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ABSTRACT
As devices around us become smart, our gaze is poised to be-
come the next frontier of human-computer interaction (HCI).
State-of-the-art mobile eye tracker systems typically rely on
eye-model-based gaze estimation approaches, which do not
require a calibration. However, such approaches require spe-
cialized hardware (e.g., multiple cameras and glint points), can
be significantly affected by glasses, and, thus, are not fit for
ubiquitous gaze-based HCI. In contrast, regression-based gaze
estimations are straightforward approaches requiring solely
one eye and one scene camera but necessitate a calibration.
Therefore, a fast and accurate calibration is a key develop-
ment to enable ubiquitous gaze-based HCI. In this paper, we
introduce CalibMe, a novel method that exploits collection
markers (automatically detected fiducial markers) to allow
eye tracker users to gather a large array of calibration points,
remove outliers, and automatically reserve evaluation points
in a fast and unsupervised manner. The proposed approach
is evaluated against a nine-point calibration method, which is
typically used due to its relatively short calibration time and
adequate accuracy. CalibMe reached a mean angular error
of 0.59° (σ = 0.23°) in contrast to 0.82° (σ = 0.15°) for a
nine-point calibration, attesting for the efficacy of the method.
Moreover, users are able to calibrate the eye tracker anywhere
and independently in ≈ 10s using a cellphone to display the
collection marker.
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INTRODUCTION
The human-gaze provides paramount cues for human commu-
nication and interaction [20]. Following this insight, gaze has
been proposed as a HCI interface since at least the early 90s,
with some believing that gaze will revolutionize the way we
interact with our devices [26]. Gaze-based HCI in stationary
scenarios (e.g., desktop computing) has matured enough that
cheap and mainstream eye trackers (such as the Eye Tribe [39]
for as low as $199 USD) have emerged. However, the gaze-
based HCI in mobile and pervasive scenarios required for
interaction with smart1 devices remains an open challenge.
For the remainder of this paper, we will focus on these mo-
bile and pervasive scenarios. In particular, we concentrate on
head-mounted video-based eye trackers as these are unintru-
sive, flexible, and mobile, making them excellent candidates
for pervasive eye tracking [11]. These devices consist of a
glasses-like frame with at least one camera capturing images
of the user’s eye and one capturing part of the user’s field of
view (see Figure 1a); gaze estimation is then the process of
inferring the user gaze position in the field image based on the
eye images.

Eye camera

Field camera

(a) Pupil Labs eye tracker. (b) Google Glass.

Figure 1: A monocular eye tracker from Pupil Labs (a). It
is worth noticing that some patents [33] hint at eye tracking
capabilities being integrated in cutting-edge head-worn HCI
devices such as the Google Glass (b).

A particular aspect of gaze estimation is the calibration step,
which is used to produce a function mapping the position of
the user’s eyes to gaze. High-end state-of-the-art mobile eye
tracker systems (e.g., SMI and Tobii glasses [15, 38]) rely
on geometry-based gaze estimation approaches, which can
provide gaze estimations without calibration. In practice, it is

1We use the term smart to refer to interactive network connected
devices.
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common to have at least an one point calibration to adapt the
geometrical model to the user and estimate the angle between
visual and optical axis. Additionally, it has been reported that
additional points are generally required to achieve satisfactory
accuracy [40]. Furthermore, such approaches require special-
ized hardware (e.g., multiple cameras and glint points), cost in
the order of tens of thousands of $USD, and are susceptible to
inaccuracies stemming from lens distortions [22]. On the other
hand, mobile eye trackers that make use of regression-based
gaze-mappings require a calibration step but automatically
adapt to distortions and are comparatively low-cost (e.g., a
research grade binocular eye tracker from Pupil Labs is avail-
able for $2340 EUR [23]). It is worth noticing that similar
eye trackers have been demonstrated by mounting one eye and
one field camera onto the frames of glasses [2, 25, 1], yielding
even cheaper alternatives for the more tech-savy users.

In its current state, the calibration step presents some disad-
vantages and has been pointed out as one of the main factors
hindering a wider adoption of eye tracking technologies [29].
Popular calibration procedures customarily require the assis-
tance of an individual other than the eye tracker user in order
to calibrate (and check the accuracy of) the system. The user
and the aide must coordinate so that the aide selects calibra-
tion points accordingly to the user’s gaze. As a result, current
calibration procedures cannot be performed individually and
require a considerable amount of time to collect even a small
amount of calibration points, impeding their usage for ubiqui-
tous eye tracking. Henceforth we will refer to these methods
as N-Points calibrations, where N is the amount of calibration
points employed.

In this paper, we propose a novel approach – dubbed CalibMe
(Calibrating with Movements) – that enables users to quickly
and independently calibrate the eye tracker based on the move-
ment of collection markers. We define collection markers
as automatically detected markers meant to dynamically col-
lect large arrays of relationship points between a user’s eye
position and gaze for both calibration and evaluation. These
markers can be contrasted with calibration markers, which
are used as reference points in a more static fashion to collect
a small amount of calibration points. We employ a specific
ArUco [14] marker selected based on multiple properties that
make it an efficient collection marker, compared to custom
markers employed as calibration markers in previous work.
This allows us to hijack an existing and well established fidu-
cial marker detection method used for augmented reality and
to define Areas of Interest (AOIs) to enable CalibMe without
incurring additional and costly image processing. Employ-
ing a collection marker, users are able to collect a significant
amount of eye-gaze relationships for calibration and evalua-
tion in an unsupervised fashion by moving their heads or the
marker while fixating the center of the marker. We then pro-
pose rationalized outliers removal approaches to automatically
eliminate ill-conditioned samples as well as a parameterizable
method for the automatic selection of evaluation points. Effec-
tively, these operations enable the users to quickly calibrate
and assess gaze estimation quality without the assistance of a

supervisor2, such as in the envisioned use cases illustrated in
Figure 2. Moreover, the ramifications of allowing head rota-
tion during calibration are discussed, and different collection
movement patterns are proposed and evaluated. Additionally,
the efficacy of CalibMe is compared to a typical 9-Points cal-
ibration based on a regular twenty five point grid evaluation.
9-Points was selected for evaluation as it presents a reasonable
trade-off between accuracy and calibration time. CalibMe is
integrated into EyeRecToo [34], an open-source data acquisi-
tion software for head-mounted eye trackers, and, thus, readily
available. We also provide a companion Android application
that the user can use to display the collection marker and col-
lect eye-gaze relationships. EyeRecToo and the companion app
can be downloaded at www.ti.uni-tuebingen.de/perception.

GAZE ESTIMATION AND RELATED WORK
As previously mentioned, calibration-less approaches exist.
However, geometrical (or model-based) gaze estimation either
requires specialized hardware or exhibits inferior accuracy
w.r.t regression-based approaches. For instance, Swirski et
al. [37] report a mean angular gaze error of 1.68° (σ = 0.34°)3

for noiseless simulated data, whereas regression-based mod-
els have been shown to produce mean angular gaze errors as
low as 0.4° (max. = 1.11°) in realistic scenarios [7]. More-
over, these approaches produce inaccurate gaze estimations
if the user wears corrective glasses [22] as distortions caused
by lenses are not accounted for in the models. A second
calibration-less alternative, appearance-based methods, rely
on the pixel intensity of the eye images to produce a gaze
estimation and is also known to produce large angular errors.
For instance, Zhang et al. [42] report errors of≈ 6.1° (σ ≈ 1°)
for a within-dataset leave-one-person evaluation of their con-
volutional neural network approach. For a detailed survey on
gaze estimation methods, we refer the reader to the work by
Hansen et al. [16]. For the remainder of this section, we will fo-
cus on regression-based methods, which require a calibration
procedure.

Whereas there is a large amount of work investigating how
to improve regression-based gaze estimation, previous work
has mostly focused on investigating different regression ap-
proaches (e.g., polynomial fit [7], projective transforma-
tions [41], neural networks [9]) and optimizing their parame-
ters (e.g., polynomial order, number of hidden neurons). Little
attention has been given to improving the calibration proce-
dure, which has remained largely unmodified since its incep-
tion. In general, reference points are placed as to cover the ex-
pected range of visual movements of the subject4. Afterwards,
a supervisor and the subject cooperate to collect calibration
points.5. The supervisor is also responsible for checking that
eye features (mainly the pupil center) are detected correctly
throughout the process as well as the gaze estimation accuracy
after calibration.
2 It is worth noticing that evidence suggests improved gaze estimation
accuracy and precision when the participant has control over eye-gaze
relationships collection [30].
3In this work, µ is the mean value and σ is the standard deviation.
4Natural features can also be used as reference points.
5The minimal amount of points is usually determined by mathemati-
cal constraints from the regression – e.g., the polynomial order.
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Figure 2: Illustrations of two envisioned CalibMe use cases. 1a) The user puts his head-worn eye tracker on, which detects
the new user and requests the smart TV to display a collection marker; the user then fixates the marker and moves his head to
collect eye-gaze relationships. 2a) The eye tracker detects its calibration became invalid (e.g., based on saliency-gaze overlap)
and requests the smartphone to notify the user; the user then moves the smartphone displaying the collection marker to collect
eye-gaze relationships. 1b and 2b) the eye tracker notifies the user that the calibration has been performed successfully through
other smart devices or visual/haptic/audible feedback, signaling that the system is now ready to use for gaze-based interaction with
other devices.

Atypical calibration approaches try to adapt the calibration
procedure to their needs. For instance, Pfeuffer et al. [32]
propose using objects moving with a known trajectory in a
display to calibrate a high-range remote eye tracker placed
under a screen, reaching mean accuracies of≈ 0.6° (σ ≈ 0.1°).
In a similar stationary scenario, Huang et al. [19] proposed
utilizing interactions events between the user and a comput-
ing system to collect calibration samples, reporting errors of
2.56°. In a driving scenario, Bernet et al. [4] employed a cus-
tom marker (consisting of two nested black squares) that is
automatically detected, avoiding, thus, the need for the super-
visor and user to coordinate. The user then fixates the custom
marker and moves his head in steps of 10 cm exclusively in
the horizontal and vertical directions since the proposed ap-
proach does not consider depth changes or head rotations.
Unfortunately, reported results are based on simulations for
their custom made eye tracker, and only the reprojection error
for calibration points is given in degrees. In a distinct sec-
tion (5.1), they report best results for evaluation points with
a mean error of 2.22 px (σ = 1.42px) at a distance of 2.5 m
for noiseless simulated data; however, there is not enough
information in the section to infer these values in terms of
degrees. More similarly to the pervasive scenario, Evans et
al. [10] compared two methods of collecting calibration points
in outdoors environments: The first (moving target) consists of
the user following a partner’s thumb with his eyes; the partner
then pauses the thumb at five distinct points, which are used
for calibration. The second (head tick) consists of the users
fixating a fixed point and moving their head in ≈ 10° steps in
an asterisk-like pattern, producing about 25 to 30 calibration
points. The collected points were later employed in an offline
calibration, and both methods exhibited similar accuracies for
central points with a mean error of 0.83° (σ not reported), but
the head tick approach resulted in better estimations at points
in the periphery. The authors also report that the moving target
method was significantly faster than the head ticks. Pupil Labs
employ cocentric circular markers in their manual marker cal-
ibration in a similar fashion to the moving target from [10];
similar restrictions also apply as mentioned in their website:
“this method is done with an operator and a subject” [23].

It is worth mentioning that some previous works try to coun-
teract calibration degradation through compensation or recali-
bration. Hornof et al. [18] employs implicit required fixation
locations to evaluate the gaze estimation and correct system-
atic errors. Kolakowski et al. [21] attempt to isolate eye tracker
drift based on the corneal reflection gain, which can then be
filtered. Sugano and Bulling [36] use gaze input features
and saliency maps calculated over the field camera images
to (re)-calibrate the eye tracker. Lander et al. [24] perform a
recalibration step with a subset of the initial calibration points;
afterwards, the updated positions for calibration points not
present in the recalibration are extrapolated. Binaee et al. [5]
employ a set of ground-truth fiducial positions in a virtual
environment to dynamically refine the calibration over time.

ON THE SELECTION OF COLLECTION MARKERS
A marker to be employed in the collection of eye-gaze rela-
tionships should have the following properties:

1. The user should be able to easily locate and distinguish the
reference point to be fixated; for instance, points lying in
the intersection of lines.

2. Marker detection should be accurate, precise, and require
low resources since it must run in real-time in an embedded
system alongside other eye tracking related image process-
ing algorithms (e.g., pupil detection [12]).

3. Since the field camera moves w.r.t. the marker, small blur-
ring effects are to be expected. The more robust to blur the
marker, the faster the movements allowed, and, thus, the
calibration process. However, one should be aware that the
user gaze may lag behind the marker at higher velocities due
to constrains in human smooth-pursuit capabilities, leading
to less accurate gaze-marker relationships.

Hitherto, markers used for calibration follow a similar pattern:
They tend to be custom bitonal, nested and cocentric shapes
(see Figure 3a to Figure 3d). While such markers meet most of
the requirements for a collection marker, they require a unique
detection process. In contrast, fiducial markers designed for
AOI definition and augmented-reality can meet these require-
ments and use a single process to detect a large set of markers.



Moreover, the detection of such markers is already integrated
into most eye tracking software as AOI definition is a com-
mon and useful functionality in eye tracking experiments (e.g.,
ArUco markers are integrated into EyeRecToo and Pupil Labs’
Capture [34, 23]). Therefore, we propose repurposing one
of these markers to be used as collection marker; within the
set of fiducial markers, it is likely that one exists, such that
the stipulated collection marker requirements are met. In this
work, we searched the default predefined ArUco dictionary
used in EyeRecToo (DICT 4X4 250) for such a marker. Based
on our requirements, we found marker #128 to be particularly
suitable for the task. Furthermore, we increased the size of
the black marker border from the default size to reduce blur-
ring effects, resulting in the marker used throughout this work
(Figure 3e). It is worth noticing that 249 markers remain for
regular use in the set.

(a) (b) (c) (d) (e)

Figure 3: Markers used by Evans et al. [10] (a), Bernet et
al. [4] (b), Pupil Lab [23] (c,d), and the ArUco marker (#128)
selected for this work (e).

RATIONALIZED OUTLIERS REMOVAL
Consider a video-based head-mounted eye tracker with one
eye camera and one field camera generating data at a prede-
fined rate of r Hz. For each new eye tracker data incoming
at timestamp (t), a pupil (p) is detected from the eye im-
age, yielding the pupil center coordinates in the eye image
(px, py) as well as its width (pw) and height (ph); similarly,
the collection marker (cm) is detected from the field image,
yielding its center coordinates in the field image (cmx,cmy).
Let D = {t, px, py, pw, ph,cmx,cmy} be the data tuple gener-
ated by the eye tracking system every 1/r seconds. The goal
of the calibration procedure is then to collect data tuples con-
taining pupil (px, py) and collection marker center (cmx,cmy)
relationships in order to establish a function mapping pupil to
gaze positions – i.e., the point of regard.

Intuitively, wrongly detected values for these variables will
perturb the estimation of this function’s parameters; thus, one
of the supervisor tasks in the regular calibration is to check that
the pupil is being detected correctly before association. For
an extensive analysis of factors that may influence the correct
pupil detection, we refer the user to the work by Fuhl et al. [13].
Additionaly, transient saccading and blinking during collection
can be taken into account by collecting a position for a longer
interval and taking the median of the samples. However, in
an unsupervised calibration where the marker position can be
constantly changing w.r.t. the user eye, these procedures are
not possible. Thus, alternatives must be found. A common
non-domain-specific approach is applying RANSAC to the
fitting in order to eliminate outliers (e.g., as done by Bernet et
al. [4]). Nonetheless, only outliers that significantly affect the

fit are indentified, and, if data is particularly noisy, RANSAC
will nonetheless return a fit. Additionally, randomly selecting
subsets of points and selecting the best fit may not result in
a good transformation function at all. Instead, we propose
a series of rationalized approaches to remove outliers based
on domain specific assumptions regarding head-mounted eye
tracking setups, data, and algorithms; these outlier removals
are described in the sequence, and examples are given in
Figure 4.

Subsequent Pupil Size Ratio
During calibration, pupil size may change due to physiological
factors, or the apparent pupil size in the image may change due
to the eye position w.r.t. the camera. Nonetheless, the pupil
size for two subsequent data tuples can be expected to remain
largely the same due to the difference in magnitudes between
the camera frame rate and pupil constriction/dilation speed.
Additionally, the apparent size should also remain largely
unchanged as the eye pursues the collection marker since
no significant eye movement is elucidated. Thus, significant
changes in pupil size can be attributed to false pupil detections;
an example of outliers detected by this approach are sporadic
detections of the iris as pupil – note that the center of the pupil
and iris are not necessarilly at the same location [31].

Converging Pupil Position Range
Eye cameras are usually placed such that the whole eye, in-
cluding canthi, is visible. Nonetheless, the pupil position is
only expected to fall within a certain range within this image.
Certain outliers will evoke pupil detections outside of this
range; for instance, when the user blinks, the pupil detection
algorithm may sporadically detect glasses frames, make-up, or
moles as valid pupils. This outlier removal works by assuming
the pupil positions to be normally distributed. Initially, all
samples are considered inliers; then, this method computes
the mean (µ) and standard deviation (σ ) of all inliers, mark-
ing as outliers samples falling outside of the range µ±2.7σ

(i.e., covering ≈ 99.3% of the distribution). This process is
repeated until the amount of inliers converges.

Pupil Detection Algorithm Awareness
Some pupil detection algorithms consist of a main and a fall-
back method. Such fallback methods are typically employed
when the pupil is in unfavorable positions for detection and
tend to improve the recall of the algorithm (in terms of pupil
detections) at the expense of a loss in accuracy of the pupil
coordinate, shape, or orientation. For instance, the fallback
mechanism of ElSe [12] (which is employed in this work)
consists of searching for a point within a dark region and a
strong center surround response without providing information
about pupil shape and orientation. Thus, this outlier removal
depends on the pupil detection method used and consists of re-
quiring that the tuple has a valid pupil size to employ samples
solely from the main method.

AUTOMATIC SELECTION OF EVALUATION POINTS
One of the main advantages of CalibMe is regarding the high
amount of eye-gaze relationships that can be collected in a
short period of time. After outliers removal, it is expected that
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Figure 4: Rationalized outlier removal examples during a
calibration of ≈ 21s. Subsequent pupil size ratio outliers
are identified by the letter a, converging pupil position range
outliers by b, and pupil detection algorithm awareness by c.
Notice how the pupil position estimate (px, py) is significantly
corrupted by such outliers.

only valid data tuples are left. While the majority of these
samples should go towards calibration in order to improve
the regression, enough data tuples are produced that we can
afford to exclude some samples from calibration to evaluate
the resulting gaze estimation afterwards. In this section, we
define a parameterizable method to select these evaluation
points automatically.

The proposed selection method is defined by four parame-
ters: the granularity (g), horizontal stride (∆x), vertical stride
(∆y), and evaluation point range factor (r f ). According to
the first three parameters, a lattice is built around the center
( fx, fy) of the field image; the lattice is defined by the points
( fx−g×∆x, fy−g×∆y) and ( fx +g×∆x, fy +g×∆y), with
points laid down at every (∆x,∆y) stride inside this region. Af-
terwards, an elliptical area with a horizontal radius of ∆x/r f
and vertical radius of ∆y/r f is associated with each lattice
point, resulting in a configuration similar to that of Figure 5.
After outliers removal, for each lattice point the remaining
collected tuples are searched to find the tuple lying inside the
associated elliptical region with minimal collection marker
center distance from the lattice point. Each tuple found this
way is then selected for evaluation. Afterwards, all tuples with
a collection marker center matching those selected for evalua-
tion are removed; in this manner, no evaluation point is used
in the calibration regression. The resulting evaluation based
on these points yields two metrics: 1) the reprojection error
for evaluation points, which measure the calibration accuracy,
and 2) the ratio of lattice points that have an evaluation point
assigned to it, which represents the calibration coverage.

It is worth noticing that the evaluation points are likely to be
spatially close to calibration points. The closer these points
are, the more biased to superior results the evaluation is likely
to be since the residuals for calibration points are minimized.
Nonetheless, contrary to typical N-Points calibrations, Cal-
ibMe collectes a large and sparse amount of points for regres-

x

y

Figure 5: Evaluation lattice example (g = 2, ∆x = 7°, ∆y = 6°,
and r f = 3) on a field of view of 56°×42°.

sion; combined with the low order polynomials commonly
used in eye tracking, this results in the minimization being
spread over the interpolation area instead of concentrated on
a few points. Furthermore, even if evaluation points were to
be selected independently from the calibration, these points
are likely to fall nearby calibration points if the employed
calibration pattern covers an adequate range of the field image.
Moreover, as shown in the following section, collecting eval-
uation points independently from the calibration process not
only requires a second collection process (and, thus, additional
time), but these points are unlikely to fall on the calibration
surface, therefore biasing the evaluation results to inferior
results due to parallax error effects.

ON CALIBRATION MOVEMENT PATTERNS
Prior to the analysis of different calibration movement patterns,
it is paramount to elucidate 1) how the proposed calibration
approach differs from a typical calibration, 2) what is the ef-
fect of allowing free head movements, and 3) how this affects
the resulting evaluation. To illustrate these concepts, con-
sider Figure 6, which shows the side view of a head-mounted
eye tracking setup. Notice that the user’s eye and the head-
mounted field camera lie at different heights, which tends to
be the common case6. Typically, the system is calibrated by
employing calibration points in a planar surface (i.e., the cali-
bration plane); within this plane (e.g., the white dot), the gaze
estimation is the most accurate. Whereas on an ideal stationary
setup (e.g., a computer screen) this can be expected, it is an un-
realistic expectation for pervasive and mobile scenarios since
the interactive objects will rarely lie on the calibration plane
(e.g., the black dot). When the object plane differs from the
calibration plane, the gaze estimation will produce an inaccu-
racy proportional to the distance between the calibration plane
and object plane because the eye and field camera view the
scene from a different angle, resulting in the parallax error [10,
17]. Moreover, notice that if the user is only allowed to move
his head vertically and horizontally while fixating a stationary
target, the resulting calibration is equivalent to that of a plane.
On the contrary, if the user is allowed to change depths or
rotate his head, the result can be seen as a calibration surface
(illustrated as a rotation around the center of the camera in
Figure 6). From this, three conclusions follow:
6For simplicity, we will not include the discrepancies when the cam-
era is unaligned horizontally w.r.t the eye, but analogous effects
result.



1. The underlying regression model should take into account
that the calibration surface is not planar. Effectively, this is
already the case since most current models employ curved
relationships in order to compensate for lens distortions and
eye curvature.

2. Relative to the gaze estimation based on a planar calibra-
tion, the gaze estimation based on a surface calibration may
exhibit a larger or smaller parallax error depending on the
object position and surface curvature.

3. Attempting to evaluate a surface calibration on a plane
(or vice versa) will bias the resulting accuracy due to the
introduced parallax errors. In fact, this applies for any
two distinct calibration and evaluation surfaces (e.g., two
distinct planes).

Eye

Camera

Calibration
Plane

Object
Plane

Parallax

Calibration
Surface

Figure 6: Parallax effect illustration between a curved calibra-
tion surface, a straight calibration surface (i.e., a plane), and
the object plane.

As previously mentioned, one of the advantages of collecting
evaluation points simultaneously with the calibration is the
fact that the calibration and evaluation points will lie roughly
on the same surface. If evaluation points were to be collected
in a separate step, it is unlikely that the user will be able to
reproduce the exact head and eye displacement as the one
performed during calibration. Therefore, the gaze estimation
is deteriorated due to the resulting parallax errors, producing
an underestimation of the calibration quality. Hence, we eval-
uate the investigated collection movement patterns using the
method proposed in the previous section.

Initially, we considered several continuous collection move-
ment patterns for evaluation, such as a spiral, star, horizontal
path, vertical path (shown in Figures 7a-d, respectively) as well
as letting the user move freely. However, it quickly became
apparent during a pilot study7 that there are some properties
that constitute superior patterns, recalling that the user must
“draw” these patterns with the marker using the view of the
field camera as “canvas”:

1. The pattern should have intuitive parameters: While the pat-
tern itself is usually clear from the illustration, most subjects

7During the pilot, the aim of the experiment was explained to five
subjects, after which they performed the free-form movement; the
users were then shown illustrations of each pattern in a random order
and asked to perform those movements.

were confused by parameters – e.g., how many horizontal
lines in pattern Figure 7c should be performed. Curiously,
no questions were asked regarding the parameters of the
spiral pattern (Figure 7a).

2. The initial position of the pattern should preferably be in
the center to allow starting in a natural position.

3. The extremeties of the field should be covered without ne-
cessitating precise movements from the user.

These criteria eliminated all but the spiral and star patterns;
the spiral pattern is original from this work, whereas the star
pattern is similar (albeit without pauses) to the head ticks pat-
tern employed by Evans et al. [10]. The final form of the
new pattern that we proposed for novices is a spiral move-
ment, starting at the center, going outwards, and then spiraling
back to the center. This is the spiral used in this work unless
explicitly mentioned otherwise.

(a) Spiral (b) Star (c) Hori. Path (d) Vert. Path

Figure 7: Examples of movement patterns that can be em-
ployed in combination with collection markers.

EXPERIMENTAL EVALUATION
In this section, first the two investigated collection movement
patterns are evaluated against each other using the proposed
automatic evaluation point selection. Afterwards, the best per-
forming one is compared against a typical 9-Points calibration
based on the proposed automatic evaluation point selection
and a regular twenty five points grid evaluation.

Participants, Apparatus, and Metrics
Experiments were managed by an expert with more than one
year of experience in conducting mobile and stationary eye
tracking experiments. Five adult subjects participants took part
in the evaluation (4 male, 1 female), and two of them wore
glasses during the experiments. The subjects were briefed
about the procedure, including in regard to head velocity and
the goal of collecting the marker in multiple locations w.r.t.
the field camera. The subjects were asked to verbally com-
municate when they were finished performing the movement,
and no instructions were given in regard to the collection du-
ration for each pattern as to not introduce artificial limits to
the collection timing.

The experiment was conducted using a Dikablis Pro eye
tracker [8]. This device has two eye (@60 Hz) and one field
(@30 Hz) cameras; data tuples were sampled based on the
frame rate of the field camera. The field camera was equipped
with a 1.5× wide turn lens; camera parameters were estimated
for use in the marker pose estimation, but the field image was
not undistorted. CalibMe was integrated into EyeRecToo [34],



which was used to record and conduct the experiments. Pupil
detection was performed using ElSe [12], and a bivariate sec-
ond order polynomial regression was employed for gaze esti-
mation in all cases. The poster shown in Figure 8 was used
as stimuli and placed at a distance of approximately 1.1 m
from the participants. This poster was designed for the ref-
erence points to cover about 40°×30° considering that after
this range head movements become a regular feature of gaze
shifts [3]. The eight red points in the extremities and the center
of marker #128 were used as calibration points for the 9-Points
method. Blue dots and the center of marker #128 were used
for the twenty five points evaluation. CalibMe automatic eval-
uation point selection configuration was set to match the setup
of these evaluation dots (g = 2, ∆x = 7°, ∆y = 6°, and r f = 3).
The metrics employed in this evaluation are:

Mean Angular Error (ε): evaluated as the mean of the eu-
clidean distances between the evaluation point coordinates
in the field image and the resulting coordinates from the
gaze estimation.

Calibration Time (τ): evaluated as the timestamp difference
between the last and first collected calibration tuples.

Pattern Coverage (γ): evaluated as the ratio between lattice
points with an associated evaluation point and the total
count of lattice points (25 in this study); this metric is only
meaningful for CalibMe.
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Figure 8: The calibration poster used during experiments
and placed at 1.1 m away from the subjects. The red points
cover an area of ≈ 40°×30° and are used for the 9-Points
calibration together with the center of marker #128. Blue
points are employed for evaluation together with the center
of marker #128 and lie within the interpolation area of the
9-Points calibration.

Collection Movement Pattern Comparison
Each participant repeated each pattern three times, and no
significant differences between repetitions were found; a visu-
alization of resulting collection marker coordinates on the field
image for one of the participants is shown in Figure 9. For the
inter pattern comparison, we have aggregated all repetitions.

No significant differences were found between the Spiral and
the Star patterns in terms of calibration time (F(1,28) = 0.690,
p = 0.413). However, the Spiral produced significantly larger
coverage (F(1,28) = 34.908, p = 0.0000023). While no signifi-
cant differences in terms of angular error were found (F(1,28)
= 3.486, p = 0.0724), Figure 10 suggests the Spiral to have a
small advantage over the Star in this regard. Additionally, this
figure also exhibits the outcome in case no outliers removal
is performed. Particularly interesting in this case is the single
angular error outlier above 3.5°. This large error stems not
from a bad estimation but from an outlier selected as evalu-
ation point, demonstrating the importance of performing the
outlier removal before points are automatically selected for
evaluation.

Figure 9: Collection marker center coordinates on the field
image for one of the subjects when performing the Spiral (top)
and Star (bottom) patterns repetitions.
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Figure 10: Accuracy for the Spiral and Star movement pat-
terns measured through CalibMe’s automatic evaluation point
selection with and without outliers removal.

CalibMe and 9-Points Calibration Juxtaposition
After performing the previously described experiment, each
subject participated in a second phase, whose aim is to juxta-
pose calibrations performed with CalibMe against a typical
9-Points calibration in a setup as similar as possible. Initially,
the user rested his head on a chin rest placed at 1.1 m from the
calibration poster shown in Figure 8. During this experiment,
subjects were instructed not to communicate verbally in order
to minimize head movements. The user then performed a
9-Points calibration, followed by a twenty five points evalua-
tion. The experimenter was responsible for manually selecting



the gaze points in the field camera view. After a point was
selected, data tuples were collected for 500 ms, and the me-
dian of the collected pupil coordinates was associated with
the gaze position. Following this step, the system produced
an audible feedback so the user knew when to move to the
next point, minimizing the amount of communication between
experimenter and subject, thus making this calibration proce-
dure faster and less error prone. After both procedures were
finished, the experimenter slowly moved the subject’s head
away from the chin rest, moved the chin rest horizontally out
of the way of the subject, and then moved the subject’s head to
the initial position by aligning it at a distance with the chin rest.
With the head now free to move, the subject was instructed to
perform the Spiral collection movement pattern.

As shown in Figure 11, this procedure results in two distinct
surfaces – 1) Pattern: a surface formed by the sparse points
collected while performing the Spiral pattern, and 2) Poster: a
planar surface along the calibration poster (Figure 8). There-
fore, a direct comparison between the regular and the collec-
tion method calibrations is biased. If we evaluate these solely
on one of the surfaces, the accuracy of the other will be under-
estimated due to parallax errors (and vice-versa). Hence, we
juxtapose these by cross-evaluating sets of calibration points
from each surface on sets of evaluation points lying on both
surfaces instead.

Figure 11: Surfaces produced by calibrating using a spiral
head movement pattern and a regular 9-Points calibration.

The following sets of calibration points were analyzed in this
manner:

• CalibMe: this set consists of samples collected during the
spiral movement, excluding the tuples selected for evalua-
tion, tuples with collection markers at the same position as
evaluation ones, and outliers identified by CalibMe. These
samples lie on the pattern surface.

• Outliers: CalibMe without outliers removal.

• 9 Points: the eight (red) calibration points plus the marker
center; these samples lie on the poster surface.

These calibration sets were evaluated on two different evalua-
tion sets:

• Pattern (Reserved): samples lying on the pattern surface
that were automatically reserved for evaluation by CalibMe.

• Poster (25 Points): the twenty four (blue) evaluation points
that lie on the poster surface plus the marker center.

The resulting gaze estimation accuracies from these evalua-
tions are shown in Figure 12. As expected, both methods
exhibit better accuracy when evaluated on their respective cal-
ibration surface than in a different one. The gaze estimation
error due to the parallax effect can be noticed when comparing
the same calibration set across different evaluation surfaces,
which shows ≈ 0.7° of error in all cases. While this is in line
with the expected error magnitude given our setup, it is worth
noticing that part of these errors are contributed by occasional
points that fall outside of the calibration interpolation range,
for which the gaze estimation is expected to have an inferior
accuracy. When comparing CalibMe against the 9-Points cali-
bration evaluated on their respective surfaces, no significant
difference was found in terms of accuracy (F(1,8) = 3.372,
p = 0.104). Nonetheless, this figure suggests that CalibMe
produces slightly better results, yielding a mean angular error
averaged over all participants of 0.59° (σ = 0.23°) in contrast
to 0.82° (σ = 0.15°) for the 9-Points calibration, attesting for
the efficacy of the proposed approach.
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Figure 12: Mean angular error evaluated on points lying on
the pattern and poster surfaces.

While no significant differences were found when comparing
CalibMe and its outliers inclusive counterpart (Outliers), when
visually inspecting the figure an anomaly (with a mean error
larger than 4.5°) is clearly visible in the 25 Points evaluation.
By virtue of CalibMe’s automatic evaluation point selection,
we quickly traced this anomaly as a result of a low coverage
and a single pupil detection outlier in the right eye during a
blink. This particular subject had a coverage ratio of 68%,
whereas all other subjects had coverages of at least 80% (µ =
87%). As shown in Figure 13, this subject did not cover the
left part of the 25 points evaluation area, resulting not only
in a subpar accuracy, but also in no polynomial regression
constraints in that area. The aforementioned outlier happens
to lie in this unconstrained area, thus significantly skewing the
gaze estimation at those points and artificially amplifying the
mean angular error.



Figure 13: Collected tuples (yellow circles) and the 25 evalu-
ation points (orange squares) for the subject with anomalous
mean angular error when outliers are considered. Notice how
the left side of the evaluation points are not covered by col-
lected tuples.

A Note on Calibration Time
Assuming a qualified and experienced supervisor, the 9-Points
calibration time is rather constant if nothing disrupts the collec-
tion (e.g., in case one position must be repeated, the calibration
flow is broken, and calibration time increases significantly).
We can model the optimal time required for such calibrations
by summing up 1) the sampling time for each point, 2) the time
for the subject to react to the audible feedback and saccade
to the next target, and 3) the time for the supervisor to react
to the saccade and start the next sampling. Empirically, we
found that the time to collect a single points in our setup is
≈ 1.67s – i.e., one can expect about 15 s and 42 s to collect
nine and twenty five points, respectively.

As previously mentioned, we intentionally did not impose
time limitations on the subjects when performing the pattern
calibration as to not bias results. Intuitively, the pattern cali-
bration time depends on the spatial distribution and amount
of collected tuples. These can be mainly determined by two
factors: First, the user’s skills and internal mental model of
the system; for instance, the better a user can abstract the
marker position w.r.t the camera, the more efficiently he can
utilize his collection time. Second, the speed of the marker
relative to the camera/subject; the faster the marker moves, the
faster the calibration. However, several elements influence the
latter factor, such as the camera resolution, frame rate, shutter
type, marker detection blur robustness, and human smooth-
pursuits physiological limitations. These elements are further
discussed in section LIMITATIONS.

Since estimating user’s skills is rather subjective, and finding
users of different skill levels is unpractical, we approach this
analysis from an alternative perspective. By downsampling
the data from the previous experiment, we can study the ef-
fect of the amount of tuples on the method’s accuracy. Here,
downsampling is performed by using only one tuple in each
down sampling factor (DF) tuples so that spatial distribution
is preserved. It is worth noticing that a reduced amount of
samples can compromise the coverage ratio and, thus, limit
the information provided by the automatic evaluation. There-

fore, we perform evaluations against the twenty five points
instead. Figure 14 shows the effect of this downsampling in
the mean angular error. It is clear that subjects collected an
amount of tuples (µ = 549.8,σ = 159.11) much larger than
required to reach satisfactory accuracy. Thus, the limiting
factor becomes the spatial distribution of the collected tuples
and, consequently, the speed of the marker relative to the
camera/subject. Assuming a conservative DF of two, the pro-
posed approach already becomes significantly faster than the
9-Points calibration, requiring on average 10.12 s as shown in
Figure 15.
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Figure 14: Downsampled CalibMe evaluated on the twenty
five point grid, showing that downsampling by small factors
retains accuracy as long as the spatial distribution is preserved.
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Figure 15: Calibration time for CalibMe, CalibMe downsam-
pled by a factor of two, and the 9-Points calibration.

In order to corroborate this time estimate, we conducted a sep-
arate experiment with a user considered experienced enough
to have a good mental model of the marker movement relative
to the camera: one of the CalibMe developers. As previously
mentioned, a small amount of collected tuples may compro-
mise the coverage ratio, limiting the amount of information
provided by CalibMe’s automatic evaluation. Therefore, the
user first collected eye-gaze relationships to be used for evalua-
tion by staring into the center of a collection marker displayed
in a cellphone screen and moving the cellphone in a grid pat-
tern, as shown in Figure 16a. This collection took ≈ 43s,



and tuples identified as outliers were removed from the eval-
uation set, resulting in 816 evaluation tuples. Afterwards,
the user conducted ten independent CalibMe calibrations by
moving the cellphone in spiral patterns, which were evalu-
ated against the aforementioned evaluation tuples. It is worth
noting that the user opted to perform a single outward spiral in-
stead of the outward-inward pattern recommended for novices;
instances of the resulting patterns can be seem in Figures
16b-16d. The average calibration time for these calibrations
was 10.68 s (σ = 0.86s), reaching an average angular error of
0.69° (σ = 0.044°). The individual values for each collection
are shown in Figure 17. The result from this experiment is
in line with both the expected angular error and calibration
time, thus endorsing the time estimate of the downsampling
analysis.

(a) (b) (c) (d)

Figure 16: The points used for evaluation (16a) and points
from three (out of ten) distinct calibrations performed by the
user (16b-16d).
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Figure 17: Calibration time and resulting mean angular error
for the ten calibrations performed by the user; also shown, is
the calibration time and mean angular error for the reprojection
of the evaluation points.

LIMITATIONS
Naturally, the key limitation for CalibMe is in regard of marker
and pupil detection. These tasks face similar challenges such
as occlusion, highly skewed viewing angles, poor or irregular
illumination, and motion blur [12, 6]. Nonetheless, there is
significant research for these tasks in pervasive and challeng-
ing scenarios (see [13, 6]), and spurious incorrect detections
during calibration can be eliminated through the proposed
rationalized outliers removal methods. In particular, motion
blur could be greatly alleviated by the usage of global-shutter
sensors.

Aside from these detection challenges, human smooth-pursuit
physiology imposes a lower bound on the calibration time. As
marker speed increases, the smooth-pursuit gain (i.e., the ratio

between the marker and smooth-pursuit speed) starts deviating
significantly from one [27]. As a result, the marker center may
not correspond exactly to the true gaze position, specially at
higher speeds. These periods could potentially be identified
based on real-time eye movement detection algorithms such
as I-BDT [35].

FINAL REMARKS
In this work, we have introduced CalibMe, consisting of a col-
lection marker that does not incur any additional processing
to common eye tracking systems and a set of techniques to
1) quickly collect eye-gaze relationships for calibration, 2) re-
move ill-constrained relationship outliers, and 3) automatically
reserve tuples for evaluation. As a result, CalibMe allows eye
tracker users to quickly calibrate the system anywhere without
supervision, giving feedback not only in terms of gaze estima-
tion accuracy, but also on the calibration area coverage relative
to the field camera. The proposed method reached accuracies
(µ = 0.59°,σ = 0.23°) commensurable to a 9-Points calibra-
tion (µ = 0.82°,σ = 0.15°), well within physiological values,
and calibration can be performed in ≈ 10s, thus increasing
gaze-based HCI usability. Future work includes developing
and integrating methods to assess gaze estimation validity,
compensating for calibration drift [36], and extending the pro-
posed approach to 3D gaze estimations based, for instance, on
vergence information [28].
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