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Abstract
Eyelid identification and aperture estimation provide key
data that can be used to infer valuable information about a
subject’s mental state (e.g., vigilance, fatigue, and drowsi-
ness) as well as validate or reduce the search space of
other eye features. In this paper, we consider these tasks
from the perspective of pervasive eye tracking, taking into
account the multiple challenges and constraints that arise
from this scenario. A novel method for eyelid identifica-
tion and aperture estimation is proposed and evaluated
against challenging data from an eye-tracking experiment
conducted in driving scenarios in the wild. The proposed
method outperforms an state-of-the-art approach by up to
40 percentage points and runs in real-time on state-of-the-
art eye tracking systems. The method implementation and
the realistic dataset are provided openly at
www.ti.uni-tuebingen.de/perception .
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Introduction

Figure 1: Multiple levels of pupil
occlusion during a blink.

The human eyelid is a skin fold that performs multiple tasks
with the intent of protecting the anterior surface of the ocu-
lar globe. Among these tasks, the eyelids aid in regulating
the amount of light that reaches the eye (e.g., by squinting
when gazing at bright light sources) as well as eye main-
tenance (e.g., by distributing the tear film over the cornea
during blinks) [6, 8]. Although essential for perpetuating eye
healthiness, these tasks alter the eye appearance signif-
icantly, posing a myriad of problems for the identification
of relevant eye features in video-based eye trackers. For
instance, they may lead to several levels of pupil and iris
occlusion (e.g., see Figure 1) or obstruct their illumination.
Furthermore, the eyelids may continually occlude these eye
features depending on the eye position with respect to the
camera. Therefore, an accurate and robust method for es-
timating the position of the eyelids can be employed, for
instance, to validate (or even reduce the search space for)
features of interest. Moreover, the correct estimation of eye-
lid aperture also has direct applicability for blink, vigilance,
fatigue, and drowsiness identification [17, 27, 24].

In this work, we focus on head-mounted video-based eye
trackers since these are relatively unintrusive, flexible, and
mobile, thus making them excellent candidates for perva-
sive eye tracking. These eye trackers provide eye images
directly, thus no face detection nor eyes boxes localization
are required. However, such trackers impose some addi-
tional constraints on the task. For example, color images
are not available due to the use of the near-infrared imag-
ing, and the eye orientation as well as eye canthi position
are not known a priori. Furthermore, a direct consequence
of pervasive eye tracking is the usage of the system in real-
world and natural scenarios. In contrast to laboratory con-
ditions, these scenarios further increase the complexity of
detecting eye features due to the introduction of several

sources of noise – e.g., complex/changing illumination,
motion blur, recording errors, occlusion by eyelashes, and
reflections [10]. Furthermore, some of the practical appli-
cations for these devices must be in the form of embedded
systems (e.g., driving assistance [2, 12]) and impose real-
time, processing, and energy consumption constraints.

To the best of our knowledge, this is the first work to ap-
proach eyelid detection and aperture estimation from the
aspect of pervasive eye tracking; additionally, the proposed
method runs in real-time and does not require the detection
of other eye features. Our main contributions are:

• A novel method to identify pixels that approximate the
lower and upper eyelids based on a likelihood map
derived from four features computed from a grayscale
close-up image of the eye region.

• Alternatively to fitting polynomials to the pixels that
approximate the eyelid, we propose approximating
the eyelids outline using the ending points of edges
extracted from this likelihood map to fit two Bézier
curves, forming an ellipsis. The minor axis of this el-
lipsis is used as an estimate of the eye aperture.

• We introduce a new challenging dataset containing
1100 eye images collected during eye-tracking ex-
periments from on-road driving. Each image was an-
notated by experts with ten roughly equally-spaced
eyelid points per eye image, including eye canthi.
To foster further research, this dataset is provided
openly at www.ti.uni-tuebingen.de/perception .

• The proposed solution is evaluated by comparing
the estimated eyelid aperture to the aperture derived
from the points annotated by the experts, improving
the eyelid aperture estimation up to 40 percentage
points relative to a state-of-the-art approach.

www.ti.uni-tuebingen.de/perception


Related Work
The Competition

In this work, we have opted
to evaluate the proposed al-
gorithm against VASIR [14].

Advantages: Besides its
status as an state-of-the-art
project, it is also an open-
source one, thus avoiding in-
troducing misleading results
due to small reimplementa-
tion differences; it is often
the case that not all details
are included in papers due to
space limitations.

Similarities: Moreover, sev-
eral approaches, such as
[1, 3, 11, 15, 16, 18, 19],
follow similar procedures
of first finding the iris/pupil
and then approximating the
contours of the eyelids based
on the top and bottom re-
gions around the iris. Thus,
VASIR’s, through its multiple
linear Hough transforms to
locate the eyelids, is a robust
representative of this class of
approaches in terms of both
results and run time.

The task of eyelid aperture estimation is closely related
to the detection of the eyelids. Approaches tackling eyelid
detection stem as a byproduct from two particular tasks,
namely, blink detection and iris recognition; the former be-
ing usually applied in vigilance, fatigue, and drowsiness
detection [17, 24, 27]. McIntire et al. [17] report that the
Eye-Com alertness monitoring device identifies blinks when
more than 85% of the pupil is occluded by the eyelid; how-
ever, no information is given on how the pupil and eyelid
detections are achieved. Yang et al. [27] apply a deformable
eye contour template based on two parabolic sections in-
tersecting at two points (the eye corners); this template is
then deformed to maximize a likelihood function based on
the clustering of color and texture descriptors. Suzuki et
al. [24] divide the input image into vertical sections and, for
each section, find the pair of maximal and minimal inten-
sity derivatives most distant from the darkest point in the
section. The candidates from five sections are grouped,
and two groups are estimated to represent the upper and
lower eyelid; the average distance between the upper and
lower eyelid points is calculated and used as the eye gap
metric. In the context of iris recognition, eyelid detection is
employed to improve iris segmentation, leading to improved
recognition rates [4]. For instance, the Wildes method [26]
employs Hough transforms for parabolic arcs to identify
the eyelids, and Daugmann [4] uses a integrodifferential
operator with arcuate contour integration, in which spline
parameters are fitted based on statistical estimation. Ad-
ditionally, some methods rely on the a priori identification
of other eye features (e.g., pupil, iris, canthi), which is not
a trivial task for images obtained in real-world and uncon-
strained scenarios. Cai and Wang [3] first preprocess the
input image with morphological operations to remove eye-
lashes and light spots. The minimum grayscale value of
each column is then extracted as edges, and a least square

parabolic fitting is applied to these edges. The result is then
refined to compensate for deviations due to the preprocess-
ing. Radman et al. [23] first utilize a radial edge detector
based on the outer iris boundary; for each pixel, the satu-
ration average value of its ten adjacent pixels is calculated
and, once this average exceeds a threshold, the pixel is
considered an intersection point between the eyelid and
outer iris boundary. This results in starting and ending pix-
els for each eyelid, which are then connected through the
live wire method [19]. Adam et al. [1] initially smooth the in-
put image through anisotropic diffusion and apply a Canny
edge detector. The search area in the edge image is then
restricted to the top and bottom of the inner iris. The edges
in the region of interested are then filtered based on the
mean length of all edges in the region; parabolas are fitted
to remaining edges, and their direction used for further fil-
tering. The remaining edge that maximizes the horizontal
Sobel gradient intensity from the original image is chosen
as contour. The VASIR (Video-based Automatic System for
Iris Recognition) is a state-of-the-art iris recognition plat-
form developed by the National Institute of Standards and
Technology [14]. In VASIR, eyelid detection starts by locat-
ing the pupil and iris through Hough transforms. Afterwards,
the region around the upper part of the iris is split into three
parts. The eyelid in each subregion is found using a lin-
ear Hough transform, and a third-degree polynomial is fit
to these points through Lagrange interpolation; the same
procedure is repeated for the lower eyelid.

Eyelid Detection
Let I[r, c] be a digital close-up image of the eye in the near-
infrared spectrum with r rows and c columns. The eyelid
detection task consists of selecting two sets of pixels Pl and
Pu in I that lie respectively on the lower and upper eyelids,
which are then used to fit functions representing the outline
of each eyelid.



The proposed method consists mainly of I) rescaling the im-
age preserving dark regions to reduce noise and computa-
tion costs, II) filtering the image according to a combination
of local features to generate a likelihood map for the eye-
lids, III) detecting edges on the likelihood map, and select-
ing two edges to represent the eyelids based on their ori-
entation and horizontal shift in respect to one another, en-
closed intensity value, and accumulated likelihood. These
steps are described in detail in the following subsections,
followed by a graphical representation exemplifying the out-
put of each stage in the algorithm (Figure 4).

Figure 2: Downscaling window
size (on the top) and stride (on the
bottom) – not in scale in relation to
each other.

I - Rescaling
To preserve thin dark structures that usually lie close to the
eyelid, such as eyelashes, we employ a downscaling oper-
ation that favors lower intensity pixels (as proposed in [10]).
Let df be a downscaling factor (five in our implementation).
The values of the downscaled image D are calculated from
the pixels pi ∈ I based on a square sliding window W with
sides of l = 2 ∗ df + 1 pixels and stride of df pixels (see
Fig. 2). For each position of W , the mean intensity in the
window is calculated as

µ =
1

l2

∑
pi∈W

pi, (1)

the window intensity histogram H is computed, and the
corresponding pixel value d in the downscaled image is
then evaluated as

d =

(
µ∑
j=0

H(j).j

)/(
µ∑
j=0

H(j)

)
. (2)

II - Likelihood Map Generation
Four different local features are exploited to generate the
likelihood map, namely the mean, standard deviation, skew-

ness, and horizontal edges. For each pixel in D, these fea-
tures are derived from a neighborhood centered on that
pixel. The mean, standard deviation, and skewness are
computed over a local square window sized 7 × 7 pixels
and act as rotation invariant sparse edge filters; addition-
ally, these filters also respond to edges partially covered
by eyelashes. The mean is calculated as the first moment
(m1) and uses the complement of the downscaled image as
input (to weight small shadows close to the eyelids higher).
The standard deviation is calculated as the second moment
around the mean (m2), whereas the skewness is evaluated
as the third moment around the mean (m3). The horizontal
edge response is calculated using the Prewitt operator [21]
and serves as a reinforcement of horizontal edges in the
likelihood map; it is worth noticing that even if the eye is
not precisely aligned horizontally with relation to the cam-
era, some parts of the eyelid evoke a response due to the
arcuate nature of the eyelid. Each feature produces an as-
sociated activation map: the mean (M1), standard devia-
tion (M2), skewness (M3), and horizontal edge (E) maps.
These maps are point-wisely1 combined to generate the
likelihood map L as

L = E2 �M1 �M2 �M3, (3)

effectively resulting in a high pass filter for E, M1 and M2

and in a low pass one for M3. An averaging filter with a
height of three pixels and covering ≈ 30% of L’s width is
applied to L in order to connect horizontally disjointed high
likelihood regions and increase the response of straight
horizontal edge parts. This operation introduces some
noise, which is partially removed by setting negligible val-
ues (smaller than one cent of one percent of the maximum
value) to zero. Additionally, we set likelihood map values
outside plausible eyelid regions to zero. The boundaries of

1� and � denote point-wise multiplication and division, respectively.



this region are determined based on the mean horizontal
intensity values distribution, considering that the pupil and
iris exhibit lower intensity values relative to the skin patches
above and below it. Prior to the analysis, the distribution is
smoothed with an averaging filter of seven pixels to remove
high peeks and holes (Figure 3b). Afterwards, all local max-
ima and minima are determined (Figure 3c); the tuple of
two distinct maxima and one minimum {maxa,maxb,min}
that maximizes the distance

maxa +maxb − 2 ·min (4)

is used to determined the boundaries, which are set to
maxa and maxb (Figure 3d). This yields the refined likelihood
map Lr.

(a) Rescaled (D)

(b) Smoothed distribution

(c) Local maxima and minima

(d) Boundaries

Figure 3: The input (a), and its
smoothed mean horizontal
intensity values distribution (b),
from which local maxima and
minima (c) are identified and
employed to determine the
plausible eyelid boundaries –
yellow lines in (d).

III - Edge Detection and Selection
Edge detection is applied to Lr by means of non-maximum
suppression, followed by a thinning morphological opera-
tion, resulting in a set of edges. Let Ei and Ej be two dis-
tinct edges, and the mean position for an edge be the mean
position of all pixels belonging to the edge. For each possi-
ble pair of edges (Ei, Ej), four metrics are calculated:

ΣL(Ei, Ej) : The accumulated likelihood is based on the
values vk ∈ Lr and defined as

ΣL(Ei, Ej) =
∑
vk∈Ei

×
∑
vk∈Ej

(5)

δh(Ei, Ej) : The horizontal shift is defined as the distance
between the horizontal components of the edges
mean position.

α(Ei, Ej) : The relative angle is defined as the normalized
angle between the mean position of the edges (e.g.,
90° α7−→ 1 and 0° α7−→ 0).

ι(Ei, Ej) : The enclosed intensity is defined as the mean
intensity enclosed by the area generated by the seven
pixels orthogonal to each pixel in the vector that con-
nects the mean position of the edges.

Figure 6 shows a graphical representation of these met-
rics for an edge pair. For each pair, these metrics are then
combined to form a total score

τ(Ei, Ej) = ΣL × δh × α× ι, (6)

and the pair with highest score is selected as eyelids. After-
wards, the selected edge points with values in Lr smaller
than one third of their maximum value are removed to atten-
uate the effect of spurious edges introduced by the filters in
previous steps.

Eyelid Aperture Estimation
In order to estimate the eyelid aperture, the ending points
of the upper and lower eyelids are used to fit two Bézier
curves. One curve uses the upper eyelid ending points as
first and last control points, whereas the other use those
from the lower eyelid. The combination of these two curves
result in an ellipsis that approximates the eye outline. The
major and minor ellipsis axis are determined based on the
two orthogonal point pairs with maximal distance, and the
minor axis is used as estimate for the eyelid aperture. To
compensate for the small vertical smearing introduced by
the box filter in the previous step, we substract two pixels
(one for each eyelid) from the estimated distance before
upscaling it to the input image scale. Figure 5 shows the
resulting procedure for three distinct situations. The main
advantage of the proposed Bézier-curve-based approach is
that fitting the Bézier curves is a stable procedure, whereas
commonly polynomial fit approaches employed in related
work are unstable. As a result, the algorithm performs more
uniformly across different scenarios. It is important to notice



that this approach does not model the eye canthi region ac-
curately; however, these regions can be safely disregarded
without loss of information since they are not pertinent to
estimating the eyelid aperture and features of interest (e.g.,
pupil) do not lay in these regions.

(a) Input (I) (b) Rescaled (D)

(c) SD (M2) (d) Skew. (M3)

(e) Prewitt (E) (f) Likelihood (L)

(g) Refined (Lr ) (h) Edges (E)

Figure 4: Function performed by
each stage in the eyelid detection
algorithm – normalized per image.

(a) Edges (E) (b) Upper Bézier

(c) Lower Bézier (d) Aperture

Figure 5: Edge (E), upper and
lower eyelid Bézier curves, and the
resulting ellipsis with the aperture
estimation (minor axis, in cyan).

Ei

Ej

X

Y

δh

α

ι

Ei

Ej

Figure 6: Graphical representation of edge selection metrics for
an edge pair (Ei, Ej). Red dashed circles present the mean
position of the edges, and the gray area represents the area
considered when evaluating ι. This is the edge pair selected to
represent the eyelids given the edge image on the top right corner.

Evaluation
In order to compare the proposed approach to the state-of-
the-art, we have employed the method from the VASIR [14]
project to detect eyelids, combined with the "eye gap" mea-
sure [24]. During this evaluation, we have found the third-
degree polynomial employed by VASIR to approximate the
eyelids to be relatively unstable in some cases; as such,
we additionally evaluate the same method but replacing the

third-degree polynomial by a second-degree one. Hence-
forth, the former is referred to as VASIR-3d and the latter as
VASIR-2d.

Dataset
As previously mentioned, eyelid detection is mostly related
to two research areas. For vigilance, fatigue, and drowsi-
ness detection, data is recorded to assess those particular
metrics, and no eyelid ground-truth is present. To the best
of our knowledge, none of these datasets are publicly avail-
able. For the second field, namely iris recognition, there are
multiple publicly available datasets containing eyelid data
annotation – although they often require lengthy registration
processes a priori. The most widespread datasets in the lit-
erature are UBIRIS [22] and CASIA [20] datasets. However,
these datasets are designed for biometry purposes and,
thus, often follow guidelines to ensure that the amount of
information existent in the data and the proportion of noise
occluding the iris meet certain requirements – e.g., iris di-
ameter of at least 140 pixels [4]. As a result, these data are
not realistic when pervasive eye tracking is considered.

To circumvent these issues, we have collected and man-
ually labeled 1100 images (384x288 pixels) from an eye-
tracking experiment conducted during driving in real-world
scenarios [13]. These data stem from eleven subjects and
include several challenging situations that present them-
selves in pervasive eye tracking scenarios such as mid-
blink images, reflections, motion blur, dust on the lens,
makeup usage, bad illumination due to camera angle, fully
closed eyes, eye lashes, and even rare artifacts (see Fig-
ure 7). Per subject, a hundred frames were randomly sam-
pled respecting a minimum temporal distance between
frames as to increase frame dissimilarity while keeping la-
beling efforts tractable. Each frame was annotated with ten
roughly equally-spaced points: one point on each eye can-



thus, four points lying on the lower eyelid, and four points
lying on the upper eyelid. To foster further research on the
topic, we provide these datasets openly and straightfor-
wardly at www.ti.uni-tuebingen.de/perception .

(a) Reference (b) Mid blink

(c) Reflections (d) Motion blur

(e) Dust on the lens (f) Makeup

(g) Bad illumination (h) Blink appex

(i) Eye lashes (j) Artifact

Figure 7: A good quality frame for
reference and challenging
situations pertinent to pervasive
eye tracking.

Eyelid Aperture Estimation
As a measure of eyelid aperture, we utilize the palpebral
fissure height (PFH) [7]. To derive the PFH from the ground-
truth, first each eyelid outline is determined by fitting Bézier
splines to the annotated eyelid points (including canthi).
Next, the palpebral fissure width (PFW) is estimated by
tracing a vector connecting the eye canthi. Then, the PFH
is determined by finding the largest vector orthogonal to the
PFW vector and delimited by the eyelids (see Figure 10).
The estimation error ε is then evaluated as

ε = PFH − ωalg, (7)

where ωalg is the aperture estimate from the algorithm. It is
important noticing that humans are known not to produce
pixel-accurate ground-truth, and often an error range of five
pixels is considered for a single feature position (e.g., the
pupil center) in the literature [10, 9, 25]. Thus, we discuss
our results up to an error of ten pixels due to the intrinsic
error introduced by the annotators.

Figure 8 reports the cumulative detection rate for the eye-
lids aperture per estimation error, clearly showing that the
proposed method outperforms both VASIR2d and VASIR3d
– improving the correct estimation of the eyelid aperture
up to 40 percentage points relative to the state-of-the-art
approaches for the ten pixels tolerance. This figure also re-
veals that the second and third degree polymons produced
similar estimations for the eyelid aperture.

To further investigate the performance of the algorithms, we
break down the estimation error per subject in Figure 11.
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Figure 8: Eyelid aperture cumulative detection rate.

Results are reported using boxplots – a box is drawn be-
tween the first and third quartiles, a horizontal line repre-
sents the median value, and whiskers extend to the mini-
mum and maximum values. This figure shows that the pro-
posed algorithm performed better and with less variance
than the state-of-the-art approaches in the majority of cases
– the exceptions being subjects 6 and 7, where VASIR-2d
performed slightly better, and subject 11, where none of
the approaches performed satisfactorily. As can be seen
in Figure 9, subject 6 wears very dark make-up around the
eye, which the proposed algorithm wrongly identified as
the eyelid. Similar behavior happened for subject 7 due
to slight ptosis combined with large creases in the skin of
the upper eyelid. The subpar performance for Subject 11
is easily explained by the quantity and size of bright reflec-
tions covering most of the eye image; this is by far the most
challenging subject in the contributed dataset.

www.ti.uni-tuebingen.de/perception


Figure 9: Samples respectively from subjects 6, 7, and 11.

PFW

PFH

10 px

10 px

Figure 10: Deriving the PFH
reference value from the ground
truth. The annotated ground-truth
eyelid points (top) are fitted with
Bézier splines (middle), and the
longest vector orthogonal to the
PFW delimited by the eyelids is
selected as PFH (bottom). As
reference for the error tolerance, a
circle with diameter of ten pixels is
also shown (in cyan).
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Figure 11: Eyelid aperture estimation error for each subject.

It’s worth noticing that simply producing a good estimation
for the eyelid aperture does not suffice. An algorithm may
be simply detecting something else that happens to coin-
cide with the eyelid aperture. To account for this, we also
assess the algorithms in terms of segmenting the inter-
eyelids region. The ground-truth segmentation is given by
the inner area of the Bézier-spline-connected points from
annotations. As similarity metric, we employ the popular
Dice similarity coefficient [5]; the closer the value is to one,
the better. The results are presented in Figure 12 and show
that the algorithms performed fairly well in the segmenta-

tion task, even though neither models the eye canthi ap-
propriately. VASIR-2d produced more accurate segmen-
tations, which one can expect since it operates on the full
scale image, whereas the proposed algorithm operates on
a downscaled image. Nonetheless, the proposed approach
produced more consistent results. This figure also shows
that the second-degree polynomial fit better to the data than
the third-degree polynomial. The VASIR outliers close to
zero stem from blink images, in which the pupil/iris detec-
tion step failed to locate an area inside the eyelid region.
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Figure 12: Dice coefficient for inter-eyelid region segmentation.

Algorithm run time was evaluated on a Intel® Core™ i5-
4590 CPU @ 3.30GHz with 3GB RAM, under Ubuntu 14.04.02
running inside a virtual machine, which is similar to sys-
tems employed by vendors. Results are reported in Table 1
and demonstrate the superiority of the proposed approach
in terms of required execution time. VASIR’s run time is
roughly broken down as pupil detection (37.26%), iris de-



tection (47.8%), linear hough transform (14.86%), and La-
grange interpolation (0.08%).

Conclusion

µ(ms) σ(ms)

Proposed 3.15 0.32
VASIR-2d 404.84 158.56
VASIR-3d 404.81 158.57

Table 1: Mean (µ) and standard
deviation (σ) for the execution time
for each of the evaluated
algorithms based on all images in
the dataset.

Employabillity in State-of-
the-Art Eye Trackers

Due to the high run time
of VASIR, that method is
not employable in real-time
even for the slowest head-
mounted eye trackers, which
tend to have a resolution
of 25 frames per second,
requiring the algorithm to
perform under 40ms. On
the contrary, the proposed
method is employable even
for higher-end head-mounted
eye trackers running at 120
frames per second (i.e.,
8ms) such as the SMI Eye
Tracking Glasses 2.

In this paper, we have proposed a fast and robust method
to estimate the region around the eyelids and eyelid aper-
ture. The proposed approach reaches more than 60% per-
cent detection rate on a challenging and realistic dataset,
outperforming a state-of-the-art method by more than 40%.
Whereas the algorithm performed well for most challenges
that can be expected in pervasive eye tracking scenarios,
performance for large and strong reflections was not satis-
factory – although smaller reflections and light halos did not
interfere with the performance. Nonetheless, further work is
required to deal with these reflections; particularly because
these are rather common in the presence of glasses, which
are worn by a considerable segment of the population. The
proposed algorithm implementation and the datasets are
available at www.ti.uni-tuebingen.de/perception .
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