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ABSTRACT
Scanpath classification can offer insight into the visual strategies
of groups such as experts and novices. We propose to use random
ferns in combination with saccade angle successions to compare
scanpaths. One advantage of our method is that it does not require
areas of interest to be computed or annotated. The conditional
distribution in random ferns additionally allows for learning angle
successions, which do not have to be entirely present in a scanpath.
We evaluated our approach on two publicly available datasets and
improved the classification accuracy by ≈ 10 and ≈ 20 percent.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability;
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1 INTRODUCTION
The way we direct our eyes at can tell us much more than what
we are looking at. Naturally, gaze behavior reflects the interplay
of cognitive as well as sensory processes. Consequently, patterns
of fixations and saccades, known as the scanpath, can offer insight
into the order and nature of information processing. Over multiple
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domains, eye tracking studies have identified patterns in gaze be-
havior. The literature found that these patterns could characterize
specific subject groups (e.g., novices and experts), or experimental
settings, such as the task assigned to a subject.

For instance in art, eye scanning differences have been found
between professional and naive art viewers for both realistic and
abstract art [Zangemeister et al. 1995]. Also, top-down beliefs as
well as bottom-up feature attention can affect the gaze behavior on
artworks [Locher et al. 2015; Massaro et al. 2012].

Additionally in the medical domain, scanpath differences can
reflect the professional as well as the treatment aspects. Scanpath
differences between novices and experts have been found in mi-
croneurosurgeons [Eivazi et al. 2012; Kübler et al. 2015a] as well
as radiologists [Manning et al. 2006; Van der Gijp et al. 2017]. It
was also found that dental students who received a specialized
radiography training course could be accurately identified from
their scanpaths [Castner et al. 2018]. On the treatment aspect, gaze
behavior differences from healthy controls have been measured
in both patients suffering from schizophrenia [Loughland et al.
2002] and autism spectrum disorder [Horley et al. 2004; Pelphrey
et al. 2002]. Hence, scanpaths can likely be employed towards more
refined training, diagnostic, and treatment protocols.

In driving, scanpaths have been used to robustly determine safe
or unsafe driving in people with visual field defects [Kasneci et al.
2014; Kübler et al. 2015b]. In addition, they can be used in driver
assistance systems to indicate the take-over readiness [Braunagel
et al. 2017] or cognitive load [Palinko et al. 2010], and fatigue [Ji
et al. 2004].

Interestingly, most of the studies mentioned above concentrate
on finding statistically significant differences in individual scan-
path metrics. Therefore, there is a large and ever growing body of
scanpath comparison and classificationmethodology: Ranging from
simple statistics to state-of-the-art machine learning (see [Anderson
et al. 2015] for a review).

2 RELATEDWORKS
In 1935, Buswell hypothesized that "the mental set obtained by
the directions given [...] obviously influences the characteristics
of the perceptual process" [1935]. A finding followed up in late
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(a) Stimulus (b) Example Saccades of one participant (c) Similar patterns

Figure 1: (a) the stimulus image, Tintoretto’s "Last Supper", and (b) saccades of one subject in blue. (c) similar saccade patterns
(in green) found in another participant are shown overlaying the subject in (b)’s scanpath.

sixties/early seventies by Yarbus [1967] and Noton & Stark [1971]
when they measured gaze pattern differences as an effect of con-
textual information. Here, the term scanpath was initially used,
and the method for comparing multiple scanpaths was executed
manually: Using semantic understanding of the image. Even today,
some aspects of manual scanpath comparison are still used; such
as AOIs hand-labeled by the experimenter, which can be tedious,
task dependent, and subjective [Jarodzka et al. 2010].

Only in the nineties were automated metrics initially proposed
[Brandt and Stark 1997]. Since then, a wide array of methodol-
ogy for automated scanpath comparison has evolved [Anderson
et al. 2015]. More recently, machine-learning based approaches
with impressive results have emerged [Crabb et al. 2014; French
et al. 2017; Hoppe et al. 2018; Kübler et al. 2017; Zhang and Le Meur
2018]. In general, they can handle the task of distinguishing rele-
vant eye movement patterns from an overall high level of noise.
However, how the eye movement trajectories should be encoded
to enable efficient machine learning is still an area of open debate.
While some algorithms rely heavily on a massive agglomeration of
time-aggregated features or complete-sequence alignment [Burch
et al. 2018; Cristino et al. 2010; Dewhurst et al. 2018; Hoppe et al.
2018], the use of gaze transitions (i.e., the shift of gaze between
two targets) has become one of the most popular features. This
strategy is notable, as a chain of cognitive associations between
gaze targets can be modeled this way. Also, while Hidden Markov
Models (HMMs) are still the most common approach [Coutrot et al.
2018; Ellis and Stark 1986; Hacisalihzade et al. 1992], other methods
have emerged that extend these patterns in length to span multiple
subsequent fixations and saccades. Finding patterns in such length-
ier sequences is of special importance, as the specificity of these
patterns for a specific task or subject group is likely increased and,
therefore, they are highly useful for the classification task [Kübler
et al. 2017].

3 METHOD
We analyzed the patterns that represent the angles between succes-
sive saccades. An example is shown in Figure 1, where similar angle
patterns are a subsequence, as apparent over multiple participants.
Thus, our algorithm searches for repetitive patterns over subjects.
These repetitions are then used to classify the scanpath into a cate-
gory. Since such patterns are subject to large variations between
individuals and even between repeated trials–not to mention eye

tracker inaccuracies–comparing angular patterns requires a slack
range in which two angles are considered similar. Therefore, each
angle in a pattern has an assigned and variable angular tolerance
range. By employing ferns [Bosch et al. 2007; Ozuysal et al. 2010],
we can allow assigning probability values to each permutation of
such a pattern, which makes it possible to correctly classify incom-
plete patterns. In the following section, each step of our approach
is described in detail.

3.1 Saccade sequence angles

Figure 2: Different options for calculating angles between
subsequent saccades. On the left, the absolute, counter-
clockwise angle (red part of a circle) to the positive x-axis
(green dashed line) is shown. The right side shows the rela-
tive, counter-clockwise angle between subsequent saccades.

Figure 2 shows two possible approaches to compute the angles
between saccades from a sequence of saccades. The major differ-
ence between these approaches is whether the angles are calculated
relative to an absolute reference frame or relative to the preced-
ing saccade. Both can likely be valid approaches. The latter adds
invariance to rotations of the pattern, which could be attractive for
data from head-mounted eye-trackers. Whereas the former is able
to distinguish between rotated representations of the pattern.

In our evaluation, both approaches performed almost equally
for both data sets evaluated. Since the angle between saccades
is invariant to rotation of the eye tracker–a challenge especially
with head-mounted eye trackers–we believe it is the more robust
approach. However, our implementation provides both computation
models. In the following, these angles will be denoted as αi,f i , with
the indices i and f i denoting the index and the assigned fern index
(i.e., the position index in the fern where it is used), respectively.

Figure 3 shows the angular tolerance ranges in which saccades
would be considered similar to the current pattern. In our imple-
mentation, those tolerances can be in the range of 0° to 359°. Thus, a
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Figure 3: Angular ranges (teal part of a circle) for saccade
successions.

feature that characterizes a pattern would consist of an angle αi,f i
and a similarity range ρi,f i denoted as (α , ρ)i,f i . Then, a feature
vector Ff i is the concatenation of one or more of these tuples.

For a saccade sequence to match a specific pattern/feature vector,
all consecutive angles between the saccades must meet the angular
range criteria defined by the feature tuples.

3.2 Random ferns
The definition of a fern [Bosch et al. 2007; Ozuysal et al. 2010] is a
group of conditionally dependent features. Each feature evaluates
either to 1 or zero. The combination of multiple ferns is done under
the assumption that each group of features is conditionally inde-
pendent. Figure 4 shows three features (Ff i ) wherein each feature

Figure 4: A set of features in which the feature length is
two and the second index specifies the position in the fern
(fi). The first index (i) specifies the sequence of conditions
((α , ρ)i,f i ).

consists of two angle - range tuples. The first feature is assigned
to the index one (the left side of Figure 4), the central feature to
index two, and the last feature (the right side of Figure 4) to index
three. In a fern [Bosch et al. 2007; Ozuysal et al. 2010], this set of
features is used to compute an index to a conditional distribution
p(T |F ), with F denoting the evaluated features and T is the target
label for classification. Therefore, each class receives a probability
based on the occurrence of features within the class. Figure 5 shows
the evaluation process of a fern on three different input sequences.
These features are evaluated by the fern and matched to the input
scanpaths. In the case that a feature is successfully matched, it is
encoded by a 1, otherwise by a 0 at the respective fern index. This
step builds a binary-encoded number, which is used as an index to
a conditional distribution (indicated by the black bars in figure 5).
This probability relates directly to the probability that the seen
scanpath can be assigned to a specific output label. To distinguish
between several class labels, multiple probability distributions need
to be learned. An example of multi-class classification is shown in
Figure 6, with three classes distinguished based on their assigned
relative probabilities. The upper scanpath (in green) has the highest
probability for class 2, the central scanpath ( in red) is assigned
to class 1, and the bottom scanpath (in blue) receives the highest
probability for class 3. Learning these probability distributions is
a similar process to evaluating them. Where the features on the

Figure 5: Three different scanpaths are evaluated based on
three features Ff i . The result of this evaluation yields the
index in the probability distribution.

Figure 6: Class label selection based onmultiple conditional
probability distributions.

training data set are evaluated, and the corresponding entry in
the histogram (later transformed to the probability distribution)
is increased. After learning, the histogram bins are normalized to
form a probability distribution. A uniform distribution must be
assumed for initialization, since several of the ferns in combination
serve as classifiers and the probabilities of the individual ferns are
multiplied. If this step is not performed, zero probabilities can occur,
which can influence the classification negatively.

3.3 Training
The training of ferns consists of three parts, namely feature selec-
tion, distribution training, and fern combination selection. Due to
the massive amount of possible features, brute-force for all possible
patterns is only applicable for short feature length. Therefore, we
only compute features up to a length of three and only inspect
angle successions that occur in the training data scanpaths.

First, we extract all possible angles of length one to three. Since
a feature consists of tuples ((α , ρ)i,f i ), we have to assign each angle
(αi,f i ) a range (ρi,f i ). This assignment is done by inspecting all
possible ranges per angle and evaluating those on the training
dataset with a step width of one degree: Running in polynomial
time (360lenдth ). We define this evaluation as the feature score.

FSj = |
∑

(α , ρ)(Tj ) == 0 −
∑

(α , ρ)(Tj ) == 1| (1)
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For each feature and each class (j), this score can be computed using
Equation 1. Features for one specific class that result in a score that
deviates by 10% from the average score of all classes were added
to the feature set of that class. Afterward, the features are sorted
based on this score to select the best features directly.

The second part of our training is the selection of a set of ferns.
The conditional distribution size per fern is equal to the number
of features, and the amount of distributions is equal to the class
labels in the training set. Therefore, if seven classes have to be
distinguished, each distribution has a size of 2F , with F denoting
the amount of used features, and each fern uses seven of these
distributions. The 2 is due to each feature evaluating as either one
or zero. Afterward, we select one feature per class from the fea-
ture pool and add it to the feature set of the fern. The conditional
distribution is filled with a uniform distribution and trained on
the training dataset based on the occurrence of the different com-
binations statistically. Since this step does not necessarily result
in an optimal feature combination, we evaluate all possible and
select the best. This process can also be done in polynomial time
(f eaturepoolsize)Classlabels , since the class labels are fixed. In our
implementation, we compute this step using threads to reduce the
training time.

The third and last step of the training is the selection of a com-
bination of multiple ferns. The final classification is performed by
multiplication of all fern probabilities and selection of the highest
ranking probability as the final label. Since we have already evalu-
ated all possible combinations of features per fern, which results in
a fern pool to directly select from. Here, we inspect the probability
per class, which our existing detector provides in comparison to the
possible new fern in the detector. For the calculation, the existing
detector consisting of several ferns is evaluated on the training data
as well as the possible new fern. Afterward, the average difference
between both results is computed and the fern with the highest dif-
ference is selected as the new member of the detector. This process
starts with the selection of the best fern and ends after ten ferns
are selected. The amount of ten ferns was selected empirically and
can be changed in our implementation.

4 EVALUATION
For the evaluation and comparison to the state-of-the-art, we used
two publicly available data sets. The first data set is the task classi-
fication in the second experiment from the Defending Yarbus (DY)
paper [Borji and Itti 2014]. It contains seven tasks and 45 record-
ings for each of them: Data is provided as fixation coordinates. The
second data set is the task classification from Reconsidering Yarbus
(RY) paper [Greene et al. 2012], in which four tasks were distin-
guished and ≈ 80 recordings are provided per task: Data is provided
as gaze points. Since our algorithm needs fixations as input, we
computed the mean velocity for the gaze points per trial and used
this value as a threshold to separate fixations and saccades. This
method is not an accurate event detection, but was performed to
make the results easily reproducible without relying on algorithm
and parameter choices for event detection. As our focus is identi-
fying each saccade and not about e.g. accurate fixation duration,
such a coarse–but simple–event detection is sufficient for this ap-
plication. For each data set, we performed ten fold cross-validation;

Table 1: The classification accuracy in % of our approach
in comparison to the state-of-the-art for task classification.
ANG−X andANG−V specify the angle computationmodels
to the x-axis or between two saccades respectively.

Datasets
Method DY (7 Tasks) RY (4 Tasks)
Chance level 14.3 25.0
FernANG−X 43.57 54.06
FernANG−V 41.42 54.37
[Kübler et al. 2017] 24.2 34.4
[Borji and Itti 2014] 28.71 34.1
[Greene et al. 2012] - 27.1
[Kanan et al. 2014] - 33.0

each fold contained an equal amount of recordings for each task.
Therefore, each fold in DY dataset contained four recordings of each
task and seven recordings for RY dataset. The non-integer divisible
share was added to the training data. Table 1 shows our results
in comparison to the state-of-the-art. As evident, our approach
outperforms the competitor algorithms. Moreover, our algorithm
does not require areas of interest (AOIs). This limitation to scanpath
algorithms was already treated in [Kübler et al. 2017], in which
the AOIs are computed based on the data. Since both angle calcu-
lation functions deliver approximately the same results, it is not
possible to make a statement regarding the robustness based on
this evaluation (Table 1); further research has to be conducted to
evaluate this aspect. One disadvantage of our algorithm is the long
training time due to the polynomial complexity of selecting suited
patterns. However, it can be solved by selecting only a subset of
the training data. Another issue is that long recordings will require
a windowing function.

5 CONCLUSION
We proposed a novel algorithm for scanpath classification. It uses
angle and angle-range tuples as features and assigns probabilities
based on conditional distributions. Our algorithm outperformed
the state-of-the-art on two publicly available datasets. However,
the disadvantages of our algorithm are the polynomial complexity
of the training and therefore, the high computational demand.

Since our approach is independent of AOIs and the features
are based on angles that are calculated between saccades, the next
planned step is to create a data set using head-mounted eye trackers.
This data would further elaborate and verify that angle computation
method between saccades and whether rotation invariance is of
importance for data including head movements. In addition, we
intend to evaluate optimal time segment sizes based on eye tracker
frame rates as well as for different tasks,e.g., expert and novices,
driver state detection, etc.
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