
Towards Intelligent Surgical
Microscopes: Surgeons’ Gaze and
Instrument Tracking

Shahram Eivazi
University of Tübingen
Perception Engineering, Sand
14, 72076 Tübingen, Germany
shahram.eivazi@mnf.uni-
tuebingen.de

Enkelejda Kasneci
University of Tübingen
Perception Engineering, Sand
14, 72076 Tübingen, Germany
enkelejda.kasneci@uni-
tuebingen.de

Wolfgang Fuhl
University of Tübingen
Perception Engineering, Sand
14, 72076 Tübingen, Germany
wolfgang.fuhl@uni-tuebingen.de

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
IUI’17 Companion, March 13-16, 2017, Limassol, Cyprus
ACM 978-1-4503-4893-5/17/03.
http://dx.doi.org/10.1145/3030024.3038269

Abstract
After many decades of research, the presence of intel-
ligent user interfaces is unquestionable in any modern
operating room (OR). For the first time, we aim to bring
proactive intelligent systems into microsurgery OR. The
first step towards an intelligent surgical microscope is to
design an activity-aware microscope. In this paper, we
present a novel system that we have built to record both
eyes and instruments movements of surgeons while oper-
ating with a surgical microscope. We present a case study
in micro-neurosurgery to show how the system monitors
the surgeon’s activities. We achieved about 1 mm accu-
racy for gaze and instrument tracking. Now real-time eco-
logically valid data can be used to design, for example, a
self-adjustable microscope.
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Introduction
To date, advances in microsurgery have enabled the de-
velopment of more complex medical procedures. Although
patients benefit from the use of new surgical microscope by
reducing recovery time, the risk of hemorrhaging, and expo-
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sure to infections, for surgeons the procedure of viewing an
anatomical structure through a high magnification increases
the complexity of operation. For example, Eivazi et al. [1,
2] showed that manual interaction with a neurosurgical mi-
croscope (positioning, zooming, and focusing) resulted to
disruptive events and hazard situations (Figure 1).

We believe, an intelligent user interface is a promising an-
swer to the increasing needs of real time computer-assisted
microsurgical systems. As such, we take the first step to-
wards intelligent surgical microscope by detecting sur-
geons’ activities during a micro-neurosurgery procedure.
In this paper, we evaluate a state-of-the-art eye and instru-
ment tracker for surgical microscope.

Figure 1: A neurosurgeon
removes hands from the operative
field to adjust the surgical
microscope.

Figure 2: On the top the workflow
of the main detection steps are
shown. Down is the result for each
detection step.

System design
We used the recent Eivazi et al. [3] surgical microscope eye
tracker. We extended their system to include two infrared
light (LED) glints (cornea reflection to the light) for head
movement compensation.

ROI(x, y,W ) ={
1, GM < LM(x, y,W )

0, otherwise

(1)

Where GM is the mean value
of the downscaled image, LM
is the local mean in the window
W and x, y is the position of
the inspected pixel.

To determine the gaze point of a subject looking through
the microscope, we first extract a Region of Interest (ROI)
in the image around the subject’s eye (Figure 2). Our algo-
rithm downscales the image and then calculates the mean
gray value. The decision whether an image pixel belongs to
the ROI is taken based on the mean value of the surround-
ing pixels as described by Equation.

Next, to automatically detect the pupil, we employed the
ElSe algorithm [6] with a validity threshold of 50. The ElSe
algorithm operates on Canny-edge filtered eye images and
and is one the best performing algorithms among the state-
of-the-art approaches in both head-mounted [6] and remote
eye-tracking eye images [5]. In order to detect glint points
we used the second step of the ElSe algorithm related to
blob detection.

For calibration, our system calculates the vector between
the pupil center and the center of both glints. A least squares
polynomial fit is calculated based on the vectors as input
variables and the calibration point positions as polynomial
result. We used a three dimensional polynomial for the left
and right eye position, resulting thus in four polynomials. To
map the correct points in the calibration phase to the cor-
rect points of the calibration grid, we used k-means cluster-
ing and standard deviation based outliers removal in each
cluster.

Instrument tracking
Due to the extensive set of different tools in microsurgery,
we developed a shape independent instrument tracking
algorithm. The main detection features for the algorithm are
the dark color of the instruments and their size. Therefore,
the algorithm starts with a color transformation of the input
image (Figure 3(a)). Equation 2 shows the formula used to
transform the red, green, blue color image in a gray scale
image.

GV (x, y) = (|∆I−(x, y)|)2 ∗ (∅I−(x, y))2 (2)

|∆I−(x, y)| is the summed difference between all three
channels as positive value. The I− denotes that we used
the inverted intensity image, meaning that high values are
set to the corresponding low value and vice versa. With ∅
we denote the average value between all three color chan-
nels (Red+Green+Blue

3 ). The power two of the inverted gray
value and the difference behaves like a high pass filter. The
result of this equation 2 can be seen in Figure 3(b).

The next step of the algorithm is to decide which pixel be-
longs to an instrument. This is done by inspecting an area
surrounding the actual position, denoted with W in equa-
tion 3. The threshold (0.1) used in Equation 3 shows 10%



of the magnitude resulting from the color transformation.
As such the result of the color transformation (equation 2)
has to be normalized to the range 0 − 1. The result of this
segmentation is shown in Figure 3(c).

BIN(x, y,W ) =

{
1,

∑W
i=−W

∑W
j=−W GV (x+i,y+j)

(2∗W+1)2 > 0.1

0, otherwise
(3)

Finally, all connected white pixels are grouped into a seg-
ment, if the amount of pixels is higher than 200. The outline
of both found segments is shown in Figure 3(a) as red line.
The estimation of the instrument pointing is done by cal-
culating the Principal Component Analysis of all segment
points. The first resulting vector is used for calculating the
intersection with the outline and this point is than used as
instrument pointing estimation. This is drawn in Figure 3(a)
as blue dot. The green dot in Figure 3(a) is manual labeled
instrument pointing position for evaluation purpose.

Evaluation

Figure 3: (a) the input image with
registered results. The red outline
is the automatic detected
instrument. The green dot is the
estimated instrument pointing
position and the blue dot is the
manual labeled instrument pointing
position. The result of the color
transform is shown in (b) and (c) is
the binary image generated out of
the color transformed.

Figure 4: The actual experiment
design. Participants were asked to
cut and suture precisely along two
inner green lines in the left and
right side of central circle.

The experiment was conducted in the neurosurgery de-
partment of Helsinki University Central Hospital. Ten neu-
rosurgeons were asked to cut precisely along a curved line
drawn on the top of a latex glove sheet (Figure 4). Three
Ps3Eye cameras with a sampling rate of 60Hz were used to
record left and right eye (eye cameras), and the microscope
field of view (scene camera).

For the purpose of this paper, we used a nine-point cali-
bration and a nine-point evaluation procedure to report our
gaze estimation accuracy (Figure 4). The evaluation proce-
dure last for less than one minute. We had to remove two
participants’ data due to lake of glint in eye images. The re-
sults can be seen in Figure 5. An error of 0.02 corresponds

to 16 pixels in the scene image which is about 1mm. Partic-
ipant 1 had the worst results as the eyelashes hide most of
the glint points and therefore reduce the amount of data for
fitting the prediction model. This was also same for Partic-
ipant 8. To solve this we aim to change the direction of eye
cameras in future work.

We evaluated the accuracy of the instrument tracking algo-
rithm by manually annotating 1000 images randomly and
compare that with our algorithm estimation. The manual la-
beling is a time consuming task and thus for the purpose of
this paper we only use one video from a suturing task. In
future work we will annotate all participants videos.

Each image has a resolution of 640x480 pixels. As evalua-
tion metric we used the relative error which is the Euclidean
distance normalized by the image diagonal (800 pixel). The
algorithm detected 1499 instruments correct and missed
64 from a total of 1541 labeled instruments. In addition, it
misclassified 8 segments as instruments. Undetected in-
struments are from images where only a small part of the
instrument was present, and therefore the region of this
segment was too small. The misclassified instruments are
from splitting up an instrument into two. This happens if the
instrument is opened and the connecting part of the tool
is not present in the image. The results of the instrument
tracking is shown in Figure 6. The average error of 0.02
correspond to 16 pixels in the scene image (i.e., 1mm).

Implications
The eye and instrument tracker presented in this work pro-
vides valuable opportunities to record detailed surgeons
activities in real-time microsurgery. We can now start to
paint a picture of various ways in which our system helps
researchers to develop computer-assistant microsurgical
systems without the need to distract surgeons from their



routine tasks.

The broad implication is to apply our system for the self-
adjustable motorized surgical microscope [7]. Such a sys-
tem offers solutions to numerous issues related to adjusting
the microscope settings manually by reducing the number
of interruptions. We envision to use gaze and location of
instruments to direct the microscope movement commands
and automatically adjust the focus and zoom level in the
target of interest.

Moreover, given the complexity of microsurgery and longitu-
dinal training, the reason for applying our system as a tool
to evaluate the surgeon performance is obvious. Recently,
we have seen growing interest in analysis of expert and
novice differences in microsurgery [4]. However, to date
none of these studies is conducted based on a surgical mi-
croscope. Thus, we propose our tracking measures to be
used as a suitable objective metric for the automatic as-
sessment of one’s level of expertise in microsurgery.

Figure 5: The relative error for the
calibration tracking. The target
image has a resolution of 640x480
and the diagonal for error
normalization is therefor 800 pixels.

Figure 6: The relative error for the
instrument tracking. The input
image has a resolution of 640x480
and the diagonal for error
normalization is therefor 800 pixels.
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