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Expert gaze as a usability indicator of
medical AI decision support systems: a
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Given the current state of medical artificial intelligence (AI) and perceptions towards it, collaborative
systems are becoming the preferred choice for clinical workflows. This work aims to address expert
interaction with medical AI support systems to gain insight towards how these systems can be better
designed with the user in mind. As eye tracking metrics have been shown to be robust indicators of
usability, we employ them for evaluating the usability and user interaction with medical AI support
systems. We use expert gaze to assess experts’ interaction with an AI software for caries detection in
bitewing x-ray images. We compared standard viewing of bitewing images without AI support versus
viewingwhere AI support could be freely toggled on and off.We found that experts turned the AI on for
roughly 25% of the total inspection task, and generally turned it on halfway through the course of the
inspection. Gaze behavior showed that when supported by AI, more attention was dedicated to user
interface elements related to the AI support, with more frequent transitions from the image itself to
these elements.When considering that expert visual strategy is already optimized for fast andeffective
image inspection, such interruptions in attention can lead to increased time needed for the overall
assessment. Gaze analysis provided valuable insights into an AI’s usability for medical image
inspection. Further analyses of these tools and how to delineatemetrical measures of usability should
be developed.

Even in an era where artificial intelligence (AI) is becoming more pervasive
in the workforce, human experts are still sought-after for the final decision.
In a wide range of fields, such “collaborative” AI-human systems are the
preferred constellation: In education1,2, marketing3,4, semi-autonomous
vehicles5, and ever-increasing in healthcare6–8. AI serves as support or
assistant systems, while any final decision is taken by a human, fulfilling the
demand for human oversight and autonomy9.

AI decision support systems for medical image interpretation – e.g.,
inspecting x-rays or volumetric scans – have been shown to improve
diagnostic accuracy10–12. Collaborative AI that supports radiologist inspec-
tion has led to faster andmore accurate diagnoses comparedwith experts or
AI alone11,13–16. However, other studies show mixed results regarding per-
formance and allude to concerns that AI can hinder expert diagnoses or
offer little support17–21. These concerns can transfer to patients, who feel
more assured when they know the expert has made the final diagnosis after

seeking AI support22,23. Medical experts have also expressed apprehension
using AI, regarding concerns of liability, trust and understanding, and
reliability24–27. These concerns solidify AI as an assistant tool and not
autonomously making decisions.

Though a wealth of peer-reviewed publications highlight the potential
for medical AI support systems, very few systems are successfully adopted
into daily clinical workflows (See overviews in refs. 6,28–30). There are a
number of factors that are holding back its integration into clinical envir-
onments, like regulatory hurdles31, unclear diagnostics, efficacy, and
usefulness6,26. Others suggest that critical limitations affecting integration of
these systems are unsatisfactory experience and interoperability
difficulties32–34. Given interactionproblems between the humanuser and the
AI system, trust in AI systems can be greatly impacted35–37.

For collaborativeAI systems, ease of interaction is essential. So far, little
effort has been directed towards improving the interaction between human
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expert and system.WhenAI interaction is uncomfortable for the user, trust
in the system is diminished regarding the system’s performance and
practicality38. Currently, themajority of research onAImedical support has
focused on performancemetrics, while ignoring practicality and interaction
between the user and the system. Better interaction may improve usability
and, subsequently, integration in professional workflows. If AI interactions
are not deemed useful, these devices could be pushed aside in favor of
human only workflows34. One approach to assessing interaction is expert
gaze behavior.

Efficient and thorough inspection of medical images leads to faster
feature recognition and better clinical reasoning39–41. The visual strategies of
medical professionals are an interplay of heightened sensitivity to certain
features or structures and prior knowledge, i.e., experience and case based.
This context dependent gaze behavior is known as the scanpath, consisting
of fixations (attentional information) and saccades (transitions between
attentional areas)42,43.

Much of the previous literature in medical expert gaze analysis has
focused on comparing experts and novices, highlighting the faster andmore
accurate perceptual ability of experts44,45: With shorter time to first fixation
on relevant areas (e.g., an anomaly) than novices40,46–52. Experts also have
more fixations and fixations of longer duration on relevant instead
of irrelevant areas, which can be attributed to reducing extraneous
attentional processing44,53–56. However, image content affects expert eye
movements40,44,57,58. Obvious and easy to spot anomalies do not require as
many fixations than harder to detect anomalies40,58–63. For further descrip-
tions of gaze in the context of medical image inspection, see refs. 39,64,65.

Expert gaze and scanpath behavior have been investigated in the
context of dental images, and depend on image type66. For panoramic
radiographs, image coverage is key; outer and inner structural areas are
assessed quickly, then thoroughly in a global to local search strategy67,68. For
periapical radiographs, tooth-by-tooth and circular search strategies are
preferred, depending on the nature of anomalies present63. Recently, this
systematic tooth-by-tooth scanning strategy was also found when experts
inspected bitewings for caries, which promoted faster recognition69. When
anomalies are harder to detect, experts’ pupillary response indicates that
their cognitive load adjusts to accommodate the information level70. This
adaptability highlights experts’ effective information processing abilities.
Whether this behavior can also accommodate information presented by a
decision support system has yet to be explored.

Eye trackinghasbeenused toevaluate theusabilityof systems in research
fields such as marketing, software testing, and product design71,72. From an
interaction perspective, eye tracking can address not only the how (e.g., how
do they navigate the interface), but also the why (e.g., why is the image
inspected in this way)73,74. Metrics such as fixation behavior and scanpath
transitions and length related to interface elements can represent a user’s
attention or understanding of taskflows75,76. These metrics have also been
shown to correlate with usability reports77,78. Pupil diameter changes as an
indicator of cognitive load can also indirectly assess usability79. Eyemovement
patterns canalso indicate specificusability concerns, suchas inconsistencies in
design, architecture, and formatting74. This information can improve
accessibility80, content highlighting81, and even realtime attention guiding82.

Eye trackingmetrics have also been used as an indicator for usability of
medical technologies83,84, for example, to assess the usability of intensive care
ventilators85 or prosthetic arms86. Other studies have leveraged eye tracking
findings to better design interfaces based on patient or clinician needs86–88.
See Asan et al.89 for more literature on medical interface design from gaze
research. Concerning AI decision support systems, eye tracking is a pow-
erful tool in addressing system improvements. An array of research has used
expert gaze to assist AI models with region segmentation and labeling90–92.
These improvements can transform information visualization, which has
shown to improve diagnostic performance93,94. In summary, eye tracking
measures offer insight into system usability and can be collected during the
task. However, thesemetrics have not yet been used to evaluate how experts
integrate AI support into their own clinical decision-making strategies or
how AI support could potentially interrupt their workflows.

The aimof thepresent studywas to evaluatehowexperts interactwith an
AI-baseddecision support tool to investigate dental bitewings, i.e. radiographs
used for detecting caries. We use gaze behavior analysis via eye tracking as a
non-invasive, naturalistic, and objective measure of interaction. Eye tracking
measures have been shown to be robust indicators of usability, which research
onmedicalAI systemshasyet to fullyutilize.Also, expert gazebehaviorduring
medical image examination is well understood, offering a link between gaze
features and cognitive processes. We employed gaze behavior as an indicator
of the visual strategies related to clinical decision-making when using AI
support versus not using AI support. We hypothesized that gaze behavior
when using AI support will be different from gaze behavior without AI
support.Wealso investigatedhowexperts interactwith theAI support system
in the context of how they incorporate components of the system as well as
control the system, and how their interaction changed over the experiment.

Results
Statistical analysis
As we are concerned about factors related to usability, we offer no analysis
related to how experts look at bitewings in the realm of clinical decision-
making. Instead, we analyzed visual strategies in the context of how experts
employ an AI-support software that presents a bitewing plus informational
content as part of an interface. We group the informational content under
the category of user interface (UI) elements. These parts of the interface are
depicted in Fig. 3a. As scanpath behavior specifically linked to medical
image contentwas out of the scope of this current research,we restricted our
analysis to transitional eye movements around the software, which was
presented in a web browser.

We report onlyfixationalmetrics, as the eye tracker sampling rate is too
low to fully understand saccadic behavior. In addition to the gaze behavior
between dentists with and without AI support, we provide descriptions of
how they interact with the AI system: i.e., their mouse interactions and gaze
behavior differences when the AI overlay is turned off and on.

All variables exhibited non-normal distributions and thus were sum-
marized using median and interquartile range (IQR) and were analyzed
using non-parametric tests. Differences in each gaze metric between rele-
vant groups were tested using the Wilcoxon rank sum test, where level of
significance was set to p < 0.05. Missing data was not imputed. To account
for any possible spatial offsets in the gaze data, defined areas of interest
(AOIs)were given an extra pixel paddingbasedon their relative pixel area:A
pixel padding of 3 degrees of visual angle. For fixation behavior analysis, we
counted fixations that land in overlapping AOI as a hit in both AOI. All
statistical analyses and data management were performed using Python
(version 3.8 and above). Table 1 reports the results of the statistics.

Time on task
We found that dentists took longer on the task when using AI support
(109.19 s [78.91, 140.78]) than when not using AI support (87.1 s
[73.37, 99.86]), while this difference was not significant given the wide
spread of time taken (p = 0.0742). Figure 1 shows the distributions of task
times for both conditions. We also observed a slight effect of stimulus
viewing orderwith the plotted task time for each image (Fig. 2). For the first
few images, there was a large difference in the inspection time between AI
support and No AI support. This trend remains over the course of the
experiment, but with slight inconsistencies.

Regarding the distribution of attention during the task, we normalized
each participant’s time viewing the bitewing and viewing UI elements over
their total task time to get a percent proportion. The proportion of time
spent looking at the UI vs. looking at the bitewing showed that with AI
support, total time viewing UI elements was doubled from 4.94 % to 8.4 %.

Fixation behavior
Significantly more time was spent looking at the user interface when AI was
present (5481.76ms [3820.35, 6966.61]) than without (2348.39ms
[1071.496, 4963.75]: p = 0.0003). More time was spent viewing the bitewing
with AI (54,393.53ms [43,855.15, 84,542.02]) than without (49,139.55ms
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[41,812.34, 70,003.19]), again without statistical significance, though
(p = 0.3168). However, this behavior resulted in a higher number of total
fixation counts with AI support (208.22 [182.6, 260.6]) compared to without
AI support (182.70 [164.05, 212.39]: p = 0.05)Although,fixation count in the
bitewing was not significantly different between AI (191.90 [161.8, 230.75])
and No AI (176.55 [153.58, 204.25] : p = 0.19), fixation count in the user
interface (AI: 20.86 [18.83, 26.1], NoAI: 10.63 [4.93, 15.65]) was significantly
higher for the AI support condition (p < 0.001).

Fixation frequency remained unaffected by AI support, fixations
per second with AI support (2.21 [2.03, 2.33]) and without AI support
(2.16 [1.98, 2.43]: p = 0.8287). Average fixation duration was also not sig-
nificantly different between conditions (p = 0.7660), with median fixation
durations at 313.27ms [243.597, 367.13] (AI) and 317.29ms
[239.797, 349.86] (without AI). Figure 3 shows visual attention to relevant
regions using fixation count to AOIs defined based on the user interface
(AOIs illustrated in Fig. 3a). There were more fixations in the map and AI
list of findings area when experts had the option for AI than without AI.
Moreover, slight increases in thefixation counts onotherAOIs related to the
interface were apparent when AI was available (see Fig. 3b).

Scanpath transitional behavior
We also looked at experts’ gaze transitions between AOIs when they have
the option for AI support. Figure 4 reports the total number of transitions
from each AOI to another AOI shown in Fig. 3a. Higher transitions are
represented by warmer colors from one AOI to another AOI read in the

manner of from left to bottom.With theAI support option, dentists had the
highest gaze transitions from the AI list of findings to the bitewing (912
transitions) and the second-highest transitions being from bitewing back to
the AI list of findings (896 transitions). The map of the teeth and bitewing
also had a high number of transitions to and from. In general, fewer tran-
sitions were apparent when experts had no option for AI support, though
interesting enough, the highest transitions were similar to the AI support
condition, but at amuch lowermagnitude: 131 transitions fromAI findings
to bitewing and 127 transitions from bitewing to the AI findings. Without
theAI support option, transitions toand from the toothmapweremuch less
frequent, as the map was empty.

User interface interactions
Even thoughAI support was optional, all dentists made use of the AI on the
images where they were allowed to according to the randomization sche-
dule. AI was turned on an average of 8.4 times (range: 1.1–19.5) and AI
stayed on an average of 21012.05ms (range: 9103.11–48506.51ms).

Dentist on average turned the AI on after an average of 46793.94ms
(sd = 42731.65ms), i.e. after the first 43.57%(sd = 32.35%) of task time.
There was a higher number of fixations when they had the AI turned off
(23.41 [15.98, 74.43]) compared to when they had the AI turned on
(11.56 [4.94, 20.45]: p = 0.001), but this behavior can be attributed to them
having theAI turned on for an average of 24.31% of their total viewing time
(Fig. 5). Average fixation duration slightly decreases when the user had AI

Table 1 | Summary statistics of fixation metrics based relative to the inspection task, attention to the bitewing and attention to
user interface (UI) elements

With AI support Without AI support

Variable Med IQR Med IQR p-val

Task time [s] 109.19 [78.91, 140.78] 87.1 [73.37, 99.86] 0.0742

Total fixation duration UI [ms] 5481.76 [3820.35, 6966.61] 2348.39 [1071.496, 4963.75] 0.0003*

Total fixation duration bitewing [ms] 54393.53 [43855.15, 84542.02] 49139.55 [41812.34, 70003.19] 0.3168

Task average fixation duration [ms] 313.27 [243.597, 367.13] 317.29 [239.797, 349.86] 0.7660

Task fixation count 208.22 [182.6, 260.6] 182.70 [164.05, 212.39] 0.0548

UI fixation count 20.86 [18.83, 26.1] 10.63 [4.93, 15.65] <0.001*

Bitewing fixation count 191.90 [161.8, 230.75] 176.55 [153.58, 204.25] 0.19

Task fixation frequency [fix/s] 2.21 [2.03, 2.33] 2.16 [1.98, 2.43] 0.8287

* indicates statistical significance at p < 0.05.

Fig. 1 | Total time on task, in seconds, for viewing bitewings with AI support and
without. There are differing distributions between the two conditions, though their
median task time is not significantly different.

Fig. 2 | Task time for each image with andwithout AI support.Weobserve a slight
effect of stimulus viewing order with the plotted task time for each image (means,
with bars representing the standard deviation) with AI support (diamonds) and
without AI support (circles).
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support on (346.80ms [264.57, 530.38]) compared to when they had it off
(379.96ms [282.37, 475.28]), though not significantly (p = 0.6781). Norwas
fixation frequency significantly different when the user had AI support on
(2.30 [1.92, 2.43]) compared to when they had it off (2.02 [1.76, 2.28]:
p = 0.1784).

Discussion
The aimof the present studywas to use gaze analysis to observe how experts
interact with an AI-based decision support tool to investigate dental
bitewings. Although dentists’ time to inspect bitewings increased when they
have the option to useAI support compared to normal visual inspection, the
difference was not significant. However, their gaze behavior suggests they
can accommodate to the increase in content from AI. These findings are

decisive when considering that AI should set out to improve workflows95.
Even the slightest increase in inspection time can evolve to large delays and
fatigue in clinical environments.

Fixationmetrics such as the fixation duration and frequency suggested
that expert gaze behavior does not change when they have the option for AI
support. Even in the context ofwhen theAIwas used, thesemetrics showno
significant changes between when the AI is toggled on and off. From pre-
vious research, it is known that both these fixation metrics are affected by
information content and extraction96–100. It would be expected that average
fixation durations would increase to incorporate the additional visual
overlays and interface information (tooth map and anomaly labels) the AI
support offers.However, this was not the case for the current research. It has
been found that fixation frequencies decreased to increasing uncertainty101

Fig. 3 | Visual attention to relevant regions (AOIs) of theAI support interface. a is
a depiction of the stimuli used in the experiment, with the bitewing being in the
center surrounded by user interface elements with the right-side elements related to

the AI support, which were not visible in the no AI condition. b shows the average
fixation count for dentists viewing with (light blue) and without AI (dark blue). The
black error bars represent a confidence interval at 95%.
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and increasing content density100. Thus, we expected lower fixation fre-
quencies with AI support if the information the system provided would
highlight areas dentists were unsure of. It seems that dental experts incor-
porated AI decision support information into their visual search strategies
with little to no change from their usual (i.e, noAI support) visual inspection
strategies.

However, there were significantly higher fixation counts when AI was
available, especially attending to user interface elements containing AI
support information. This finding aligns with usability research, where a
higher numberoffixations generally indicatemore effort during the task78,102

or more components to investigate103. Dentists had nearly doubled their
time spent attending to UI elements, which also is reflected in the higher
fixation count onUI elements related to theAI support. Yet, fixation counts
viewing the bitewing with AI support were only slightly higher than when
there was no option for AI support. Similar behavior was foundwhen using
interactiveAI systems for fact-checking104.Overall, dentists spentmore time
on task whenAI support was available, which contributes tomore fixations,
but it does not affect the rate at which they visually processed the infor-
mation, evident from the fixation duration and frequency metrics.

Regarding visual attention to specific elements of the system, aspects of
the UI that were available for both conditions show almost equal attention

(e.g., tools, info, and browser).However, there is a large increase in attention
to the right side of the UI –where elements related to AI were –when there
was the option forAI support.Regarding attentional transitions between the
AOIs, there was an overall a higher number of transitions with AI support,
mainly between the AI list of findings and the bitewing and between the
tooth map and the bitewing. This behavior has implications that can be
important for future designs ofmedicalAI support systems, as these systems
should not draw too much attention away from the medical image, which
can increase inspection time and interrupt the already rapid and effective
viewing patterns that experts have developed over their years of experience.
Such long interruptions during expert visual inspection of CT scans have
been found to increase inspection time, but not necessarily affect the diag-
nostic accuracy105. We can anticipate such behaviors, even if they are only
slight disruptions, can build up over time and can contribute to fatigue.

From our analysis, it seems that dentists employed the AI support as a
second reviewer. Experts first investigated the image independently half of
the task time, then used the AI, likely confirm their already made findings.
Generally, they had the AI support turned on for almost 25% of the task
time, but this behavior was varying, ranging from 12.72% to 50.04% of the
time.Toggling theAIoverlayonandoff also variedbetweenbeing turnedon
only once in one dataset up to 19 times in another dataset. Figure 6 shows
two example interaction behaviors from two subjects for two different
bitewings: One expert turned the AI on early and had it on longer than the
average behavior (left subfigure), the other turned it on late and more
frequently toggled it on and off (right subfigure). Fixation durations during
these intervals also show quite the range, where overall durations were
shorter when AI support is turned on (apparent in the right subfigure). It
could be that experts adopt their own interaction styles, but further research
is needed to confirm this behavior. Research that depicts AI as a second-
reviewer system has promoted performance and human talents (e.g.,
creativity and heuristics) and has brought focus to system
explainability106–109. Thus, finding the ideal harmony between user indivi-
duality and system information presentation – possibly when to offer sug-
gestions and the reasoning behind it – can enhance interaction and
even trust.

A limitation of the current work is that it does not address one of the
most popular eyemetrics for usability, the pupillary response as an indicator
of task workload. This metric would have provided another level of
understanding of mental effort with respect to AI support. The omission of
pupillary response was needed, as we did not control for additional factors
that can naturally reflect the pupillary reflex110. Pupillary response in experts
has shown how experts accommodate increasingly difficult image infor-
mation in medical image inspection70. Whether this behavior can also

AI Support Condition

Fig. 5 | Total time participants had the AI support turned on, normalized to
percent of their task time. In general, dentists turned the AI support on for less than
half of the inspection time (around 25%, ranging from 12 to 50%).
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accommodate information presented by a decision support system has yet
to be explored. Also, corroborating the visual attention with self reports
towards the usability of the system would also provide a more direct link to
professional opinion and potential improvements of the system. Since
previous research has already established this link between gaze and
usability75–78, we chose to focus on how gaze can allude to better interaction
suggestions for future systems.Follow-up studies should consider standard
usability questionnaires such as the System Usability Scale and User
Experience Questionnaire after the experiment111,112. Performance was also
not discussed in the current analysis, but in a detailed previous report12;
dentists with AI support increased their sensitivity (without a decrease in
specificity) for detecting caries compared to those without AI support.
Lastly, acquiring data from more experts on more images in different
environments would help promote the generalizability of our results.

Preliminary design suggestions from these findings could be offering
the toggle option closer to the bitewing image, if not slightly overlaying it so
as not to occlude relevant features. As experts employed the toggle option
often, large transitions away from themain content to a small button on the
side may not be favorable. Also, informational content, such as maps or
reports, could be positioned closer to the relevant content (the bitewing),
favoring shorter saccade lengths. Both suggestions need more research,
though operate on a known design principle113. Finally, the ideal next steps
of this research should include the factor of system explainability on how
professionals visually interact with AI support systems. How error is
communicated to users has shown varying effects on the interaction as well
as trust in the system114–116. Eye movements can offer indicators for better
ways to promote explainability without overloading the professional. We
have shown that expert gaze behavior can help create better, more usable
systems that are designed to promote the best abilities of both expert andAI,
which ultimately benefits patient care.

Methods
Participants
Twenty-twodental experts (6women, 16men) volunteered to participate in
the study. They were either employees at the dental hospital of Charité -
Universitätsmedizin Berlin or worked in private practices in Berlin, Ger-
many. Criteria for participation was having more than two years of clinical
experience (i.e., had finished postgraduate education according to German
insurance law), clinically active, and regularly detecting caries in their
workflows (orthodontists and oral surgeonswere excluded).All participants
had normal to corrected vision.

Materials
This research was part of a larger study encompassing dental professional
performance with an AI decision-support system12 and their attention to
specific lesions through the support of AI117. More specific details related to
the task, the system and specific attention to dental features can be found in
the previous studies12,69. There were two conditions that each participant

experienced, bitewing inspection with AI support and without AI support,
with all bitewings presented in a web browser that runs the AI software. As
interacting with the software is the current research focus, we only briefly
detail the bitewings, but12 provides further details on the bitewing content.
From a database of 140 bitewings, 20were randomly selected and presented
in random order to each participant. Of these 20, ten bitewings were ran-
domly selected to have the AI support available, which meant AI could be
toggled on/off in the software. Due to the randomization process, bitewings
were seen by multiple participants or in different conditions. All bitewings
were of the permanent dentition, with at least the crowns of one jaw being
visible. Eachbitewingwas checked and annotated for caries and restorations
by four experts, with a fifth expert for crosschecking. A more detailed
explanation of this labeling process can be found in ref. 69.

The AI decision support system used was dentalXrai Pro 1.0.4,
(dentalXrai Ltd, Berlin, Germany). This system is capable of fully auto-
mated AI X-ray reporting in everyday dental clinical practice. It detects
pathologies and restorations, highlighting the findings in color, and
automatically generates the written documentation. The software allowed
the participant to view the native radiograph and its augmented version,
where AI software detections are shown as pixel overlays on the bitewing.
The participant could also add, remove, or change findings and generate
an automated report. Participants in the AI condition can toggle the AI
overlay on/off. Figure 7b shows an example of the software interface with
theAI overlayed on the bitewing and the respective toothmappings on the
right panel. This example is what participants see when the AI is toggled
on. The backbone of the software uses cloud-based machine learning to
detect teeth, proximal carious lesions, and restorations visible on the
bitewing images. For marking the teeth, a detection model based on
U-Net118, whose findings had been validated by an experienced dentist for
each bitewing image, was employed. The software version used for this
study had a reported accuracy of 0.80, specificity of 0.75, and sensitivity of
0.83119. Further details of the algorithm and its performance can be found
in ref. 119.

For consistency in presentation, the non-AI condition viewed images
within the same web browser platform, but were not given the option to
toggle the AI on and off. Figure 7a shows an example of the software for the
non-AI condition. The stimulus remains almost the same for both condi-
tions, but there is less information presented on the right side of the browser
for the non-AI condition, as this region provided the AI content. Addi-
tionally, there are no pixel overlays on the bitewing images in this condition.

Procedure
At least one week before the study, participants received a handbook about
the AI software and were advised to try it out on a minimum of four
independent bitewing radiographs. This was encouraged so that they had
better understanding of the system and its capabilities. The studywas run at
either the dental hospital of Charité - Universitätsmedizin Berlin or the
participant’s private practice.

Fig. 7 | Example of web browser interface with and without AI overlays. Example of the web browser interface with presentation of the bitewing and left panel for image
manipulations and right panel presented the AI information for the AI condition (b) or was blank for the non-AI condition (a).
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The task evaluated for this current research was interacting with the
software with AI support and without AI support, and how experts use the
software to visually inspect images. 20 bitewing images were randomly
chosen from the bitewing pool and presented in random order in the web
browser that runs the dentalXrai software. This generation of images was
unique to each participant. Prior to uploading an image into the software,
each participant drew a slip of paper from a pool of 20 slips contained in a
sealedopaque envelope (ten indicating to use theAI software and tennot) to
determine which image would have the AI software (intervention) or not
(control).

Participants performed the task in one session, operating at their own
pace. They viewed the images in the web browser and depending on which
condition the image was, they could use the AI software or could not. In the
AI condition, dentists could then enable or disable the AI augmentations as
needed. Forboth conditions, they thenverbally reported anyproximal caries
detections and their corresponding treatment decisions to the study assis-
tant, though this was not evaluated in the current analysis. The participants
concluded the examination of the image, and the next one could be
uploaded, following the protocol for drawing a slip of paper.

We chose this design method to be convenient for our participants.
Asking medical professionals to set aside long or multiple windows of time
can become harder for them to fit into their busy schedules. To avoid
dropout rate or inconsistent lengths between two sessions, we chose one
session. This choice can also control for errors in replicability of the setup, as
we traveled to them. Additionally, one session, with highly randomized
stimuli, better controls for any fatigue or learning effects participants may
exhibit.

This evaluation is nested within a randomized, controlled, non-
blinded, clustered cross-over, superiority trial with an allocation ratio of
1:112, assessing the impact of an artificial intelligence (AI) software for
detection of carious lesions. The trial was not conducted during clinical
care and on actual patients, but on retrospectively sampled imagery
material, which was randomly assessed with and without assistance from
the AI software. The trial was registered at Deutsches Register Klinischer
Studien (DRKS00022357). Ethical approval was provided by theCharité -
Universitätsmedizin Berlin (EA/144/20). During the study, we had
recorded dentists’ gaze patterns, and here we present the gaze pattern
behavior of the control group (i.e., dentists not using AI). Written
informed consent was obtained from all participating dentists.

Eye tracking
To record gaze data, we used the SmartEye Aurora remote eye tracker
running at 60 Hz, positioned under a monitor with a resolution of
1920 × 1080 pixels. Data collection took place in dimly lit rooms at either
Charité or in private clinics for participant convenience; the study
investigator brought the monitor to their clinic. Participants were
unconstrained and sat approximately 70 cm from the tracker. An initial
9-point calibration and validation were performed. Recalibration was
done if the software indicated that the calibration quality was poor. Gaze
data was collected for the whole duration of the study using the iMotions
software (version 8.2.22899.4). Event detection was performed using the
iMotions implementation of the I-VT algorithm, with a minimum
fixation duration of 60 milliseconds (ms) and a velocity threshold of
30deg/s. The current analysis used the fixations reported from the
software, which are interpolated between the left and the right eye. We
interpret fixations as the areas of attentional focus related to the stimuli
presented on the screen.

Data preparation
Data collection resulted in 445 datasets from the participants viewing
bitewing radiographs. As five participants unintentionally examined one
image twice, we excluded the first time they viewed the image, as it was too
short for proper investigation (440 Datasets). To ensure gaze pattern data
quality, we removed datasets with an average reported gaze signal quality
lower than 0.60 (valid signal over total signal, using a scale of 0.0 being the

lowest and1.0 being thehighest quality). 80datasetswere excluded fromthis
criterion. A stimulus presentation error resulted in the removal of 11 further
datasets. These exclusion criteria adhere to standard guidelines used in eye
tracking research on data quality control120,121 Overall, 349 datasets (170
without AI and 179 with AI) were included in the current analysis.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The code created and used for analyzing the preprocessed data for the
current study is available from the corresponding author on reasonable
request.
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