
Differentiating Surgeons’ Expertise solely by Eye Movement
Features

Benedikt Hosp∗
Human-Computer Interaction,

University of Tübingen
Tübingen, Germany

benedikt.hosp@uni-tuebingen.de

Myat Su Yin
MIRU, Mahidol University
Nakhon Pathom, Thailand
myatsu.yin@mahidol.ac.th

Peter Haddawy
Faculty of ICT, Mahidol University

Nakhon Pathom, Thailand
peter.had@mahidol.ac.th

Ratthapoom Watcharopas
Faculty of Medicine, Mahidol

University
Bangkok, Thailand

poom911@hotmail.com

Paphon Sa-ngasoongsong
Faculty of medicine, Mahidol

University, Ramathibodi Hospital
Bangkok, Thailand

paphonortho@gmail.com

Enkelejda Kasneci
Human-Computer Interaction,

University of Tübingen
Tübingen, Germany

enkelejda.kasneci@uni-tuebingen.de

ABSTRACT
Medical schools are increasingly seeking to use objective measures
to assess surgical skills. This extends even to perceptual skills,
which are particularly important in minimally invasive surgery.
Eye tracking provides a promising approach to obtaining such
objective metrics of visual perception. In this work, we report on
results of a cadaveric study of visual perception during shoulder
arthroscopy. We present a model for classifying surgeons into three
levels of expertise using only eye movements. The model achieves
a classification accuracy of 84.44% using only a small set of selected
features. We also examine and characterize the changes in visual
perceptionmetrics between the different levels of expertise, forming
a basis for development of a system for objective assessment.

CCS CONCEPTS
• Social and professional topics → Medical technologies; •
Computing methodologies → Supervised learning; Biomet-
rics.

KEYWORDS
surgeon, eye, tracking, diagnostic, model, machine learning

ACM Reference Format:
Benedikt Hosp, Myat Su Yin, Peter Haddawy, Ratthapoom Watcharopas,
Paphon Sa-ngasoongsong, and Enkelejda Kasneci. 2021. Differentiating
Surgeons’ Expertise solely by Eye Movement Features. In Companion Publi-
cation of the 2021 International Conference on Multimodal Interaction (ICMI
’21 Companion), October 18–22, 2021, Montréal, QC, Canada. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3461615.3485437

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICMI ’21 Companion, October 18–22, 2021, Montréal, QC, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8471-1/21/10. . . $15.00
https://doi.org/10.1145/3461615.3485437

1 INTRODUCTION
Arthroscopy is a popular minimally invasive surgical procedure
that improves patient outcomes while at the same time conserv-
ing hospital resources. According to Monson et al. [9], patients
experience less pain, have fewer complications and recover faster
than with traditional open surgery. However, a surgeon needs ad-
vanced technical skills for this type of operation [5]. Arthroscopy
involves inserting instruments and a scope into the joint (e.g. shoul-
der or knee) through small incisions. A key capability in perform-
ing arthroscopic surgery is the ability to use the scope to navigate
through complex anatomy of the joint for inspection, diagnosis,
and to locate the surgical site. The scope can rotate in multiple di-
mensions and casts its image on a screen placed next to the patient,
which surgeons largely rely upon during surgery. Navigation is
challenging due to complex anatomy, limited field of view, projec-
tion of the 3D space onto the 2D monitor, and the rotation of the
monitor from the instrument plane.

Due to these technical challenges, there is growing interest
within the medical community to optimize training, including hav-
ing objective measures of performance for tasks like navigation.
Since navigation is a psychomotor task in which visual perception
plays a crucial role, it is natural to look to eye tracking for such a
measure. Indeed, the role of eye movements is increasingly being
investigated in surgery [5]. In particular, the role of eye movements
is increasingly being investigated (for an overview see [5]). To de-
termine whether eye tracking can serve as a basis for an objective
measure in arthroscopy, first it must be determined whether, and
to what extent, differences in surgeons’ expertise are reflected by
their eye movements. The findings from this study are significant
for the design of adequate training and evaluation scenarios for
perceptual-cognitive diagnostic and training systems.

In this work, we consider the perception of surgeons using eye
movement patterns from three expertise levels in a human cadav-
eric study of diagnostic arthroscopy of the shoulder. We selected
this task since it focuses on navigation skill in which perception
plays a major role. We use stimulus-independent eye movement
patterns to develop a model to classify the subjects into the three
levels of expertise. Using only a small number of selected features,
our model achieves a classification accuracy of over 82%. We fur-
ther investigate differences in eye movement patterns among the
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three classes in order to understand how these patterns evolve
with increasing levels of expertise. We hope that such an under-
standing can assist in developing specialized training to provide
the appropriate support to surgeons at different expertise levels.

2 RELATEDWORK
In eye tracking studies, using artificial forms of presentation like vir-
tual reality (VR) [8, 15] or images [4, 11] could omit important per-
ceptual details requiring the participants to fill in through inference
which often subsequently leads to the higher levels of frustration
[15]. To provide a presentation mode that is as natural as possible,
we use so called soft cadavers that provide natural tactile sensation
while maintaining the naturalness of the scene. Although remote
eye trackers are commonly used in lab studies [8], as soon as the
participant changes to another direction (e.g. down at the cadaver),
they can no longer capture the gaze signal. To allow the participant
to use normal gaze behaviour and move freely without data lost, we
use a head-mounted eye tracker in combination with a 4k-screen.
This setup supports natural gaze behaviour as well as high control
of the stimulus allowing us to capture highly detailed information
of the tissue on a screen with high resolution and gaze signals on
the cadaver, both with the same field camera. Eye tracking stud-
ies in surgery are differed in how they evaluated the gaze signal.
The gaze signal on the stimulus was considered, i.e. target gaze
behavior, switching behavior (alternating gaze between target and
instrument), or following behaviour (eye following the instrument)
[8]. Other studies focused on quiet eye periods [13]. However, there
are also studies that have gained insights at the feature level. For
example, Kocak et al.[7] used stimulus-independent eye features
in their binary classification and found significantly lower saccade
rates, as well as significantly higher peak velocities for experts,
which was confirmed by other studies [5]. Tien et al. [12] found a
higher fixation rate in experts. Eivazi et al. [4] show differences in
time to first fixation and mean fixation duration. However, theses
differences were not confirmed by Sondergren et al. [11], as in both
studies fixation durations are analyzed differently and the choice of
regions of interest plays an important role. These results show that
eye movements can be used to assess the surgical expertise and to
define differences between groups.

Many studies have focused on the detection of differences in
expertise between experts and novices [13, 15] and only few stud-
ies have focused on the development of eye movements. Studies
focusing on development have used mostly simulators [7] or im-
ages [11]. Hidden Markov models (HMM) used in the latter study
reveal differences in eye movement patterns between high and
low performers. So far, several algorithms have been introduced
to eye tracking including supervised methods like support vector
machines [2, 6] and neural networks [3]. Ahmidi et al. [1] mixed
instrument movements with eye movement data and achieved a
binary classification accuracy of 82.5% for skill level classification.
All these studies show that eye movement data can be used to dif-
ferentiate between experts and novices and that it is not necessary
to determine exactly where the surgeons were looking to measure
their skill accurately.

3 PARTICIPANTS AND METHODS
3.1 Procedure
This work makes use of the eye tracking dataset from the work of
Yin et al. [14]. Their dataset contains eye movement data for three
classes of surgeons: 3rd year residents (R3), 4th year residents (R4),
and fellows. Each class consists of five (n=5) participants, equally.
We even use the data of the two participants that were left out in
their study because of a gaze signal offset. Since we only use relative
features, we can use the data of these participants too. In their study,
participants were placed in front of the cadaver and four feet away
from the 4k, 52-inch screen where the output of the arthoscope
was displayed (Figure 1). Each participant was familiarized with the
setup and asked to navigate and diagnose 12 anatomical landmarks
in the shoulder, while wearing a Tobii Pro Glasses 2 eye tacker. The
gaze was recorded with Tobii software.

Figure 1: Experimental setup showing cadaver, arthroscopic
equipment, and 4k monitor with ARUCO markers.

3.2 Data preparation
The Tobii Glasses 2 were set to a frame rate of 100 Hz , thus a
gaze sample is available every 10 ms and saved with a timestamp,
x-, and y-coordinates. The samples are used to calculate fixations
and saccades metrics using the Tobii Fixation Filter, with a sliding
window averaging method and the feature classification algorithm
of Olson [10] with a default velocity threshold of 0.7 pixels/ms. The
raw eye tracking data, as well as the fixations and saccade metrics,
are exported from the Tobii Studio software. From the fixations,
velocity of the saccades, saccade duration, values of the gyroscope
(yaw, pitch and roll) as well as the amplitude of saccades, we use
the person-specific average, minimum, maximum and standard
deviation as features. While Tobii provides metrics about the first
saccade and first fixation too, we did not include them. Since our
participants were familiarized with the glasses for different lengths
of timewhen the trials started, we end upwith chaotic first saccades,
which have no informative character.

As our aim is to infer which features contribute to expertise
differences, we first used all the exported features from the Tobii
Studio Software and added common metrics to them. Subsequently,
we evaluated their frequency in the model building process and
rated the most frequent used features to build a model with this
subset of features for expertise acquisition. To incorporate uncer-
tainties, we trained the model 150 times and calculated the most
frequently used features by taking the features with the maximum
number of occurrences in the training process. We added certain
typical eye movement features which we calculated by ourselves.
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The fixations were split into small fixations and smooth pursuit
fixations. As the Tobii Software does not provide calculations of
smooth pursuits, which are assumed to help differentiating different
expertise classes, the smooth pursuit events were encoded in the
fixations. We therefore treated fixations with a dispersion over 30
pixels as smooth pursuit fixations. This threshold was empirically
defined during data analysis. The set of features was:

• Saccade duration (average, min, max. std. dev.)
• Fixation duration (average, min, max. std. dev.)
• Smooth pursuit dispersion (average, min, max, std. dev.)
• Fixation frequency
• Saccade frequency
• Pupil diameter (average, min, max. std. dev.)
• Gyroscope X,Y,Z (average, min, max. std. dev.)

We decided to include the gyroscope values because they could
provide information about head movement between screen and
cadaver The integration of pupil diameter features is based on the
assumption that experts may have less fluctuating pupil diameter
since their mental effort is considered to be smaller. Vice versa, the
pupil diameter of intermediates and novices may reveal expertise
differences by such effects.

3.3 Machine learning model
We used all 38 features to build a support vector machine (SVM)
model in 150 independent runs. On each of the 150 runs we keep
out one participant (leave-one-out validation). This participant is
our test set and has never been seen by the model (of the current
run) before. Therefore, in each run we take all data of the remaining
14 participants to train the model and test it with the unseen data
of the test set participant. While the training algorithm iterates
over the same procedure it changes the participant for the test set
(sequentially iterating over the participant numbers from 1 to 15)
150 times. Thus, each participant is used as test set 10-times in total.
By having 10 runs for each participant, we are taking statistical fluc-
tuations into account. To ensure independency between runs, we
train a new model on every run and report the cumulated accuracy
values of the 150 runs. Thus, in each run, the model is trained with
14 participants and tested with the test set data of one participant,
which is unseen by the current model. A strict separation of data in
a participant-wise manner is very important, as mixing up samples
of one person into training and testing data would allow the model
to remember person-specific (idiosyncratic) features and restrict a
real expertise learning process.

On each run, the data of the 14 participants of the training set is
split into 10-folds. This is called a 10-fold cross-validation. The cross-
validation is important to protect the model against over fitting.
In each fold, ⌈ 1

10 ⌉ of the 14 participants that belong to training
set is used to validate the model that is trained with ⌊ 9

10 ⌋ of 14
participants. Which participant belongs to training or validation set,
is decided randomly. However, the split is always done participant-
wise to prevent an idiosyncratic learning behavior of the model.

In a first model, we use all 38 features to check the classifiability
of the data set and afterwards reduce the amount by taking the four
most frequent features of 150 runs. The most frequent features are
features that have the highest importance values for a single model
prediction. In each run we built a queue of all 38 features sorted

by importance for the current model. Subsequently, we computed
their overall frequency over all models.

4 RESULTS
Our first classification model shows promising results with an
average accuracy of 60%. As a system that would simply guess
the class, would only reach a chance-level of 33.33%, the all feature
model can already be considered as well-performing. But as we
want to specify the results to allow a precise statement about a
high performing classification with the least amount of features,
we continued by collecting all features and their importance values
on 150 runs of the all feature model and took the most frequent
features (MFF) as a new set. With this subset of four features, shown
in Table 1, earlier counteracting features may be avoided and a
precise statement about the differences of the groups can be stated.
The final SVM model with the four MFF uses a linear kernel and
a box constraint of 11.0174. We adopted one-vs-all approach for
multi-class classification with the kernel scale remains 1. Before
training, we standardized the data. Training took about 56.03 sec.

4.1 Performance metrics

Figure 2: Performance values on 100 runs.

With an accuracy of 82.33% the model improved over 20 percent-
age points, compared to the all feature model. Figure 2 shows the
confusion matrix after 100 runs. 7 samples of the novice class were
classified as intermediate and 33 as expert. This results in a class
accuracy of 60%. The classification of the intermediates peaked at
97%, as only 3 samples were classified as experts and non as novices.
This is especially interesting since the intermediates are in between
the other classes and are therefore more likely to spread to both
sides. The expert samples were with 78 samples correctly and 22
samples as novice samples, the second best classified class.

Table 1: The most important and frequent features on 150
runs.

Feature derivation
Peak velocity of saccades standard deviation
Amplitude of saccades minimum

Total amplitude of saccades sum
Saccade duration standard deviation
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The average recall is with 95.43% extremely high which is con-
firmed by the average miss rates. Only 4.57% of samples were mis-
classified. For the SVM model we achieve an area under the curve
(AUC) of 0.91.

4.2 Feature evolution
As we consider there is a cognitive process going on, forming the
optimal gaze behavior from novice to expert, we have a look at
the evolution of the gaze features between the classes to describe
such process as good as possible. To analyze these evolutionary
steps, we have a look at the single feature characteristics separately.
We do that with the four MFF from Table 1. Table 2 contains the
characteristics of the four MFF features.

The table shows that experts have a smaller standard deviation of
the peak velocity of the saccades (93.26 °/s). This feature is hard to
interpret, but one assumption may be that experts have a more
uniform distribution of saccade velocities. This means they do
more saccades at the same speed, in a structured and planned way,
compared to intermediates and novices. Interestingly, intermediates
as the middle class between expert and novice show a much more
diverse saccade peak velocity behaviour (121.72 °/s). Novices are
in the middle between experts and intermediates. A higher value
for the standard deviation of the saccade peak velocities could be
an indicator for a more chaotic gaze behaviour, but it is hard to
draw a conclusion about such a feature. When having a look at the
minimum saccade amplitudes, we can see the same differences. The
experts have on average a larger minimal saccade of length 0.86
°, compared to the intermediates with 0.40°and the novices with
0.64°. Again, we can see that the novices are in between the experts
and intermediates. Only the total amplitude of all saccades shows a
uniform evolution. The experts do a total of 481.32°of saccade length,
where intermediates do more than twice the experts (1120.74°) and
novices (1956.21°) even more than five time the experts and nearly
double the intermediates. Another interesting feature evolution can
be seen in the standard deviation of the saccade durations. This
feature is also hard to interpret, but one possibility could be that
experts with 18.96 ms and intermediates with 16.58 ms have slightly
more order in their saccades than novices. Though the differences
are very small and should be confirmed with more data.

Table 2: Average feature evolution between classes.

Feature Fellow R4 R3
Saccade peak velocity (STD) 93.26 °/s 121.72 °/ s 117.45 °/s
Saccade amplitude (min) 0.86 ° 0.40 ° 0.64 °
Total saccade amplitude 481.32 ° 1120.74 ° 1956.21 °
Saccade duration (std. dev.) 18.96 ms ° 16.58 ms ° 23.54 ms °

5 DISCUSSION
In this work we developed a model with supervised machine learn-
ing techniques that is able to distinguish three levels of expertise
solely on the basis of eyemovements during an arthroscopic surgery
of the shoulder. With an accuracy of 82.33% the model can be con-
sidered as performing well on this 3-class problem. Thus, it can be
stated that expertise differences between three different groups of
expertise are reflected by their eye movements.

To further understand the differences between the three levels
of expertise, we had a look at the four most frequent features of the
model and analyzed the evolution of the characteristics between
the groups. Except for the total amount of saccade amplitudes,
the remaining three of the four most frequent features show a
uniform evolution. First, novices tend to have a more chaotic gaze
behavior and distribute their gaze over a larger portion of the
scene by making many different saccades with different speed.
They also tend to look more at the outside than the center. The
evolution to intermediates shows an atypical behavior, as they
tend to still gaze over a larger area of the scene than the experts,
but do smaller saccades with a still diverse velocity. This might
indicate, that they try to focus on more specific visual clues and
start to concentrate on the center of the scene. In the next evolution
step, the saccade velocities shrink significantly, which signifies a
more planned scanning behavior, with somewhat longer saccades,
concentrated more on specific areas. To summarize our findings,
one can state that the evolution of novices to intermediates first
tends to lead to a partly more chaotic gaze behavior, then turning
to be more precise. With the investigations on the evolutionary
steps, we can also define class dependent weak-spots in perception
for each class. An evolution between the single classes is clearly
recognizable. Thus, opening the way to a class-specific training
system that is optimized for different steps in perceptional evolution.
We also showed that for a high accuracy classification there are not
many features needed. A subset of four features describing the gaze
behavior is already enough to distinguish different classes. Luckily,
the four features are easily calculated, which would allow the usage
of the classification as an online classification system. Though, the
classification would need to be done segment-wise after a certain
period of time.

Further steps are to add more participants to each class, and
refine the number of classes. This would allow a much finer clas-
sification and therefore a better understanding of the differences
between the levels of expertise. A finer classification is important
to robust assumptions made by the model about gaze behavior and
optimize the recognition of class-specific weak-spots to be used in
a training system.
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