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ABSTRACT

Using human !xation behavior, we can interfere regions that re-
quire to be processed at high resolution and where stronger com-
pression can be favored. Analyzing the visual scan path solely based
on a prede!ned set of regions of interest (ROIs) limits the explo-
ration room of the analysis. Insights can only be gained for those
regions that the data analyst considered worthy of labeling. Fur-
thermore, visual exploration is naturally time-dependent: A short
initial overview phase may be followed by an in-depth analysis of
regions that attracted the most attention. Therefore, the shape and
size of regions of interest may change over time. Automatic ROI
generation can help in automatically reshaping the ROIs to the data
of a time slice. We developed three novel methods for automatic ROI
generation and show their applicability to di"erent eye tracking
data sets. The methods are publicly available as part of the EyeTrace
software at http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html
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1 INTRODUCTION

Presently, eye tracking can be found in di"erent research areas,
such as human-computer interaction, medicine, neuroscience, psy-
chology, and manymore [Duchowski 2002; Toker et al. 2013]. While
one focus of eye tracking research addresses human behavior, an-
other growing !eld is its application. These applications allow for
control and comfort while the subject while the subjects interacts
unconstrained with the world. For both research and application,
large amounts of data are handled [Blascheck et al. 2014]. These
quantities continue to grow due to better and cheaper devices that
allow for large scale studies: With more subjects and longer record-
ing durations. But in order to gain insights from these enormous
data collections, we need to reduce the complexity.

The !rst structuring of eye tracking data was done in the years
1879 to 1920 [Duchowski 2002], where the raw gaze points were
grouped by their eye movement behaviors into !xations and sac-
cades. This structuring process led to the !nding that certain eye
movement patterns indicate, for example, the task performed by
a subject [Tatler et al. 2010]. These patterns consist of a sequence
of !xations, where the eye is held still and directed towards the
perceived areas, and saccades, or fast eye movements, during which
the visual input is suppressed.

A common method to further simplify the data is performed by
de!ning regions of interest (ROI) or areas of interest (AOI), i.e., areas
with a speci!c semantic meaning. The terms will be used synony-
mously throughout this paper. The semantic meaning of ROIs are
usually determined as having special interest to the researcher. For
instance, studies on web page organization and design [Goldberg
et al. 2002; Pan et al. 2004] as well as graph reading [Strobel et al.
2018], product design [Mawad et al. 2015] and dwell time on facial
areas for children with autism [Auyeung et al. 2015] have relied
on ROI de!nitions to interpret eye movement behavior. For data
analysis and statistics, information for each ROI can be performed
separately: It can be, though is not limited to, average dwell time,
or the number of !xations on the ROI. Also, connections between
ROIs, such as transition probabilities, can be investigated.

Manual ROI annotation is necessarily a subjective step. Given
the large amount of data and the desire to analyze changes in ROIs
and ROI shapes associated with speci!c time segments, it quickly
becomes laborious. Therefore, automatic ROI generation based on
the data of di"erent viewers and variable time segments is a use-
ful and supportive automation process. It not only supports the

Link to data:
https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?
p=%2FEyetrace&mode=list
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researcher, but also allows for determining ROIs in a data-driven,
objective way: For instance, ROI di"erence comparison between
subjects, groups of subjects, or di"erent time slices. Analysis tech-
niques based on ROIs can be extended by the automation such as
the development of circular ROI transitions [Blascheck et al. 2013]
which can be inspected over time and visualized as a video.

Identifying !xations and saccades, clustering !xation locations,
and determining ROIs are important algorithmic steps that have a
major in&uence on key eye tracking metrics, such as the average
!xation duration or the proportion of gaze directed towards a ROI.
Therefore, we believe that a researcher should always be aware of
the implications of one of these speci!c analysis steps. In order to
bring awareness researchers on the e"ects algorithm choice and pa-
rameterization, we provide implementations as well as an overview
of several algorithms for generating ROIs and compare them to
manually labeled ROIs. This work focuses on generating ROIs in an
automated, data-driven way. Three newmethods, two that generate
ROIs from a heatmap representation and a new overlap clustering
of !xations, are introduced and compared to mean-shift clustering
of !xations ([Privitera and Stark 2000; Santella and DeCarlo 2004]).

2 RELATEDWORK

Initially, researchers may be tempted to solve the ROI generation
problem by image segmentation. This method stems from the !eld
of computer vision and identi!es coherent regions in an image.
However, such an approach to process and segment the stimulus
image [Privitera and Stark 1998] is still challenging because seman-
tic knowledge of the objects in the stimulus could be required.

Fortunately, information about stimulus semantics can be ex-
tracted directly from the gaze data. Data-driven algorithms can
utilize the semantic segmentation of the stimulus provided by
the viewer’s behavior re&ected in the eye tracking data. An ex-
ample of such a method is the mean-shift clustering of !xation
locations [Privitera and Stark 2000; Santella and DeCarlo 2004].
Locations that are looked at more frequently are likely to be seman-
tically meaningful and good candidates for ROIs.

Possibly the closest method to our approach is by [Wooding
2002]. Where the authors constructed a three-dimensional !xation
map (two-dimensional location plus the gaze density calculated by
summing up normal distributions centered at each !xation) and
"&ooded [it], leaving only the highest peaks as islands" [Wooding
2002]. This approach can be derived from a shadow map visual-
ization of the !xation map. Depending on the level of "&ooding",
meaning the !xation density threshold where the shadow map is
rendered transparent, di"erent ROIs can be identi!ed.

Nyström [Nyström 2008] proposed to perform hierarchical seg-
mentation by thresholding the !xation map at half of its maximal
density. The segmented ROIs can then be subdivided by repeating
the procedure with a new threshold, relative to the maximum of the
segmented region. The process can be repeated an arbitrary amount
of times, which results in a more accurate ROI segmentation. What
is most remarkable in this algorithm is that it is able to even capture
large area ROIs. Where they generally show a higher spread of gaze
locations and are therefore less likely to sum up to high !xation
counts in the !xation map. This hierarchical approach is likely to
contain these ROIs somewhere within the hierarchy. In contrast,

the aforementioned &ooding approach may result in these areas
being disregarded.

3 GENERATING ROIS FROM HEATMAPS

In the following sections, three di"erent methods for automatically
generating ROIs in a data-driven way are proposed: Local maxima
thresholding, heatmap gradients, and overlap clustering.

3.1 Threshold based ROI algorithm

Figure 1(a) shows the work&ow of the algorithm. It starts with
pre-thresholding the !xation heatmap. Here, areas with a density
smaller than the pre-threshold are irrelevant for further computa-
tions. For all images in Figure 1, we used a prethreshold of 1% of the
maximum density of the heatmap to remove invalid gaze points.

In the next step, we search for local maxima in the density of the
heatmap. This step is motivated by the observation that two high
density ROIs that are spatially close to each other get easily fused
to one bigger ROI when a simple density threshold is applied. Then,
the spread of the Gaussian applied at every !xation location which
makes the heatmap smooth and fusing of ROIs easier. Consider-
ing local maxima as candidate ROIs enables us to treat close-by
maxima as separate ROIs and to fuse them afterwards, if applicable.
Depending on the data recorded (and the measurement error of the
eye-tracker), the heatmap contains many local maxima. To deter-
mine relevant maxima, a sliding window of a user-de!ned sizeW
is applied. Only the largest of all local maxima within the window
is considered a valid candidate. Based on the size of the window,
candidate ROIs can be fused and smaller ROIs discarded. The size
of the window is highly stimulus dependent, and determines the
desired detail level of the analysis.

LocMax(xi ,yi ,W ) =





1, I (xi ,yi ) > I (xi + xk ,yi + yk )

∀xk ,yk ∈W

0, otherwise

(1)

Equation 1 calculates the candidate selection with xi ,yi being
the pixel position in the heatmap,W the set of allowed deviations
in the search window and I (xi ,yi ) is the density at location xi ,yi
in the heatmap. The equation assigns the value 1 to valid candidate
local maxima, 0 otherwise.

In the following step, a threshold, based on a percentage of
the heatmap density at the local maximum, is applied to each re-
gion. This step is similar to the second iteration in Nyström’s ap-
proach [Nyström 2008], where a 50% is applied. All pixels both
above the threshold and connected to the local maximum are as-
signed to a new ROI. An example of the thresholding as well as how
the percentage parameter in&uences the size of the generated ROI
is shown in Figure 2. O"shoots, as shown in Figure 1(f)(the red area
on the right side, close to the center), or very small local maxima
can combine ROIs. Afterwards, polygons borders are calculated for
all ROIs.

The pseudocode in Algorithm 1 shows the threshold procedure
that is based on a region growing approach. The algorithm searches
for pixels neighboring the current ROI and adds them to the ROI if
their density value is above the threshold. This step is repeated to
convergence.
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Figure 1: (a) shows thework!owof the threshold basedROI algorithm. (b) shows the "xation heatmap, which is the foundation

of the following calculations. (c,d,e) visualize local maxima in the heatmap density as blue dots when using di#erent window

sizes (50px, 150px, 250px). The area highlighted in red is the pre-threshold of 1% ofmaximumdensity. The bottom row contains

the results for di#erent values of the threshold, where the red areas are extracted ROIs at (f) 50%, (g) 60% and (h) 70% of the

density at the local maximum from (e).

Figure 2: Calculation of the cuto# threshold for one local

maximum. The black line represents the density distribu-

tion within the heatmap, the red dot is the local maximum,

and the green line is the calculated threshold based on 50%

of the density at the local maximum.

Algorithm 1 Thresholding algorithm. ROI holds the ROI region
and is initialized as the point of the local maximum. More pixels are
added during the iterations. TH is the threshold density, calculated
from a percentage of the density at the local maximum. a and b are
2d pixel locations within the heatmap.

Require: ROI ,TH , I

function Growr eдion (ROI ,TH , I )
while ∃a ∈ I |distance(a,b) < 2 ∀b ∈ ROI do

if TH < (I (a)) then add(a,ROI )

end if

end while

return ROI

end function

3.2 Gradient based ROI algorithm

The work&ow of the gradient based ROI algorithm is shown in Fig-
ure 3(a). The !rst step is a pre-thresholding, just as in the threshold
based algorithm. The impact of the pre-thresholding parameter is
shown in Figure 3. Generally, ROIs get smaller, and low density
ROIs are discarded for an increasing pre-threshold. In a second step,
the density gradient is calculated (Figure 4(b)).

When the gradient (the !rst derivative of the density) crosses
zero, there is no slope in the heatmap (Figure 4(b) red and grey cir-
cles). A derivative of zero implies a local maximum or minimum or

a saddle point in the original function (see Figure 4). If we progress
from each local maximum towards the next point where the gra-
dient crosses zero, we have found the borders of our ROI. At the
bottom of Figure 4, the assignment to ROIs is shown.

In our implementation, we used directional gradients pointing
to the highest value in their 8-connected neighborhood and the
position itself. Afterwards, we start from those values that do not
point to any neighbor, but have the highest density within their
neighborhood. All neighbor pixels with a gradient pointing towards
this location are added to the new ROI. This step is repeated to
convergence till convergence.

This procedure allows ROIs to be completely contained within
larger ROIs. Those contained ROIs can easily be identi!ed by their
enclosing polygon outline being within a larger polygon (consid-
ering the enclosing border polygon ROIi ⊂ ROIj |i , j). If such a
ROI is found, it is joined to the enclosing ROI (considering the pixel
position values ROIi ∪ ROIj |i , j).

Dir (xi ,yi ,W ) =

{
(xk ,yk ), Max(I (xi + xk ,yi + yk ))

∀xk ,yk ∈W
(2)

Equation 2 describes the gradient calculation. I is the intensity value,
W contains all position shifts [-1, 0, 1] in pixels for each direction
(8 neighbors and pixel itself) and xi ,yi is the starting location. The
formula returns the vector to a neighboring maximum or (0, 0) if the
position itself is the maximum in its neighborhood. The algorithm
for growing the region via the gradient is shown in Algorithm 2.

3.3 Overlap clustering

In [Kübler et al. 2015], the authors describe how to !t ellipses to
samples recorded during a !xation and also how the ellipsoid shape
can be used for data quality assessment, as the actual spatial extent
of the !xation is represented by the ellipse axes.
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Figure 3: (a) shows the work!ow of the gradient based ROI algorithm. In (b) the pre-threshold is applied at 1% of themaximum

density level. (c) and (d) at 5% and 10%, respectively. Individual ROIs are highlighted in di#erent colors.

Figure 4: The heatmap density is shown in (a), with its "rst

derivative, the gradient, in (b). Red circles mark breaking

points of ROIs and the green circles indicate the starting

points for growing a new ROI.

Algorithm 2 Gradient based region growing. ROI holds the ROI
region and is initialized as the point of the local maximum. More
pixels are added during the iterations from neighboring positions
a.

Require: ROI , I

function Growr eдion (ROI , I )
while ∃a ∈ I | Dir (a) + a ∈ ROI do add(a,ROI )

end while

return ROI

end function

In this chapter, we will utilize the elliptic shape for the clustering
of !xations. Therefore, intersections between the ellipses are calcu-
lated and overlapping ellipses are merged to clusters. The process
is visualized in Figure 5.

In the second step, overlapping clusters aremerged together. This
starts from the largest cluster, i.e., the one shown in Figure 5(b),
and searches for other clusters that overlap with it. If two clusters
overlap, they are merged together. This process is repeated until

Figure 5: Overlap clustering procedure. (a) Ellipse represen-

tation of a set of "xations. In (b,c,d,e), all "xations that over-

lap the ellipse of the "xation currently under consideration

(green) are highlighted (in gray). Each set of a "xation and

its overlaps (green plus gray ellipses) is considered a cluster.

Fixations that do not participate in the cluster are shown in

black. The clusters are ordered from left to right in descend-

ing order of cluster size.

Algorithm 3 First clustering step: F is a list containing all !xations,
AC will contain all found clusters after the algorithm is run.

Require: F ,AC

function InitCluster (F ,AC)
for a ∈ F do

add(a,C)

for b ∈ F and a , b do

if a ⊆ b then add(b,C)

end if

end for

add(C,AC)

end for

return AC

end function

no cluster extension is possible. Afterwards the process is repeated
with the largest of the remaining clusters that can still be extended.
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Figure 6: (a) Fixations are the ellipses outlines and the dots

are gaze points. Dots and ellipses in the same color belong

together. (b) The black ellipses represents the overlap cluster

calculated based on all contained points. Arrows outgoing

from the center of the ellipses are the axis calculated from

the principal component analysis.

This merging process is done by calculating the mean minor
and major axis using the principal component analysis on all gaze
points belonging to the !xation ellipses included in the cluster. As
shown in Figure 6, (a) illustrating the !xations and their gaze points
are drawn in the same color and in (b) the resulting cluster shape is
shown. The axis of all ellipses (indicated by arrows) are the vectors
calculated with the principal component analysis.

Figure 7: (a) is the starting cluster, which is the largest pos-

sible cluster from the "rst step. The green ellipses are the

starting point of each cluster and the dark gray clusters be-

longing to it. In (b), the "rst merge is applied as visualized

by the new dark gray ellipses and the light gray ellipses al-

ready contained in the cluster. (c) shows that the bottomclus-

ter can not grow any more and is therefore "nished. The

next starting cluster in (c) is the top cluster as visualized by

the new green ellipse and the ellipses belonging to it (dark

gray). (d) is the result of the overlap clustering for the given

ellipses.

Figure 7 visualizes the merging procedure. The largest cluster
of the !rst step is chosen as a starting point and is successively
enlarged by overlapping clusters. In the example, one minor cluster
is merged with the larger one ((d) new dark gray ellipses). Once
the cluster cannot grow anymore, we proceed with the next cluster
that has not been merged yet (c). The two !nal clusters are shown
in (d).

With Eyetrace, it is possible to adjust the overlap clustering by
specifying a minimum count of overlapping !xations required to
create a cluster. This minimum !xation threshold can either be
applied to all data together or to the data of each subject separately.
This way the algorithm can also cope with large and dense data.

Figure 8 shows each of the proposed methods applied to the same
data. Naturally, the generated ROIs are not identical. Every method
has it’s advantages and disadvantages. For example, the gradient
and mean shift approach generate many ROIs, not only based on
the nature of the methods, but also on the parameter choice. This

Algorithm 4 Cluster merging step: AC contains the clusters found
by the !rst step, merged clusters are stored in GC .

Require: AC,GC

functionMerдeCluster (AC,GC)
while AC > 0 do

C =max(AC)

remove(C,AC)

while ∃a ∈ C |a ∈ AC do

Csub = дet(a,AC)

add(Csub ,C)

remove(Csub ,AC)

end while

add(C,GC)

end while

return GC

end function

parameterization can be a wanted result, or a disadvantage based
on the investigated part of human gaze behavior. In EyeTrace, ROIs
can be removed, manually added, and or modi!ed: For cases where
the automatically generated ROIs are to large/small or unavailable.
Figure 8(e) shows an example for large ROIs, where (c) separates the
ROI of the painters head from his drawing hand. The usefulness of a
shape based ROI depends always on the quality of the recorded data
as well as the goal of the study or task. The data quality refers to the
size of the ROI needed to capture the gaze attention of a subject and
su>cient enough to see similarities or gaze behavior and excluding
unrelated behavior. For example, data with low precision requires
larger ROIs, whereas in contrast, large ROIs could induce an error
in high precision data. In case of low accuracy data, which induces a
localization problem, automatic ROI generation can help visualizing
the o"set.

4 EXPERIMENT

In the following sections, we will refer to cumulative clusters sim-
ply as clusters. Typically in research literature on visual behavior,
clusters are calculated based on the data of a single subject. More
speci!cally, for cumulative clusters, the data of more than one
subject is combined and treated as a single subject.

In this exemplary evaluation, we aim to compare the proposed
method with the state-of-the-art meanshift algorithm [Privitera and
Stark 2000; Santella and DeCarlo 2004] and our improved version
of hierarchical segmentation by thresholding a heatmap [Nyström
2008]. The !rst part (Subsection 4.1) of the evaluation concerns the
impact of automatic ROI generation on statistical values. Therefore,
we investigate the generated ROIs on the results of common ROI
statistics and compare them to manually annotated ROIs. The used
recordings are from nine subjects viewing the painting "The Art
of Painting" presented on a screen for one minute. Almost one
thousand !xations were recorded with the EyeTribe eye-tracker at
25 Hz sampling rate.

In the second part (Subsection 4.2), we evaluate the generated
ROIs in a classi!cation task. The task concerns di"erentiating be-
tween art experts and novices for a viewing experiment based on
calculated ROI statistics. For this classi!cation evaluation, we used
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(a) Heatmap (b) Meanshift (c) Overlap (d) Threshold (e) Gradient

Figure 8: (a) shows the "xation heatmap where red is the highest value. In (b,c,d,e), calculated regions of interest are shown

using meanshift clustering (b), overlap clustering (c), threshold based (d) and gradient based methods (e).

the data recorded in [Rosenberg 2014] at the University of Vienna. It
contains 40 subjects, where 20 participants are experts and the other
20 are novices. The used eye-tracker model was "IViewX RED 120"
with 120 Hz. The recordings where performed while the subject
was sitting in front of a 30 inch monitor with a screen resolution of
2560x1600 pixels. Each subject viewed the artwork for 2 minutes
with a head distance of 0.9 meters(3̃ feet). In the supplementary
material, all parameters used are reported.

4.1 Automatic vs. annotated statistics

The ROIs evaluated are shown in Figure 9. Where applicable, we
chose the parameters to get the best ROI representations for the face
of the woman, the painter’s head, the mask, and the chandelier. This
parameter choice was because we would expect these regions to
attract most of the gaze (as can be seen in Figure 8(a)). We identi!ed
!xations in the data with the Bayesian Mixture Model proposed
in [Tafaj et al. 2012], with a minimum duration threshold of 70ms.

In Table 1, the resulting !xation and gaze point statistics are
shown. As key metrics for the statistics, we used the amount of
gaze points (GP), the average gaze point duration (GP dur), the
amount of !xations, and the average !xation duration. All values
are averaged over all nine subjects. As apparent, the mean statistical
values between the meanshift approach and overlap clustering are
similar, except for the head ROI. Here, the shape is rather vertically
stretched in the case of overlap clustering and rather horizontally
positioned (overlapping the painting ROI) for the meanshift ap-
proach, see Figure 9(d). The same e"ect can be observed for the
gradient approach on the !xation heatmap, which also separates
the head ROI vertically (Figure 9(h)).

4.2 ROI classi"cation comparison

To compare the di"erent methods, we extracted statistics based on
the generated ROIs and trained a support vector machine (SVM)
classi!er. The evaluation was done using a 20-fold cross validation
with the SVM from Matlab 2015b. Common practice with SVM
classi!cation is to evaluate di"erent parameters and then select the
best performing result. We evaluated the kernel scale parameter
in the range 1 − 10 with a step width of 0.1. The evaluated kernels
are ’linear’, ’Gaussian’, and ’polynomial’. We evaluated each kernel
function with data standardization fromMatlab. The used statistical
values for each ROI are: time of !rst entry (SX 1), amount (SX 2), per
minute (SX 3), share (SX 4), total time (SX 5), minimal consecutive

Table 1: Averaged statistic results over all nine subjects

(mean gaze position of both eyes) for generated ROIs and an-

notated ones. The"rst column speci"es the annotated object

and in the second column, the used method. Columns three

through six contain statistics, e.g. amount of gaze points

(GP), average gaze point duration (GP dur) in ms, amount

of "xations (Fix) and average "xation duration (Fix dur) in

ms.

ROI Method GP GP dur Fix Fix dur

Face

Manually 83.3 61.2 5 455.1
Meanshift 96.3 140.4 7 357.1
Overlap 89.6 121.5 6.3 372.4
TH GP 175.2 295.3 10 549.6
TH Fix 168.4 267.8 9.7 554.8
Grad 232.7 371 14.2 489.3

Grad Fix 242.6 412.3 14.6 490.8

Head

Manually 63.1 90.3 5.3 329
Meanshift 79 219.5 5.5 454.1
Overlap 46.4 135 3.4 446.5
TH GP 175 264.1 10.8 497.7
TH Fix 156.3 203.7 10.3 454.4
Grad 196.7 298.1 12.3 481.8

Grad Fix 92.8 105.8 7.2 334.3

Mask

Manually 48.2 32 1.8 480.4
Meanshift 194.7 359.1 11.2 546
Overlap 141.7 252.7 7.8 542.5
TH GP 101 393 5.8 614.8
TH Fix 93.3 213.4 5.3 612.1
Grad 103.4 435.8 6 604.1

Grad Fix 98.1 229.3 5.5 605

Chandelier

Manually 84.4 150.2 6.3 454.2
Meanshift 112.8 368.7 6.3 477.3
Overlap 104.6 411.2 5.5 485.8
TH GP 59.7 159.3 4.1 324.7
TH Fix 62.4 157.8 4.4 328.2
Grad 61.7 171.1 4.2 336.6

Grad Fix 65.4 184.7 4.6 325.1

time (SX 6), maximal consecutive time (SX 7), and average consecu-
tive time (SX 8). Here, X stands for gaze point (G) and !xation (F ).
From those 16 statistical values, (SG1−8 + SF 1−8) we evaluated all
possible subsets of 1 − 4, and the best result for classi!cation were
selected. Each evaluation was a 20-fold cross validation to ensure
generality of the classi!er.

Table 2 shows the results for each method in combination with a
speci!c kernel. As can be seen, the highest score is achieved by the
meanshift clustering. This result is due to the overlapping clusters
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(a) Original (b) Manually (c) Meanshift (d) Overlap (e) Thresh. GP (f) Thresh. Fix (g) Grad. GP (h) Grad. Fix

Figure 9: Shows the used clusters for experiments in 4.1. (a) is the original image ,and in (b) the manually annotated ROIs with

labels are shown. In (c), the clusters found by meanshift, (d) overlap clustering, (e) threshold and (g) gradient based gaze point

heatmap ROIs, (f) threshold and (h) gradient based "xation heatmap ROIs.

(a) Original (b) Meanshift (c) Overlap (d) Thresh. GP

(e) Thresh. Fix (f) Grad. GP (g) Grad. Fix

Figure 10: Shows the used clusters for experiments in 4.2.

(a) is the original image. In (b) the clusters found by mean-

shift, (c) overlap clustering, (d) threshold, and (e) gradient

based gaze point heatmap ROIs, (f) threshold and (g) gradi-

ent based "xation heatmap ROIs.

Table 2: The classi"cation results for all ROI generation al-

gorithms with the three kernels.

Method Linear Gaussian Polynomial
Meanshift 72.5% 85% 77.5%
Overlap 75% 80% 75%

Threshold GP 75% 75% 75%
Threshold Fix 80% 77.5% 77.5%
Gradient GP 70% 72.5% 72.5%
Gradient Fix 70% 72.5% 67.5%

and the more centered localization in the image. The lowest results
are obtained by the gradient based ROIs for this scenario. Overall,
it can be seen that all methods can be used to achieve results above
chance level (50%).

5 APPLICATION

When it comes to abstract paintings, a top-down de!nition of ROIs
is di>cult, because the lack of semantically meaningful objects (e.g.
persons) depicted. Due to the interplay of pure lines and colors,
the layers of paint, and the compositional structure in the image,
saliencymaps often fail. In such cases, an automated ROI generation
can be very helpful. Jackson Pollock’s famous work "Convergence",
for example, is perceived as a very dynamic and agitated paint-
ing [Commare and Brinkmann 2016]. Yet, it is almost impossible
to predict where an observer will !xate, because the colors are

Figure 11: Wassily Kandinsky, Study for Composition VII,

1913, retrospectively dated 1910 and earlier published as

"First Abstract Watercolor" [public domain 1910] with cu-

mulative clusters (red ellipses).

smeared on the canvas with the purpose to o"er no speci!c place
to focus on. A cumulative cluster analysis allows the investigation
of those regions in the painting that were most !xated by the ob-
servers. Figure 11, shows cumulative clusters calculated by overlap
clustering, with a minimum of 120 !xations per cluster. This visual-
ization of attention depicts an average of 40 subjects who looked at
the artwork for one minute. The regions where many !xations are
accumulated have a high contrast and seem to attract the observer’s
attention.

5.1 Transitions

Another application related to ROIs are the transitions. Here sac-
cades and scanpath can be analyzed. Figure 12 shows the transitions
calculated between clusters. The !rst row shows the clusters and
transitions based on saccades and scanpath as overlay on the image.
The second row in Figure 12 shows the saccades as transitions for
all subjects and separated by group (experts and novices). In this
visualization it can be seen that both groups di"er signi!cantly.
For a better visualization of this we highlighted two regions from
Figure 12(e) and (f) in Figure 13. It can be seen that region 1 (R1) is
di"erent due to the strength di"erence of the vertical line on the left
side. It has to be noted that the width of a line indicates the global
proportion of a connection. In addition the thin horizontal line on
the left is not present for the experts. The reverse case for the thin
horizontal line on the right side. In region 2 (R2) the di"erence
is obvious. Another impressive visualization technique is shown
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(a) ROIs (b) Saccade (c) Scanpath

(d) ALL (e) Novices (f) Experts

(g) All (h) Novice (i) Expert

Figure 12: In (a) the calculated clusters are shown. (b) and (c)

show the transitions. In the second row the saccade transi-

tions are shown using a normed threshold for all, novices

and experts. The last row shows chord diagrams where the

ROIs are the outline and the saccades build the connections.

Figure 13: Shows the di#erence between experts and novices

for images (e) and (f) from Figure 12.

by the chord diagrams in Figure 12. Without !ltering the main
di"erences and similarities between experts and novices are visible.
One example is the skewed dark line only visible for novices and
the dark curve on the left side of the diagram, which is only visible
for experts. A clear similarity is the blue vertical curve, present for
both groups.

6 DISCUSSION OF ADVANTAGES AND
DISADVANTAGES

In Figure 14, some strong and weak points mentioned in table 3 for
each method are shown. (a) shows the over segmentation of the
gradient approach, which occurs if the prethreshold is set very low.
Also, the threshold approach can segment large ROIs, as shown in
Figure 14(b). This e"ect can be disadvantageous if the ROIs, which
should be separated, intermingle, as shown in Figure 14(e) (face
and mask).

(a) Grad. (b) Thre. (c) Over. (d) Mean. (e) Thre. (f) Over.

Figure 14: Exemplary weak and strong point visualizations

for the di#erent methods. (a) over segmentation, (b) large

segment ROI, (c,d) overlapping example, (d) large clusters,

(e) intermingle ROIs, and (f) "xed size.

Table 3: Advantages and disadvantages for each method.

Method characteristics

Meanshift

- four parameters
+ size adjustable
+ !nds clusters with low gaze activity
- relies on !xations
- clusters can overlap

Overlap

+ one parameter
- size !xed
+ !nds clusters with low gaze activity
- relies on !xations
+ minimum !xations can be applied

per subject
- clusters can overlap

Threshold

- three parameters
+ size adjustable
- problems !nding clusters with

low gaze activity
+ di"erent input data
+ delivers a non overlapping

segmentation

Gradient

+ one parameter
+ size adjustable
+ !nds clusters with low gaze activity
+ di"erent input data
+ delivers a non overlapping

segmentation
- tends to over segmentation
- ROIs are in close contact to each other

Figure 14(c,d) show the overlapping that may occur for the mean-
shift and overlap approach. This e"ect is due to the result of the
principle component analysis and the region approximation as el-
lipses. Another weak point of the overlap clustering is shown in
Figures 14(c) and (f), where it can be seen that the cluster size is
!xed. This e"ect is due to the !xed size of the !xation ellipses.

7 CONCLUSION

We proposed three novel methods for ROI generation. Each of these
methods reduce the con!guration amount while maintaining ROI
quality that is comparable to those achieved by state-of-the-art
approaches. The methods are statistically evaluated and compared
against each other. Afterwards, we showed and exemplary applica-
tion to abstract art and discussed the strong and weak points of all
ROI generation algorithms. Further research will inspect the gain
of automatic ROI generation for gaze based rendering [Mantiuk
et al. 2013], image compression [Privitera and Stark 1998] and user
interface evaluations [Hutchinson et al. 1989; Oh et al. 2002].
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