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ABSTRACT

Eye tracking is handled as key enabling technology to VR and AR
for multiple reasons, since it not only can help to massively reduce
computational costs through gaze-based optimization of graphics
and rendering, but also offers a unique opportunity to design gaze-
based personalized interfaces and applications. Additionally, the
analysis of eye tracking data allows to assess the cognitive load,
intentions and actions of the user. In this work, we propose a
person-independent, privacy-preserving and gaze-based cognitive
load recognition scheme for drivers under critical situations based
on previously collected driving data from a driving experiment in
VR including a safety critical situation. Based on carefully anno-
tated ground-truth information, we used pupillary information and
performance measures (inputs on accelerator, brake, and steering
wheel) to train multiple classifiers with the aim of assessing the
cognitive load of the driver. Our results show that incorporating eye
tracking data into the VR setup allows to predict the cognitive load
of the user at a high accuracy above 80%. Beyond the specific setup,
the proposed framework can be used in any adaptive and intelligent
VR/AR application.
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1 INTRODUCTION

Cognitive load is referred to as the amount of information processing
activity that is imposed on working memory [6]. Cognitive load
recognition is important and beneficial for many applications. It has
been studied extensively in various domains, such as in education,
psychology, or driving, since information on the cognitive load of an
individual can be helpful to design user-adaptive interfaces. Various
ways have therefore been proposed to assess the cognitive load of a
subject, such as by means of N-back tasks (e.g., Appel et al. [2]),
through the analysis of electroencephalography (EEG) signals (e.g.,
Zarjam et al. [22], Walter et al. [20]), by means of eye movements
studies or through assessment of facial expressions (e.g., Hussain
et al. [11]). Eye tracking offers a particularly non-invasive way of
cognitive load assessment, especially through the measurement and
analysis of the pupil diameter.

Meanwhile, eye tracking has also found its way into the driving
domain, not only as a means to study driving behavior, but also as a
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powerful input modality for advanced driver assistance systems (e.g.,
Kübler et al. [14]) or even as a means of driver observation on context
of automated driving (e.g. Braunagel et al. [3, 5]). Modern cars
are already capable of tasks such as lane following, traffic sign and
light detection, automated parking, and collision warning. However,
the full autonomous driving task is still too complex without human
input and guidance. For this reason, current cars employ a variety of
multi-modal warning systems for many different purposes to ensure
driving safety and provide smooth driving experience. Augmented
reality (AR) and head-up-display (HUD) technologies have been
used as interfaces to such systems both in practice and driving
simulation research. In the following, we will briefly review related
work in this context.

Many driving simulation studies have been conducted in driving
simulators or virtual reality (VR) environments in order to analyze
driving behavior, safety, performance and training using HUDs or
virtual warnings. For example, HUDs for blind spot detection and
warning were discussed in a related work by Kim et al. [12]. Tran et
al. [19] addressed the usage and benefits of HUDs during left turns.
Moreover, benefits and improvement of driving behavior for lane
keeping using adaptive warnings were discussed by Dijksterhuis et
al. [7]. The effect of improving bad driving habits using VR in a
user-study was discussed by Lang et al. [15]. In the context of eye
tracking and driving, there are several studies with various goals. For
example, Konstantopoulos et al. [13] studied eye movements during
day, night, and rainy driving in a driving simulator. Braunagel et
al. [4] introduced a novel approach for driver activity recognition
using head pose and eye tracking data. Furthermore, Braunagel et
al. [5] proposed a classification scheme to recognize driver take-over
readiness using gaze, traffic, and a secondary task in conditional au-
tomated driving. Pomarjanschi et al. [17] showed that gaze guidance
reduced the number of pedestrian collisions in a driving simulator.

In the driving context, there are many studies that focus on cog-
nitive load and driving. Engström et al. [8] analyzed the effect
of cognitive load on driving performance and found out that the
effects of cognitive load on driving are task dependent. Yoshida
et al. [21] proposed an approach to classify driver cognitive load
to improve in-vehicle information service using real world driving
data. Gabaude et al. [10] conducted a study in a driving simulator to
understand the relationship between mental effort and driving per-
formance using cardiac activity, driving performance and subjective
data measurements. Mizoguchi et al. [16] proposed an approach to
identify cognitive load of the driver using inductive logic program-
ming with eye movement and driver input measurements in real
driving situations. Fridman et al. [9] proposed a scheme to estimate
cognitive load in a 3-class problem in the wild for driving scenarios
using convolutional neural networks.

Driving simulation studies for safety critical situations using warn-
ings and cognitive load recognition in driving exist in the literature.
However, it is still an open question whether it is possible to recog-
nize cognitive load of the driver in safety-critical situations and espe-
cially when the driver is confronted with visual gaze-aware warnings.
In order to tackle this issue, we used the data collected using a VR
setup from our previous work [1] where drivers encountered a dan-
gerously crossing pedestrian in an urban road. In order to keep



the situation safety critical, Time-to-Collision (TTC) between driv-
ing vehicle and crossing pedestrian was kept 1.8sec < T TC < 5sec.
Rasouli et al. [18] discussed that in this range of TTC, there is a
high likelihood that pedestrian or joint attention between driver and
pedestrian happens. However, if it does not happen, the outcome
can be fatal. Our study was conducted with 16 participants. Half
of them received gaze-aware pedestrian warning cues, whereas the
other half did not receive any cue.

In our proposed scheme, the cognitive load of the drivers are
recognized using critical and non-critical time frames of driving
for each participant. Since critical time frames are very short, we
kept non-critical time frames also short in order to have a uniform
distribution in the training data. We trained multiple classifiers
and evaluated them leave-one-person-out fashion in order to obtain
person-independent results. Furthermore, since the time frames that
are used in training and testing are very short, they do not reflect the
complete intention of driver during driving. Therefore, we obtained
a privacy-preserving scheme. In addition to person-independence
and privacy-preserving features, our system also works in real time,
which brings the opportunity to implement the same system in real
life.

In general, when the cognitive load of the driver is recognized in
a safety critical situation, visual cues and support can be adapted
accordingly in order to provide safer, smoother, and less stressful
driving experience even in very risky situations. In this work, we
focused on a proof-of-concept in the driving scenario due to its
highly dynamic and uncertain nature. However, our results show
that the same methodology can be applied to any adaptive and gaze-
aware application, especially in VR/AR.

2 PROPOSED APPROACH

Since the proposed system depends on the driving data which were
collected using a VR setup, Section 2.1 describes first the VR setup
and the collected data from our previous work [1]. Then in Section
2.2, data processing, training, and testing procedures are discussed.

2.1 VR Setup and Environment
In our previous work [1], we conducted a user-study to evaluate
safety during driving in VR.

The hardware setup was created using HTC-Vive, Logitech G27
Steering Wheel and Pedals, Phillips headphones and Pupil-Labs
HTC-Vive Binocular Add-on. Figure 1 shows the dedicated setup.

Figure 1: Experimental setup for VR

The hardware setup was used in a virtual environment created
using Unity3D. We used 3D models from Urban City Pack, City Park

Exterior, and Traffic Sign Sets packages to design the virtual city.
Since we had not only critically crossing pedestrians, but also other
pedestrians, we used Modern People asset packages for pedestrian
models. Vehicle models and helper scripts were obtained from
Realistic Car HD02, Traffic Cars, and Realistic Car Controller asset
packages. Lastly, Playmaker and Simple Waypoint System packages
were used to make pedestrian and vehicle movements smoother. For
the eye tracking measures, Pupil Service version 1.7 of open source
hmd-eyes1 from Pupil-Labs was used. Examples scenes from VR
environment are shown in Figure 2.

(a) Cockpit of driving vehicle (b) Intersection from driving vehi-
cle

(c) Intersection (d) Main road

Figure 2: Example scenes from VR environment

The user-study consisted of acclimation and data collection
phases. In the acclimation phase, no data was collected. In the
data collection phase, participants encountered with a dangerously
crossing pedestrian. Two critical pedestrians on the side walk of
main road were generated. In the beginning of the experiment, one
of them was marked as crossing pedestrian. This critical pedestrian
started crossing the road when the distance between driving vehicle
and pedestrian was (dcritical ≈ 45m). Every participant encountered
with critically crossing pedestrian due to the start position of the ve-
hicle in the data collection phase. They had the opportunity to speed
up or slow down until the pedestrian crossing. Half of the partici-
pants started observing critical pedestrian warning cues around the
pedestrian model with red color ≈ 32 meters in advance to pedestrian
crossing. These parameters helped to keep TTC as 1.8s< T TC < 5s,
since the speed limit of main road was 90km/h. Participants were
supposed to realize the speed limit via speed signs on the road. Oth-
erwise, the vehicle was equipped with maximum speed warning on a
small in-car board. The pedestrian cues were made gaze-aware and
were deactivated when gaze signal of the driver was closer than 5
meters to pedestrian for ≈ 0.85 seconds. Gaze signal on 2D canvas
was obtained from Pupil Service from Pupil-Labs and then mapped
from 2D to 3D with the help of ray-casting and Unity colliders. The
hyper-parameters were determined empirically. The measurements,
which changed over the time, were recorded in real time and were
available for offline analysis. Since the pupil diameter values are
very important for recognizing cognitive load, we post-processed
pupil diameter measurements to remove the noise and normalize the
data. For smoothing and normalization, we applied Savitzky-Golay
filter and divisive baseline correction using a baseline duration of
0.5 seconds respectively.

Corresponding setup and experiments were run on a PC equipped
with NVIDIA Titan X graphics card with 12GB memory, a 3.4GHz
Intel i7-6700 processor and 16GB of RAM.

1https://github.com/pupil-labs/hmd-eyes



2.2 Cognitive Load Recognition
The data we obtained from the experiment (mentioned in Section 2.1)
is not annotated with regard to the cognitive load levels. Therefore,
we first annotated our data with two levels of cognitive load: Low
and high. We set tcritical for both with-and without-pedestrian cue
scenarios. The purpose of tcritical is to separate the time domain
into low and high cognitive load levels. It is taken as twarning and
tmovement for with-and without-warning scenarios respectively. The
reason of taking two different tcritical values is that cognitive load
of the drivers who receive critical pedestrian cues starts increasing
from twarning, whereas cognitive load of others who do not receive
any cue increases after the start of pedestrian movement.

In order to find the time frames to annotate exactly, we applied
T-test using the pupil diameter data of each participant between
[tcritical − δ t, tcritical ] and [tcritical , tcritical + δ t]. We used pupil di-
ameter measurements due to the fact that pupil diameter is one of
the main indicators of cognitive load. Once a significant difference
in T-test was found with p < 0.05, we assumed that we found a
proper δ t value. In order to keep the distributions significantly dif-
ferent but rather close to each other, we did not accept distributions
where p < 0.01. Since cognitive load also depends on biological
factors, which do not happen immediately, we shifted tcritical by
+θ tshi f t = 0.8s. In the end, we annotated each frame in the dedi-
cated time frames with low or high cognitive load as it is shown in
Table 1:

Table 1: Cognitive load annotations for time-frames

Time Frame Cognitive Load
[tcritical +θ tshi f t −δ t, tcritical +θ tshi f t ] Low
[tcritical +θ tshi f t , tcritical +θ tshi f t +δ t] High

In order to recognize cognitive load of the driver, we trained differ-
ent classifiers including Support Vector Machines (SVM), decision
trees, random forests, and k-Nearest Neighbors (k-NN) using each
frame. For the feature set, we used pupil diameters, and driver inputs
on accelerator and brake pedals and steering wheel. Min-max nor-
malization was applied to input data. In order to make our approach
person-independent, we evaluated the data of each driver against
the trained model using rest of the drivers. For example, in order
to evaluate the first participant, we trained classifiers with other 15
participants and then evaluated the first participant using the data and
its labels. This approach assures that we obtain person-independent
results in the end.

Offline analyses offer many insights from the collected data. How-
ever, real time working capability is as important as the accuracy
of the system especially in VR/AR fields. With this motivation, we
evaluated whether our proposed scheme is capable of working in
real time.

3 RESULTS

In the following, we report results of our automated cognitive load
recognition and its real time working capabilities that was conducted
using MATLAB on a PC which is equipped with NVIDIA GeForce
GTX 1070 mobile graphics card with 8GB of RAM, a 2.2GHz Intel
i7-8750 processor, and 32GB of RAM.

In our dataset, there are 1171 frames in total and from each
frame, maximum four features were used in training and testing. In
addition, there are ≈ 73 frames (Mean) per participant (SD=12.5).
We trained SVM, decision trees, random forests, and k-NN and
tested according to the discussed setup in Section 2.2 and used
different combinations of features along with pupil diameter. We
observed that using steering wheel input of driver did not lead to
more accurate recognition. Since participants did not need to change
steering wheel angle too much during the encountered scenarios, it is

acceptable. Taking into account that cognitive load does not change
very dramatically in short amount of time and each participant was
evaluated against the trained models using the rest of the participants,
the cognitive load recognition results are reasonable. The highest
accuracy of 80.7% was achieved by SVM. Adding more training
data and participants has a great potential to increase the accuracy
of predictions. Accuracy, precision, recall, and F1-score results
which were obtained using these classifiers and feature set of pupil
diameter and driver inputs on accelerator and brake are shown in
Table 2.

Table 2: Results of cognitive load recognition

Method A
cc

ur
ac

y

Pr
ec
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io

n
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F1
-S
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re

Support Vector Machine 0.8070 0.7671 0.8574 0.8098
Decision Tree 0.7344 0.7332 0.7005 0.7165

Random Forest 0.7436 0.7372 0.7230 0.7299

1-Nearest Neighbor 0.6968 0.6846 0.6809 0.6828
5-Nearest Neighbor 0.7566 0.7473 0.7433 0.7453

10-Nearest Neighbor 0.7882 0.7947 0.7522 0.7729

During the training of classifiers which are mentioned in Table
2, we set some hyper-parameters. For SVM, we used linear kernel
function. For k-NN approach, we evaluated 1-NN, 5-NN and 10-NN.
The accuracy results increase by increasing the k value. For random
forest classifier, we used five trees to train for classification purposes.

Since it is important to apply the proposed approach in real life
scenarios, we evaluated whether cognitive load recognition can be
done in real time. Table 3 shows the mean time spent for one
prediction in each method.

Table 3: Evaluation of mean prediction durations

Method Mean Prediction Duration (ms)
Support Vector Machine 0.319

Decision Tree 0.305
Random Forest 5.42

1-Nearest Neighbor 0.741
5-Nearest Neighbor 0.742
10-Nearest Neighbor 0.764

It is clear that all methods can be used for real time purposes.
However, under this setup, it is reasonable to use SVM due to its
higher accuracy and low prediction duration. In addition, if the
dataset size increases, the real time working capability of k-NN is
affected negatively. The same applies when the number of trees in
random forests is increased.

4 CONCLUSION AND DISCUSSION

We proposed a scheme to recognize cognitive load of the drivers in
safety critical situations using data collected during a driving study
in VR. The scheme is person-independent because it generalizes
well cross-subject. With more training data, there is a high potential
for this scheme to work in a generic way. If person-specific setup is
requested, the same scheme can be applied by adjusting the training
data. In this case, even a more accurate cognitive load recognition
can be obtained.

Due to the fact that we concentrated on very short time frames,
complete driving data of participants were not exposed and only
small amount of frames was used in training and testing. Only,
the pupil diameter measurements were baseline-corrected using the



first 0.5 seconds of driving. Therefore, it is a privacy-preserving
scheme. Lastly, our scheme is capable of working real time. This
outcome is very important and means that same scheme can be used
in real driving studies and vehicles. It will enable more adaptive
and intelligent feedbacks and inputs in driver warning systems; and
eventually lead to safer and smoother driving experiences. We
strongly suggest that similar schemes should be applied to real
vehicles.

While this study is in driving domain, the outcome shows that our
approach can be applied in similar adaptive user studies in VR and
AR fields. The results indicate that there is a unique opportunity to
design eye-tracking enabled interfaces and applications. Since we
think that eye tracking has a great potential to transform VR and AR
into another level, the outcome is valuable.

Despite the advantages and reasonable outcomes, there are some
limitations as well. Firstly, since data were collected under VR
setup, there is a likelihood that drivers do not behave naturally in VR.
Virtual environment, weight of Head-Mounted-Display (HMD), or
different dynamics of pedals or steering wheels can cause different
behaviors than the real life. While we assume that participants
became familiar with these in the acclimation phase, one should not
ignore this possibility. Secondly, since the safety critical situations
during driving happen in very short amount of time, it is difficult
to collect big data in this context both using simulations or in real
world.

As future work, more data and features can be used. There is
a high likelihood that the accuracy of cognitive load recognition
increases with more data. The same scheme can be applied to real
driving simulators along with safety critical scenarios. Therefore,
the findings in VR experiment can be compared with the future
driving simulator experiments in terms of cognitive load recognition.
Secondly, using raw eye videos along with other extracted features
can be used to train deep models to estimate cognitive load. Further-
more, markov models or recurrent neural networks can be used to
predict the cognitive load since they are suitable for time dependent
data.
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