically used in previous studies investigat-
ing VR locomotion [CBCWS18, CA17]. Five crystals were placed
at different locations in the virtual environment and were easy to
find. The overall view of the virtual environment is shown in Fig-
ure 1.

The virtual environment was created and rendered using the
Unity engine (version 2020.03.23f) on a computer with a 3.5GHz

Core i7 processor and 16GB RAM. The HTC Vive Pro Eye HMD
was used to display the virtual environment, which has a resolu-
tion of 1440× 1600 per eye, a refresh rate of 90 Hz, and a field
of view of 110◦. In addition, the HMD is seamlessly integrated
with the Tobii eye tracker with a sampling rate of 120 Hz and an
accuracy of 0.5◦ − 1.1◦. The Vive controllers served as the input
device for VR locomotion. Two HTC Vive base stations were used
to track a 2m× 2m area for the locomotion study. All five selected
locomotion techniques are controller-based, meaning participants
navigate the virtual environment using Vive controllers that come
with the HMD. The locomotion techniques were implemented with
SteamVR based on previous work [CBCWS18, PKR∗19, BMF18]
and the scripts were written in C#.

3.3. Experimental Procedure

Our study used a within-subjects design with five levels of the in-
dependent variable of locomotion conditions, namely arm swing,
dash, grapple, joystick, and teleportation.

After providing informed consent, all participants completed a
demographic questionnaire (e.g., age, gender) and reported their
previous experiences with video games and VR. The experimenter
then gave instructions about the experiment. All participants took
part in a total of five trials (locomotion conditions), with the order
counterbalanced using a Latin square to offset order effects. Each
trial consisted of three sessions, i.e., the practice session, the actual
experiment (recording of eye-tracking data), and the post-hoc user
experience questionnaire. In the practice session, participants were
asked to practice the current locomotion technique in a clean vir-
tual environment and no task was given. Once they became familiar
with the locomotion technique, they were asked to take off the VR
headset and take a break until they were ready for the experiment.
The pause is compulsory to avoid the practice session exerting ad-
ditional influence on the actual data collection session. In the actual
experimental session, participants entered the task virtual environ-
ment after a successful 5-point eye tracker calibration routine. They
were asked to search for five crystals placed in different directions
of the virtual environment and collect them with controllers. After
completing the task, participants were asked to take off the headset
and fill out questionnaires about their locomotion experience. This
marked the end of one trial. Before starting the next trial, partici-
pants were asked to take a break until they felt comfortable for the
next trial.

The experiment ended after the participant completed all five tri-
als. The entire experiment lasted approximately 50 minutes for each
participant, with each participant wearing the HMD for approxi-
mately 20 minutes (including the practice session). All participants
were informed before the experiment that they could terminate the
experiment at any time if they felt uncomfortable.

3.4. Data Acquisition

All fifteen participants had valid and complete eye-tracking and
questionnaire data, so all their data were used in our study. An
average of 2.5 minutes of time-series data (i.e., eye-tracking) was
collected for each trial. Thus, in total, more than three hours of eye-
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Figure 2: Distribution of user experience scores for all participants
in all locomotion conditions.

tracking data were collected, including raw pupil and gaze vector
data, which can be further used in our machine learning experiment.

In addition to eye-tracking data, participants reported their ex-
periences after each VR locomotion trial. We used a modified ver-
sion of Loewenthal’s [LL01] core elements of the game experience
questionnaire. In accordance with our study, six subcategories were
selected and measured in our study, including difficulty in under-
standing and operating the locomotion technique, effort required,
feeling of control over the locomotion technique, tiredness, and en-
joyment. Responses were on a 5-point Likert scale, with 1 repre-
senting "not at all" and 5 representing "very much". For conve-
nience in data analysis, we reversed the scores of some items and
then calculated the mean of all six items as the final user expe-
rience score, where 1 represents the worst user experience and 5
represents the best. In this case, the best user experience means
that participants report that the locomotion technique is easy to use
with little effort and no fatigue and that they have a strong sense of
control when using it and feel very comfortable with it.

The mean user experience score of all trials was 3.85 (SD= 0.74,
Median = 4.0, ranging from 1 to 5). This indicates that participants
had a good experience (above the middle level, i.e., 2.5) with dif-
ferent locomotion techniques. As can be seen in Figure 2, partic-
ipants showed slightly larger variance in their user experience in
some conditions, e.g., grapple and joystick (scores range from 2 to
5). We consider this to be a normal bias between participants, as
different individuals perceive the locomotion technique differently.
In addition, participants reported different user experiences across
the five locomotion conditions, which is what we expected. And
this supports our strategy of training our classification models in a
trial-dependent manner (see Section 4.3 for details).

4. Machine Learning Method

In this section, we present our machine learning method to inves-
tigate our research question: Is it possible to predict participants’
user experience with VR locomotion by building machine learning
models based solely on eye-tracking data?

Table 1: Thresholds for detection of eye movement events.

Threshold Fixation Saccade
head_velocity < 12◦/s /
gaze_velocity < 40◦/s > 80◦/s

event_duration 100 < dur < 500(ms) 30 < dur < 80(ms)

In the following, we first describe how we fit the time-series
and questionnaire data into machine learning models. This includes
the preprocessing of both types of data and the extraction of eye-
tracking features. Next, we present details on building classifica-
tion models, including partitioning training and test datasets in a
trial-dependent manner to minimize overfitting, model building and
training, and model evaluation and explanation.

4.1. Data Preprocessing

4.1.1. L-UE and H-UE

We obtained the ground truths of user experiences from the post-
hoc questionnaires. To label the data samples (75trials) as low level
of user experience (i.e., L-UE) and high level of user experience
(i.e, H-UE), we binned the user experience scores in a data-driven
manner considering the median value and equal frequency. There-
fore, we labeled all user experience scores below the median, i.e.,
< 4.0, as L-UE and all other scores as H-UE. This resulted in 33
and 42 data samples in L-UE and H-UE groups, respectively.

4.1.2. Eye Movements

In the literature, pupil size (e.g., pupil diameter) and eye move-
ments (e.g., fixation, saccade) are commonly used to examine
subjects’ cognitive processing load and visual perceptual behav-
ior [MJR∗22]. We also used these measures in our study. Since
only raw sensor data, including raw pupil data and gaze vectors
recorded by the eye tracker and head orientations recorded by the
HMD tracking system, are available, we should preprocess the data
to obtain the above eye-tracking measures [TKRB12]. Pupillomet-
ric data can be extremely noisy due to blinks and noisy sensor
readings. Therefore, smoothing and normalization are usually per-
formed before calculating pupil diameter. The Savitzky-Golay fil-
ter [SG64] was applied to smooth the raw pupil diameters; the di-
visive baseline correction method [MFVHVdS18] with a baseline
duration of ≈ 1.5 seconds was applied for normalization. Detec-
tion of eye movement events in VR remains challenging due to
head movements and 3D stimulus, and there is no standard method
or software to solve this problem. Fixations and saccades had to
be detected manually post-experimentally. In our study, a modi-
fied velocity-threshold identification (I-VT) algorithm proposed by
Gao et al. [GBH∗21] that takes head movement into account was
used to detect fixations, with parameters adapted to our study. Since
saccades are not affected by head movements, the normal I-VT al-
gorithm was used for saccade detection. Before detecting such eye
movement events, linear interpolation was performed for the miss-
ing gaze vectors. Specifically, fixations were detected with a max-
imum gaze velocity threshold of 40◦/s under the condition that
head moving velocity was less than 12◦/s; saccades were detected
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with a minimum gaze velocity threshold of 80◦/s. Additional dura-
tion thresholds were used for filtering. All parameters used for eye
movement event detection were listed in Table 1.

4.2. Feature Extraction

Considering that each trial averaged 2.5 minutes of eye-tracking
data, we applied the sliding window approach to extract eye-
tracking features rather than averaging over the entire trial to avoid
eliminating too much temporal information from the data. Since
there is no gold standard for determining window size, our study
examined time windows ranging from 5s to 30s (with a step of
5s) based on previous literature [HLMB18, MMDR20, HÖH∗22].
The window size was considered as a hyperparameter during model
training (see Section 4.3), and the best window size was determined
based on the training results (see Section 5.1).

For each of the sliding time windows, we calculated and ex-
tracted eye-tracking metrics that have been commonly used as fea-
tures in previous machine learning studies, i.e., metrics related
to pupil diameter, fixations (number and duration), and saccades
(number, duration, amplitude, and velocity) [CLRT20, KKT∗22,
KKA∗21]. For some of the features, we calculated not only the
mean, but also the standard deviation, the minimum, the maximum,
and the sum of the values to characterize variables throughout the
data [HLMB18,CCC22]. Specifically, the feature of pupil diameter
was extracted since pupil diameter has been considered an indica-
tor of cognitive processing load during various tasks in previous
literature [CE14]. Fixations have been shown to reveal visual at-
tention behavior and are also an indicator of cognitive processing
load [NM20]. We calculated fixation rate and fixation duration and
used them as features. In addition, pupil diameter during fixation
is an indicator of cognitive processing load (pupil diameter) during
visual information processing (fixation) [CBE], so we extracted it
as a feature. Saccades are informative eye movements that corre-
late highly with visual search behavior and also with cognitive pro-
cessing load [GK99, MKW∗90]. Several features can be extracted
from saccades, including saccade rate, saccade duration, saccade
amplitude, and saccade velocity. We extracted these features and
used them for model training. All extracted 33 eye-tracking fea-
tures were listed in Table 2.

4.3. Model Building

In this work, we developed random forest (RF) models to classify
participants into low and high user experience groups. We used the
integers 0 and 1 to represent two prediction targets, i.e., class-0 for
H-UE and class-1 for L-UE. For each sliding window, a 1 × 33
feature vector was generated. Thus, with a window size of ws sec-
onds, there are approximate N = 75×150/ws samples for machine
learning training, where 75 is the number of trials and 150 sec-
onds (i.e., 2.5 minutes) is the averaged duration of each trial. Min-
max normalization was performed for all feature variables. Then,
data samples were randomly split into the training set (80%, about
N × 0.8 samples) and the test set (20%, about N × 0.2 samples).
For example, with a window size of 10s, we have about 1100 sam-
ples, of which about 900 samples are used as the training set and
about 200 samples are used as the test set. The classification mod-
els were trained on the training set and tested on the test set. For

Table 2: Extracted eye-tracking features for machine learning
models.

Features Descriptive statistics
Pupil diameter Mean, Std.dev, Min, Max of the

normalized pupil diameter
Pupil diameter (fixation) Mean, Std.dev, Min, Max of the

normalized pupil diameter during
fixation

Fixation rate Number of fixations per minute
Fixation duration Mean, Std.dev, Min, Max, Sum of

the fixation durations
Saccade rate Number of saccades per minute
Saccade duration Mean, Std.dev, Min, Max, Sum of

the saccade durations
Saccade amplitude Mean, Std.dev, Min, Max, Sum of

the saccade amplitudes
Saccade velocity Mean, Std.dev, Min, Max of the

saccade velocities
Saccade peak velocity Mean, Std.dev, Min, Max of the

saccade peak velocities

note: Std.dev, Min, and Max denote the standard deviation,
minimum, and maximum, respectively.

model training, we performed 5-fold cross-validation to tune the
hyperparameters of the random forest models on the training set,
which means we further split the training set into the sub-training
set and the validation set.

To avoid overfitting and to generalize our models to unseen
data, all data splits in the training and testing processes were trial-
dependent, that is, all feature vectors from the same trial were to
remain in the same data sets (i.e., either sub-training, validation, or
test set). Here, we split the data in a trial-dependent manner rather
than a participant-dependent manner, which may risk overfitting
the model because the models might be tested on the seen data
(if data samples from a participant exist in both the training and
test sets). Actually, such concern can be eliminated as participants
had different user experiences across different conditions (See Fig-
ure 2) and these differences are reflected in the eye-tracking behav-
ior as well (eye-tracking feature), which means that we can con-
sider each participant’s trial as an independent data sample. Thus,
we assumed that the models were still tested on the unseen data.
Moreover, we performed stratified data split, that is, data samples
were split into different sets while maintaining the percentage of
samples for each class. These data split policies were performed
manually. Notice that participants were randomly assigned during
all data splits without regard to identity. Furthermore, to reduce the
bias caused by data splitting, we split the data 50 times with differ-
ent random seeds so that all trials had the opportunity to be used as
training and test sets. Thus, in a 5-fold cross-validation, our model
was trained and validated on 50× 5 different sub-training and val-
idation sets. The best model identified through the training process
was then tested 50 times on unseen data, i.e., on the 50 test sets.
The final model test results reported in our study are the average of
the 50 runs.
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4.4. Model Evaluation and Explainability

In this work, the random forest models solved a binary classifi-
cation problem. Considering that our dataset is not fully balanced
(33 L-UE: 42 H-UE), metrics including accuracy, precision, recall,
and F1-score were used to evaluate model performance. These four
metrics were calculated based on True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN). We report only
the model test results using these metrics.

Moreover, post-hoc model explainability becomes significant in
the field of machine learning as it provides insights into how a
model can be improved. As in our study, a large set of eye-tracking
features indicative of different human behaviors were extracted and
used. In addition to training the models to achieve the best per-
formance in predicting user experiences, we also emphasize ex-
plaining the model at the feature level, i.e., how individual features
contribute to the model outputs. To this end, we applied the state-
of-the-art method for model explainability, namely SHapley Addi-
tive exPlanations (SHAP) [LL17]. First, SHAP can help gain in-
sight into the feature importance and identify the most informative
eye-tracking features for the models. Second, SHAP can reveal the
underlying relationships between eye-tracking features and model
outputs (i.e, L-UE, H-UE) by demonstrating what impact an indi-
vidual feature has on model outputs.

5. Results

In this section, we report our results in three parts. First, we re-
port the performance of our RF models on the binary classification
task of predicting user experience level. Second, we report the re-
sults of SHAP explainability. We identified the most informative
eye-tracking features and explained the classification model at the
feature level to reveal how these informative eye-tracking features
contribute to the model outputs. Third, to further support the SHAP
results, we also report the statistical results of the main eye-tracking
metrics.

5.1. Model Performance

As can be seen in Table 3, the RF models trained only on eye-
tracking features extracted with different window sizes were able
to classify participants into L-UE and H-UE, with average accura-
cies above 0.62. Of all eight window sizes examined, the RF model

Table 3: The test performance of RF models trained on features
extracted with different window sizes. Best window size and model
performance are in bold.

WindowSize[s] Accuracy Precision Recall F1-score
5 0.62 0.64 0.62 0.63

10 0.68 0.70 0.68 0.69
15 0.67 0.69 0.67 0.67
20 0.71 0.72 0.71 0.71
25 0.67 0.69 0.67 0.67
30 0.68 0.70 0.68 0.68
35 0.63 0.65 0.63 0.63
40 0.64 0.65 0.64 0.64
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Figure 3: The test performance of RF models trained on features
extracted with different time windows. The best performance was
obtained with a 20-second time window.

trained on features extracted with a 20-second time window per-
formed best, with an average accuracy of 0.71 (SD = 0.019), pre-
cision of 0.72 (SD = 0.020), recall of 0.71 (SD = 0.019), and F1-
score of 0.71 (SD = 0.018), as shown in Figure 3. The best RF
model was created with 300 decision trees. The maximum depth of
the tree used was 10, the minimum number of samples for splitting
an internal node was 4, and the minimum number of samples at a
leaf node was 1.

5.2. SHAP Explanation

We applied the SHAP TreeExplainer [LEC∗20] for tree-based clas-
sifiers, i.e., random forest. The local explanations of the best RF
model are shown in a beeswarm-style summary plot of SHAP val-
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Figure 4: The top 20 eye-tracking features in the best RF model,
ranked by feature importance from top to bottom.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

595



H. Gao & E. Kasneci / Predict User Experience in VR Locomotion

Table 4: Statistical comparison of eye-tracking metrics between L-UE and H-UE groups.

Eye-tracking metrics
L-UE group H-UE group

p−value Significance
Mean (SD) Mean (SD)

Mean pupil diameter 1.09 (0.11) 1.05 (0.12) 1.79×10−14 ****
Mean pupil diameter (fixation) 1.08 (0.16) 1.01 (0.19) 2.03×10−17 ****
Fixation rate [num_ f ixation/min] 55.01 (27.83) 52.91 (29.57) .096 n.s.
Mean of fixation duration [ms] 216.12 (53.96) 210.53 (62.11) .079 n.s.
Saccade rate [num_saccade/min] 46.11 (25.14) 49.04 (23.49) .014 *
Mean of saccade duration [ms] 47.48 (8.82) 48.93 (6.41) .008 **
Mean of saccade amplitude [◦] 8.97 (3.05) 10.13 (2.85) 2.95×10−10 ****
Mean of saccade velocity [◦/s] 187.21 (63.59) 206.68 (53.62) 9.98×10−9 ****
Mean of saccade peak velocity [◦/s] 306.49 (96.26) 327.77(79.30) 4.65×10−6 ****

note: *, **, ****, and n.s. represent p < .05, p < .01, p < .0001, and no statistical significance, respectively.

ues, as shown in Figure 4. The 20 most informative features are dis-
played and sorted by feature importance from top to bottom along
the y-axis. SHAP values are located along the x-axis. Each dot in
the summary plot represents the SHAP value of one feature obser-
vation. The more spread out the dots of a feature are on the x-axis,
the greater the impact of the feature on the model. The color of the
dots in the summary plot indicates the value of the feature, with
blue color indicating a low feature value and red color indicating a
high feature value. A color change from blue to red along the x-axis
from left to right indicates that a feature has a positive (negative)
impact on the prediction of class-1 (class 0), i.e., L-UE (H-UE), in
contrast, a color change from red to blue along the x-axis from left
to right indicates that a feature has a negative (positive) impact on
the prediction of class-1 (class-0), i.e., L-UE (H-UE).

As shown in Figure 4, the feature meanPupilDiameterOfFixation
followed by the features maxPupilDiameterOfFixation and mean-
PupilDiameter are the three most informative features for the RF
model in classifying the user experience into low and high level.
Moreover, it is worth noting that these three most important fea-
tures have a positive impact on the prediction output into class-1
(i.e., L-UE), which means that the feature value higher than the
feature average drives the classification into the prediction output of
L-UE. The feature maxSaccadeAmplitude also contributes greatly
to the classification model. Unlike the above three most informa-
tive features, maxSaccadeAmplitude was observed to have a posi-
tive impact on the prediction output into class-0 (i.e., H-UE), which
means that the feature value higher than the feature average drives
the classification into prediction output of H-UE. Notably, four of
the five most informative features are pupil-related. However, com-
pared to pupil- and saccade-related features, fixation-related fea-
tures tend to be less informative in classifying user experience lev-
els.

5.3. Statistical Test

To further validate the SHAP explanation results, we applied sta-
tistical tests to the eye-tracking metrics typically analyzed in eye-
tracking studies, i.e., these features can be interpreted as associated
with various human behaviors (e.g., cognitive load, visual attention,
and visual search). For this reason, we did not apply statistical tests
to these eye-tracking metrics calculated as minimum, maximum,

standard deviation, and sum values as the features of such metrics
can be easily learned by machine learning models, but their statis-
tical differences are hard to interpret. The Shapiro-Wilk test was
used to test for normality and the Mann-Whitney U test was used
as a non-parametric test. The significance level was set at α = 0.05
for all the tests. The statistical results for the comparison between
L-UE and H-UE groups are shown in Table 4.

As can be seen, there was no significant difference between the
two groups for fixation-related features that were found to be of low
informativeness in the classification model. Conversely, significant
differences were found between the two groups for pupil diameters,
which are highly informative for the classification model. In partic-
ular, the mean pupil diameters in the L-UE group are significantly
larger than the values in the H-UE group, with p < .0001. Similar
to the mean pupil diameter, a significant difference was also found
between the groups for the most informative pupil feature, the mean
pupil diameter during fixation, with the mean pupil diameters dur-
ing fixation in the L-UE group being significantly larger than in the
H-UE group, with p < .0001. In addition to pupil diameter and fix-
ations, significant differences were also found in saccade metrics.
It was found that the saccade rates in the H-UE group are higher
than in the L-UE group, with p = .014. Also, the mean saccade
duration, amplitude, velocity, and peak velocity were found to be
higher in the H-UE group than in the L-UE group, with p < .001,
p < .0001, p < .0001, and p < .0001, respectively.

6. Discussion

In this section, the results are discussed according to the structure
of the results section.

First, the sliding window approach used for feature extraction
proved successful, as our results show that the user experience
with VR locomotion is predictable using machine learning mod-
els trained solely on eye-tracking features. In particular, the RF
model trained on features extracted with a sliding window of 20
seconds performed best with an average accuracy of 0.71 (see Ta-
ble 3). On the other hand, the models performed worse when the
window sizes were too short or too long. This could be because
when the sliding window is too short, the features behind the eye
movements that could be indicative of the users’ perception of VR
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locomotion are truncated, whereas when the sliding window is too
long, these eye movement features can be easily smoothed out by
the averaging effects. Previous literature on the use of the sliding
window also shows that the optimal window size is dependent on
the task [HLMB18, MMDR20]. Second, although no previous re-
search has predicted user experiences with VR locomotion using
eye tracking, the best performance we obtained is comparable to
eye-tracking-based classification results for other behavioral targets
in other scenarios (see Section 2.2). Our results demonstrate the ro-
bustness of our approach to predicting user experiences with VR
locomotion based solely on eye-tracking data. This fills a research
gap in the field of VR locomotion.

Furthermore, we applied the SHAP approach to explore how
eye-tracking features contribute to the classification models and
to further uncover the underlying relationships between features
and model outputs (see Figure 4). The results show that pupil- and
saccade-related features are highly informative for the RF model in
predicting user experiences. Fixation-related features, on the other
hand, are less informative compared to the other two types of fea-
tures. In addition, we found that most pupil-related features, such
as mean, maximum, and minimum pupil diameter during fixations,
as well as mean and maximum pupil diameter, have a positive in-
fluence on the classification model into the prediction output of L-
UE (class-1), which means that a higher value of these features
than their respective average value drives the classification into the
prediction output of L-UE. This may suggest that a higher value
of these pupil-related features correlates with a lower user experi-
ence, as evidenced also by the statistical test results of pupil diame-
ter (see Table 4). Specifically, mean pupil diameter and mean pupil
diameter during fixation were found to be significantly larger in
the L-UE group than in the H-UE group, supporting the SHAP re-
sults showing that pupil-related features correlate negatively with
user experience level. We found similar consistent results for an-
other type of informative feature, namely saccade-related features.
The SHAP results show that features such as maximum saccade
amplitude, minimum and mean saccade peak velocity have a nega-
tive influence on the classification model into the prediction output
of L-UE, which means, that a lower value of these features than
their respective average value drives the classification into the pre-
diction output of L-UE, in contrast, a higher value of these fea-
tures than their respective average value drives the classification
into the prediction output of H-UE (class-0). This may suggest that
a higher (lower) value of these saccade features correlates with a
higher (lower) user experience. It is worth noting that these SHAP
results for saccade features are also consistent with the statistical
results where saccade-related metrics have a higher value in the H-
UE group than in the L-UE group, further suggesting that these
saccade-related features correlate positively with user experience
level. However, no significant difference was found in fixation rate
and fixation duration in the statistical tests, but we found in the
SHAP results that these fixation features affected the classifica-
tion models differently. This suggests that the model can learn the
deeper characteristics of eye movements that are difficult to detect
with statistical tests.

Although there is no research investigating correlations between
eye movements and user experiences with VR locomotion, our
findings from the SHAP approach and statistical tests can still be

interpreted based on previous literature. As in our study, partici-
pants’ user experience was evaluated as to their feelings about us-
ing the locomotion methods, i.e., whether the locomotion method
was easy to use, whether they felt tired, whether it was fun, that is,
a higher user experience indicates that the participant can navigate
the virtual environment easily and with little fatigue using the loco-
motion methods. Thus, in our case, we consider that a higher user
experience implies a lower cognitive load, while a lower user expe-
rience implies a higher cognitive load. Our results show that there
might be a negative relationship between pupil diameter and user
experience, which means that participants with high user experi-
ence have small pupil diameter. This can be supported by previous
literature, stating that pupil diameter correlates positively with cog-
nitive load [HP64]. That is, participants who have a high user expe-
rience (i.e., little fatigue, high enjoyment) have low cognitive load
as indicated by pupil diameter. Similarly, our results suggest that
saccade amplitude and saccade peak velocity are positively cor-
related with user experience, implying that participants with high
user experience have large saccade amplitude and saccade peak ve-
locity. This can be supported by previous literature as well, stating
that saccade amplitude and saccade peak velocity are negatively
correlated with cognitive load [DSRS∗10, MKW∗90, KODDM20].
Thus, our model explainability results, revealing the underlying re-
lationships between eye-tracking features and user experience, can
be supported by previous literature.

7. Conclusion and Implication

In this work, we investigated the feasibility of predicting user ex-
periences with VR locomotion (i.e., the usability of locomotion
methods and users’ feelings about them during navigation) based
on eye-tracking data alone. We conducted a user study in which
participants performed a navigation task in a virtual environment
with five different locomotion methods. We collected participants’
experience data using a standard questionnaire and binned them
into low and high user experience groups as the ground truth. We
extracted a variety of eye-tracking features from time-series data
using a sliding window approach. We built classification models
using the random forest algorithm based solely on the extracted
eye-tracking features. Our best model achieved an average accuracy
of over 0.7 in 50 runs, demonstrating the feasibility of predicting
user experiences with VR locomotion based on eye-tracking data
alone and the robustness of our research. By applying the SHAP
approach, we identified the most contributed features of the classifi-
cation model. In addition, the SHAP explainability results revealed
some relationships between eye movements and user experience,
i.e., L-UE and H-UE, which can be further supported by the statis-
tical results.

To the best of our knowledge, our study is the first to use eye
tracking as a tool to investigate user experience in the research
field of VR locomotion. User experience is one of the most im-
portant aspects in evaluating or comparing locomotion methods,
as it is closely related to the improvement of locomotion methods.
As such, our research provides a viable user experience assessment
tool for future studies, especially when new locomotion techniques
are proposed, and can be extended to other VR research that aims to
provide a good experience to users or requires system assessment
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and improvement. The ultimate goal would be a system that can
detect the user experience level in real-time to offer users a tailored
and optimal experience in real-world applications.
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