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ABSTRACT
Research in various fields including psychology, cognition, andmed-
ical science deal with eye tracking data to extract information about
the intention and cognitive state of a subject. For the extraction of
this information, the detection of eye movement types is an impor-
tant task. Modern eye tracking data is noisy and most of the state-of-
the-art algorithms are not developed for all types of eye movements
since they are still under research. We propose a novel feature for
eye movement detection, which is called histogram of oriented ve-
locities. The construction of the feature is similar to the well known
histogram of oriented gradients from computer vision. Since the de-
tector is trained using machine learning, it can always be extended
to new eye movement types. We evaluate our feature against the
state-of-the-art on publicly available data. The evaluation includes
different machine learning approaches such as support vector ma-
chines, regression trees, and k nearest neighbors. We evaluate our
feature together with the machine learning approaches for different
parameter sets. We provide a matlab script for the computation
and evaluation as well as an integration in EyeTrace which can be
downloaded at http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html.
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1 INTRODUCTION
Modern research, as well as industry, is more concerned with eye
tracking; for both, the extraction of information about the subject
is interesting. Specifically, the cognitive state, which also provides
information about attention [3, 17]. It helps to assess whether a
person is currently able to perform a task [21] and particularly
important for autonomous driving [12], as the driver should always
be prepared to take over the vehicle. In science, newways of human-
computer interaction and computer-controlled analyses for the
detection of diseases employ eye movement information. A user
is not aware of the midas touch problem. However, eye tracking
as input for the computer become a overload of constant signals,
making meaningful interaction impossible. In the field of medicine,
eye movements are used to measure and reliably detect defects
in movement and perception. Some examples are crossed eyes
(strabismus) [20], autism [2], visual field defects (glaucoma) [4, 14],
etc.

Initially in eye tracking, extraction is the detection of eye move-
ments based on the raw data. The types are generally determined
on the basis of speed and duration [6, 11]. If the subject focuses an
image area without moving his eyes, this is called fixation [6, 11].
Therefore, a low speed and the minimum duration the subject needs
to perceive the information would be relevant for detection. If the
subject moves his eye from one interesting place of the stimulus
to another, this is called saccade [6, 11]. It is a fast eye movement
where the subject has no visual perception. Meaning, the target
of the eye movement can be an overshot, making a compensating
movement necessary: Known as the post-saccadic movement [5, 22].
Aside from saccades and fixations, there are also other eye move-
ment types. For instance, smooth pursuits [11], where the subject
follows the moving stimulus with his eyes.

In [1] the authors criticize that the current state-of-the-art does
not work satisfactorily for real data. They write that the detection
of fixations and saccades works reliably only after laborious param-
eter adjustments. For novel eye movement types, such as smooth
pursuits or post saccadic movement, all approaches fail in real data
[1]. A recent study by [30] analyzed the applicability of machine
learning to the eye movements detection. They found that it out-
performs the state-of-the-art for a pointwise classification. Time
series where each sample had to be classified without seeing data
from the same subject was not evaluated. The feature vector used
was based on velocity and statistics of a small window surrounding
the inspected position in the data.

The main problems in extracting the eye movements stem from
eye tracker device variability, such as different sampling rates and
the noise in the eye-tracking data itself. Most algorithms automati-
cally adapt the parameters to the frame rate, but from [1], they do
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not perform satisfactorily. Therefore, the researcher has to adapt
the parameters, which becomes laborious. Machine learning alone
does not improve this situation, since it needs annotated data (gen-
erally done manually), but it can automatically adapt to new data if
annotations some samples are given. Together with a data genera-
tor as proposed in [9], the amount of data necessary to be manually
annotated is effectively reduced.

Another issuewith state-of-the-art approaches is the discovery of
novel eye movement types. All algorithms are designed for specific
types and cannot easily be extended to others. Generally, machine
learning approaches need examples of the new type for the training
in order to automatically adapt to it. Therefore, the usage of such a
machine learning based approach is preferable [30].

We propose a novel feature which computes an orientation his-
togram where the velocities are summed. This feature is derived
from the well-known histogram of oriented gradients [31] from
computer vision. The feature can be computed based on only pre-
vious information which makes it online applicable. For offline
analysis, it can also compute using a window surrounding the in-
spected data point.

2 RELATEDWORK
This section covers the state-of-the-art approaches. We categorized
them into three main categories. The first is the classical fixed
threshold approaches. In the second category algorithms, which
adapt their threshold based on the data are presented. Then, the ma-
chine learning approaches are explained that were already applied
to the detection of eye movement types.

2.1 Threshold based approaches
The classical approach to detect fixations and saccades is based on
the different velocities. The algorithm Identification by Velocity
Threshold (IVT) [23] uses one fixed threshold, where values below
are classified as a fixation and above as a saccade. This algorithm
is improved by using the time dimension. The aptly named Iden-
tification by Dispersion-Threshold (IDT) [23] algorithm uses the
data reduction proposed in [29] and an additional threshold for
the minimum fixation duration. Currently, the IVT is still used for
high-speed recordings, but generally does not work for noisy data.

A solution for noisy data was published with Identification by
Kalman Filter (IKF) algorithm [16]. The algorithm uses the Kalman
Filter to predict the next velocity and applies the same thresholds as
IDT on the generated signal: Meaning the data is smoothed online.
An alternative for the Kalman Filter was presented in [15] where
they used the χ2-test instead.

There exist also two clustering based approaches the F-tests
Dispersion Algorithm (FDT) [27] and the Covariance Dispersion
Algorithm (CDT) [28]. The idea behind those approaches is to test
two samples if they belong to the same type base on their surround-
ing statistics. The main disadvantage of the F-Test, which is used
in the FDT algorithm, is that it is affected by noise. Therefore, CDT
uses the covariance matrix, which is robust against noise. Both algo-
rithms need three parameters. The minimum duration of a fixation,
the variance, and either the F-Score or the covariance respectively.

2.2 Adaptive threshold-based approaches
The first adaptive approach was based on IVT. It was proposed in
[7, 8] to detect microsaccades. The velocity threshold was computed
based on the noise level in the data. In [15], the algorithm Identifica-
tion by a Minimal Spanning Tree (IMST) was proposed. It computes
a tree structure over the data samples, where the velocities are at
the leaves. Then, each parent of multiple leaves is combined with
the goal to find the tree with a minimum of branches.

For post saccadic movement, the first algorithm was proposed in
[22]. Similar to [7, 8], the velocity threshold is adapted based on the
noise in the data. An approach using the information of both eyes
was published with Binocular-Individual Threshold (BIT) [26]. This
algorithm also adapts its thresholds automatically, but the novel
enhancement was that both eyes have to perform the same eye
movement type. Therefore, it uses both eyes to check the detected
types.

The first algorithm detecting all eye movement types (e.g. fix-
ations, smooth pursuits, saccades, and post saccadic movement)
was published in [19]. It adapts the parameters automatically using
the noise of the data. Another algorithm specially designed for
high-speed eye trackers capable of detecting all types of eye move-
ments was proposed in [18]. The algorithm uses a combination of
automatically adapting thresholds and clustering to segment the
data into eye movement types. After the initial segmentation, a
refinement iteration is executed that evaluates each segment again.

2.3 Based on machine learning
The first machine learning based approach that was used to detect
eye movement types are Hidden Markov Models (HMM) [13, 15,
24, 25]. The idea behind this approach is to compute at least two
probability distributions on the data and select the type based on the
probability. It can be seen as two overlapping Gaussian distributions.
In [24], the approach was extended to detect smooth pursuits by
adding a third probability distribution. Support vector machines,
decision trees, and k nearest neighbors were used in [30] to classify
different eye movement types. The computed feature vector were
statistics surrounding the inspected data sample. In comparison,
we propose a novel feature which incorporates the velocity and
orientation of movement, which can be classified with the same
machine learning approach as proposed in [30]. Our feature can
be used in online and offline classification and will be described in
more detail in the following section.

3 METHOD
Figure 1 shows the computation of the oriented velocity histograms
based on three windows. For the first window (Window 1 in fig-
ure 1), the velocity and angle between the inspected point and each
preliminary point are computed. The angle is the bin in the his-
togram, and the absolute value of the velocity is added to this bin.
This part of the feature is usable online. In window two, similar
computations as window one are performed, but with raw data
points sampled after the inspected point. For window three, we
compute the angle and velocity between raw data points having the
same time distance from the inspected data point. The computation
for all three windows is described in algorithm 1.H is the computed
histogram for the inspected Position. Based on theWindowType ,
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Figure 1: Computation and normalization of oriented veloc-
ity histograms based on raw data.

the correct data indexes are computed in the given raw Data and
the specifiedWindow size. After the computation of the histogram,
it has to be normalized. The normalization makes it rotation invari-
ant and reduces the numerical impact of large numbers. Therefore,
the histogram is rotated so that the highest velocity is at the first
bin (zero degree). Afterwards, the histogram is divided by its sum
(H = H∑

H ). A distribution is formed and each velocity is now a
relation to the others in the histogram. The rotation and division
by the sum are commutative, which is shown in figure 2. After the
computation and normalization of the histogram, the vector for
the machine learning approaches is constructed by concatenating
all three. This construction gives one vector for each data point,
where the window size for the histogram computation is our first
parameter (p f ). For the classification to be more robust and further
incorporate the surrounding information, features from prelimi-
nary and successive data points are combined. This is the second
window and therefore a second parameter of the feature (pw). The
third and last parameter of our proposed feature is the approxima-
tion of angles (pa); where the amount of bins in the histogram is
reduced. Therefore, each bin represents a range of degrees.

Algorithm 1 Calculate histogram H

Require: Data,Window, Position,WindowType
H (∀α) = 0
for i = 1 :Window do

ifWindowType == 1 then
α = atan2(Data(Position) − Data(Position − i))
v = |Data(Position) − Data(Position − i)|

end if
ifWindowType == 2 then
α = atan2(Data(Position) − Data(Position + i))
v = |Data(Position) − Data(Position + i)|

end if
ifWindowType == 3 then
α = atan2(Data(Position − i) − Data(Position + i))
v = |Data(Position − i) − Data(Position + i)|

end if
if α < 0 then
α+ = 360◦

end if
H (α)+ = v

end for

Figure 2: Normalization of a histogram.

4 EVALUATION
For comparison, we used the state-of-the-art algorithms [24] (IBDT),
[22] (EV), [10] (I2MC), and [19] (LS). The evaluation was performed
on the publicly available data set [24] (IBDT-DATA) without mod-
ification. Meaning, each algorithm received the entire data with
errors and unannotated data samples. For the statistical evaluation,
the unannotated data samples were not taken into account. Our
proposed approach was cross-validated, which means that we re-
moved the data from one subject (four files in the data set) for the
training data. Afterward, the files from the excluded subject are
used for classification and evaluation. This cross-validation was
done for each subject was done for each subject. For the proposed
feature, we used the support vector machine, k nearest neighbors,
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and regression trees with different parameters. Our proposed fea-
ture was also evaluated with different parameters to evaluate the
robustness.

All state-of-the-art approaches are configured for offline detec-
tion. In case of IBDT, this means that the unjitter function was
enabled. Therefore, we used our feature for offline detection, which
means that we used all three windows for the feature computa-
tions. The combination of feature vectors also included vectors
from successive data points.

Named Configuration
knn5-20 k=5,10,15, or 20 (neighbors for comparison).
tree1 Maximum splits 50.
tree2 Maximum splits 50, Predictor selection with curvature.

Exact categorization.
tree3 Maximum splits 50, Predictor selection with curvature,

Exact categorization, split criterion deviance.
tree4 Maximum splits 50, Exact categorization
tree5 Maximum splits 50, Exact categorization,

split criterion deviance.
svm-lin Linear kernel function.
svm-pol Second order polyniomal as kernel function.

Table 1: Different configurations of themachine learning ap-
proaches used in the evaluation.

In table 1, all used configurations for the machine learning ap-
proaches are shown. With knn, we refer to k nearest neighbors,
with svm, the support vector machine, and with tree, the regression
trees.

Algorithm Fixation Saccade Pursuit Noise
EV 0.24738 0.299 0 1
I2MC 0.92439 0.1034 0 0
LS 0.95498 0 0.069998 0
IBDT 0.97286 0.27932 0.84794 0
knn5 0.97987 0.73688 0.91866 0.7007
knn10 0.98271 0.70756 0.91818 0.70534
knn15 0.9826 0.69907 0.91552 0.70766
knn20 0.9833 0.68287 0.91407 0.70302
tree1 0.9749 0.92207 0.88462 0.72622
tree2 0.97431 0.91898 0.88631 0.72158
tree3 0.97431 0.92978 0.88825 0.73318
tree4 0.9749 0.92207 0.88462 0.72622
tree5 0.97313 0.92824 0.88873 0.77494
svm-lin 0.95691 0.85648 0.61357 0.76334
svm-pol 0.82828 0.84414 0.9078 0.72158

Table 2: Recall for each eye movement type for all algo-
rithms. Parameters for the proposed approach are p f =
8,pw = 6,pa = 360

25 .

In tables 2 and 3, the results are shown. We used recall (TP/(TP+
FN )) and precision (TP/(TP + FP)) as metrics. Recall specifies how
effective the method is in detecting the correct type, and precision is
how often this type was misclassified. As can be seen, the algorithm

Algorithm Fixation Saccade Pursuit Noise
EV 0.7843 0.31543 0 0.012518
I2MC 0.76897 0.071334 0 0
LS 0.77184 0 0.23741 0
IBDT 0.93263 0.73577 0.76837 0
knn5 0.96352 0.91563 0.91821 0.8274
knn10 0.96151 0.93381 0.92084 0.88116
knn15 0.96035 0.9477 0.91818 0.87143
knn20 0.95912 0.95469 0.91628 0.89381
tree1 0.97095 0.90393 0.89895 0.79241
tree2 0.97 0.91334 0.89824 0.78734
tree3 0.97108 0.91705 0.89342 0.84267
tree4 0.97095 0.90393 0.89895 0.79241
tree5 0.97219 0.91553 0.88851 0.84772
svm-lin 0.91414 0.86991 0.76867 0.79661
svm-pol 0.969 0.42651 0.77419 0.2681

Table 3: Precision for each eye movement type for all al-
gorithms. Parameters for the proposed approach are p f =
8,pw = 6,pa = 360

25 .

EV [10] detects all errors in the data (table 2) but also misclassified
most of the data as errors (table 3). Our feature, in combination with
all machine learning approaches and also with all configurations,
outperforms the state-of-the-art. The regression tree performs best
in our evaluation, but is not the most reliable (table 3). KNNs seem
to have problems with saccades and noise but do not misclassify
data, as can be seen in table 3. Therefore, they are the most reliable
machine learning approach in our evaluation. The svm performed
better than the state-of-the-art, but had the lowest results out of all
machine learning approaches. The detection rate (recall) increased
using a polyniomal kernel (svm-pol), but this made the classifier
also less reliable (table 3).

Table 4 shows the best-performing machine learning approach
configurations (tree3, tree5, knn10 and knn20) for different param-
eter settings of the proposed feature. The highest impact is on the
noise detection, where the knn loses approximately 20% and the
regression trees about 10%. The detection accuracy for saccades is
also decreased by approximately 30% for the knns. In contrast, the
regression trees are still capable of detecting the saccades, and are
even better for approximately 1% for some parameters. Fixations
and smooth pursuits are detected equally to the base configuration:
Due to the orientation of our feature. Usually, they are difficult to
separate based on the velocity, but they differ in the orientation
of the movement. This is why with our feature, which includes
the orientation between two gaze points, it is possible to separate
them. For the saccades and noise, it is difficult for both machine
learning approaches to separate them, since with the low sampling
rate of the data set (30 Hz), both are usually one sample long. For
higher sampling rates, this changes since saccades and blinks (one
cause of noise) are longer and contain therefore relative movement
information.
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Parameter Algorithm Fixation Saccade Pursuit Noise
p f = 8 knn10 0.98089 0.71682 0.91624 0.7007
pw = 6 knn20 0.98143 0.68904 0.91045 0.68213
pa = 360

15 tree3 0.97474 0.92824 0.89042 0.71694
tree5 0.97377 0.93056 0.88921 0.76798

p f = 8 knn10 0.98185 0.74074 0.92421 0.7007
pw = 6 knn20 0.98143 0.71682 0.92059 0.70302
pa = 360

35 tree3 0.97522 0.9267 0.88849 0.78654
tree5 0.97532 0.92824 0.88969 0.78654

p f = 8 knn10 0.98169 0.73302 0.92469 0.70534
pw = 6 knn20 0.98148 0.70833 0.91914 0.70766
pa = 360

45 tree3 0.97479 0.92824 0.89331 0.7587
tree5 0.97452 0.93056 0.89042 0.7703

p f = 8 knn10 0.98303 0.73534 0.91576 0.7007
pw = 4 knn20 0.98469 0.70833 0.90852 0.68445
pa = 360

25 tree3 0.97324 0.9267 0.88704 0.7587
tree5 0.97227 0.93133 0.88559 0.77262

p f = 8 knn10 0.98218 0.68904 0.92035 0.7123
pw = 8 knn20 0.98223 0.65586 0.91673 0.68677
pa = 360

25 tree3 0.97639 0.91821 0.89331 0.7355
tree5 0.97752 0.92438 0.89573 0.7587

p f = 6 knn10 0.98303 0.73534 0.91673 0.70766
pw = 6 knn20 0.98464 0.70293 0.91335 0.69374
pa = 360

25 tree3 0.97265 0.92438 0.90152 0.74478
tree5 0.97233 0.92284 0.90176 0.7819

p f = 6 knn10 0.98394 0.7608 0.91383 0.6891
pw = 4 knn20 0.98565 0.72994 0.90997 0.67749
pa = 360

25 tree3 0.97179 0.92824 0.88559 0.76334
tree5 0.97222 0.92593 0.88438 0.78886

p f = 10 knn10 0.98078 0.69444 0.91624 0.7123
pw = 6 knn20 0.98164 0.66435 0.91166 0.70302
pa = 360

25 tree3 0.97425 0.91821 0.8909 0.73318
tree5 0.97425 0.9267 0.89476 0.77262

p f = 10 knn10 0.98014 0.66821 0.91624 0.70998
pw = 8 knn20 0.981 0.64352 0.90997 0.68677
pa = 360

25 tree3 0.97179 0.91512 0.8909 0.71694
tree5 0.97372 0.92824 0.8909 0.76566

Table 4: Recall for knn and regression trees using different
parameter settings for feature computation. The first row
shows the used parameters for the evaluation.

5 CONCLUSION
We proposed a novel feature that can be used for eye movement
detection in combination with machine learning approaches. It out-
performs the state-of-the-art and can be used for online and offline
detection. We evaluated different machine learning approaches
with different configurations. All outperformed the state-of-the-art.
In addition, our evaluation included different parameter sets for our
feature computation. We will provide a Matlab script for feature
computation and an integration into EyeTrace which both can be
downloaded at http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html.
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