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ABSTRACT
Eye movements hold information about human perception, inten-
tion, and cognitive state. Various algorithms have been proposed
to identify and distinguish eye movements, particularly fixations,
saccades, and smooth pursuits. A major drawback of existing algo-
rithms is that they rely on accurate and constant sampling rates,
error free recordings, and impend straightforward adaptation to
new movements, such as microsaccades, since they are designed
for certain eye movement detection. We propose a novel rule-based
machine learning approach to create detectors on annotated or
simulated data. It is capable of learning diverse types of eye move-
ments as well as automatically detecting pupil detection errors in
the raw gaze data. Additionally, our approach is capable of using
any sampling rate, even with fluctuations. Our approach consists
of learning several interdependent thresholds and previous type
classifications and combines them into sets of detectors automati-
cally. We evaluated our approach against the state-of-the-art algo-
rithms on publicly available datasets. Our approach is integrated
in the newest version of EyeTrace which can be downloaded at
http://www.ti.uni-tuebingen.de/Eyetrace.1751.0.html.
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1 INTRODUCTION
Eye movements are a valuable resource to extract a diversity of in-
formation about a subject: Mainly, intentions and cognitive states [2,
17], such as the workload [21] and attention of a person. This in-
formation allows systems to warn humans if they are no longer
capable of proper task performance like driving [12] or surgeries [4].
Additionally, eye movements aid in detecting eye diseases [20].

Initially, these detections and classifications begin with the ex-
traction of the eye movements. This process consists of separating
the raw gaze signal into segments which belong to different types
of eye movements. These types hold information of physical con-
straints of the subject. For example, visual perception during a
saccade is severely limited [14, 25]. Another issue with saccades is
that the cornea is deformed during this type of eye movement and
influences the shape of the pupil captured in video-based eye track-
ing [11, 22, 29], and therefore, influences the measured velocity.
However, for smooth pursuit, where the subject follows a moving
object, the perception works without restrictions [24]. Blinking
is an eye movement which keeps the eye moist and protects it
against particles. Since this is not a movement of the eyeball, the
perception is limited in the process of closing and opening [34].
The frequency and duration of this type of movement also hold
valuable information about the subject’s cognitive state but is out
of the scope of this paper [28]. In modern high-speed eye trackers,
post-saccadic oscillations are a novel type of eye movement, which
most of the state-of-the-art algorithms do not detect. It is a saccadic
movement that corrects for the overshoot of the preliminary sac-
cade [23]. In contrast to the saccade, the subject can perceive but
with distortions [29].

In order to effectively detect eye movements, extraction has to
be accurate and robust against noise. Modern algorithms apply
different dispersion, velocity, or acceleration thresholds and val-
idate the detected eye movement type based on the duration as
well as dispersion. In [1], it was found that all approaches work
unsatisfactory. Additionally, all the approaches need time to adjust
the parameters, which have to be adjusted between subjects and
experiments. There are several reasons why these algorithms work
inadequately. The first is that all rely on the error detection of the
used eye-tracking device for recording. Since this is not true for
eye tracking in the wild, most methods fail because of invalid eye
positions in the raw gaze data. This reliance also has an impact on
the preprocessing of data, since parameters for smoothing or the
method to compute eye movement velocities has to be changed.
Another issue is that video cameras that are used to record the
eyes in modern eye trackers do not have a stable recording rate. It
can change slightly or, based on the setup, frames can be dropped
because the hardware does not have enough resources available to
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store or process the next frame. Even more reasons can be found in
[3, 5].

For the parameters of eye movement detection algorithms, dif-
ferent thresholds are proposed in the literature [10]. It is difficult
to transfer them to eye tracking in real environments because they
are determined under laboratory conditions and need accurate and
noise-free recordings. As previously mentioned, not all noise is an-
notated by the eye tracker and the sampling rate varies, especially
if there are reflections on glasses or the lighting conditions change.
For these cases, the detection algorithm cannot track the pupil any-
more and has to start a re-detection that consumes more resources.
Therefore, the detection of eye movements is still a challenging and
important task.

The choice of the algorithm and the determination of the param-
eters are currently up to the researcher. Generally, the tedious and
difficult task of using an algorithm is to adjust its parameters. The
researcher can only use literature values or manually annotate the
data to check the selected parameters. Unfortunately, this process
theoretically has to be repeated several times because the quality
of the data often varies between subjects and between different
experiments. In the case of new eye movements with no available
algorithm, the researcher is on his own and there is no other choice
but to annotate them manually. The proposed approach is based
on machine learning where errors in the data and also new eye
movements can be trained and recognized. The simple construction
of our detectors and the easy understanding of the rules can also
help the researcher extract characteristic properties of new eye
movements.

2 RELATEDWORK
The most prominent fixation and saccade detection algorithm is
Identification by Dispersion-Threshold (IDT) [26]. It uses the data
reduction proposed in [35]. The algorithm uses two thresholds,
one is for the maximum fixation dispersion and the other for the
minimum fixation duration. Another algorithm that is simple to
implement is the Identification by Velocity Threshold (IVT) [26],
where each sample below a chosen velocity threshold is classified as
fixation and above as saccade. It is mostly applicable for high-speed
recordings. Based on the IVT algorithm, a self-adaptive approach
was proposed in [6, 7], where it was developed to detect microsac-
cades. In that approach, the velocity threshold is automatically
adapted to the noise level in the eye-tracking data. An algorithm
specially designed to cope with noisy data is the Identification
by Kalman Filter (IKF) algorithm [16]. It uses the Kalman filter
to predict the next sample value based on previous values. There-
fore, it interpolates the data in an online fashion. For classification,
two thresholds are used: one for the predicted value (velocity or
distance) and one for the minimum fixation duration. Similar to
this algorithm, an implementation using the χ2-test instead of the
Kalman filter was proposed in [15]. In [33], the Covariance Disper-
sion Algorithm (CDT) was proposed. It is an improvement of the
F-tests dispersion algorithm (FDT) [32]. The F-test measures if two
data samples belong to the same class and, due to the assumption
that the data follows normal distributions, it is sensitive to noise.
An improvement by the covariance matrix is introduced to cope
with this problem. The algorithm needs three thresholds, one for

the variance, one for the covariance, and a third threshold for the
minimum duration. The identification by a Minimal Spanning Tree
(IMST) [15] creates a tree upon the data, where the samples rep-
resent the leafs. The goal is to select all samples with a minimum
of branches given a connected graph (the data). Hidden Markov
Models (HMM) have been proposed in [13, 15, 27, 30] to separate
fixations from saccades and even to detect smooth pursuits. The
HMM consists of at least two states (fixation and saccade). For each
new velocity sample, the model decides whether it belongs to the
current state (classification) or if a state transition has occurred. Af-
ter each sample, the model is updated to adapt to the data. The first
algorithm able to detect post saccadic movements was proposed
in [23]. Based on the noise in the data, the algorithm also adapts
its velocity thresholds. The Binocular-Individual Threshold (BIT)
algorithm [31] was also designed to detect small saccades in noisy
data. Therefore, it applies its thresholds to the data of both eyes,
following the ideas that both eyes have to perform the same move-
ment. This algorithm also adapts its thresholds automatically. An
algorithm detecting fixations, saccades, post saccadic movement,
and smooth pursuits was proposed in [19]. This algorithm adapts
the parameters automatically and is the first method capable of
detecting all these eye movements at the same time. For high-speed
eye-tracking data, an algorithm for fixation, saccade, and smooth
pursuit detection was proposed in [18]. The algorithm uses three
stages to classify the data, starting with a preliminary segmenta-
tion and then evaluating each segment again, followed by the final
classification.

3 METHOD
In state-of-the-art algorithms there are thresholds for upper and
lower limits as well as for ranges that need to de determined. The
main disadvantage is that those thresholds are difficult to adjust
to new data, where the sampling rate is not constant or no time
information is given [1]. Another issue with those thresholds is
that, for some data, they work very well while for more noisy
data they do not work at all or need intensive preprocessing (such
as smoothing filters and outliers detection). This preprocessing
also need parameters to be adjusted like the smoothing factor, the
window size, and the influence of each position in the window. Our
idea is to use the traditional thresholding and smoothing approach,
but to adapt the algorithm to the data automatically and also select
the best parameters for the smoothing. The algorithm creation and
the data smoothing can be selected for offline or online usage of
the detector.

(1) Generate data Manipulation
(a) Repeat until undetected types<ϵ1

(i) Repeat until error<ϵ2 or iterations==max iterations
(ii) Select best rule for each Type
(iii) Add rule to current Detector per Type

(b) Evaluate Detectors
(c) Add best Detector to Classificator
(d) Detect types on training set with Classificator

(2) Classificator training finished
The enumeration 2 is the work flow of the training algorithm. It
first starts by generating all possible data Manipulations. In our
implementation, these are the velocities computed in different time
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Figure 1: Exemplary training of a detector. The outer loop (left to right) collects detectors andprovides the current classification
results. The inner loop selects combinations of rules until the breaking conditions are met.

windows. We also provide parameterizable functions for the accel-
eration, angles, and averaging, where x, y or both values can be
taken into account. For the evaluation, we only used the window
based velocity function.

The second loop (i) generates Detectors for each eye movement
type (T). It starts by evaluating each Manipulated data stream and
selects the best overall rule on them. The possible Rules to learn
are Mi (S) < TH , Mi (S) > TH andMi (S) == TYPE. Mi is the data
Manipulation with index i. S is the displacement (the Shift) to the
inspected position, TH , which is a value for comparison and TYPE
is a detected eye movement type (not the annotated one).

In the first iteration we select the Rule that maximizes the dis-
tance between correct(true positive TP ) and misclassified (false
positive FP ) types. This is done because one rule is not capable of
being a robust detector, but sets the limit for the overall capability
of the detector to classify the data correctly. Therefore, it is allowed
to misclassify data if it classifies more data correctly.

argmax
i, j,k

TP(D(Mi , Sj ,Rk )) − FP(D(Mi , Sj ,Rk )) (1)

Equation 1 formulates the maximization rule where i is the se-
lected Manipulated data stream, j the displacement to the inspected
position, and k the selected rule.

Each consecutive iteration adds a Rule which minimizes the
error of the Detector because the first iteration was allowed to
misclassify.

argmin
i, j,k

FP(Dt )|TP(Dt ) > TP(Dt−1) ∗ (1 −
ED

2
) (2)

Equation 1 formulates the minimization where t is the iteration
and ED = F P (Dt )

F P (Dt−1)
is a factor computed based on the reduction

of the error. Meaning, if the misclassification was reduced by 10%,
the detector would need to still classify 95% of the previous result
correctly.

This process is repeated until the misclassification falls below a
predefined ϵ1 or the maximal number of iterations is reached. In our
implementation, we set ϵ1 = 0.001 and the maximum of iterations
to five.

After all detectors are created, we select the Detector with the
lowest misclassification rate. If there exist multiple, the one with
the highest detection rate is selected. This detector is added to the
Classificator. Afterward, this Classificator is used to detect and store
eye movement types in the training data. This is necessary for rule
three (Mi (S) == TYPE) to be applicable and for the termination
criterion (a). Here, the idea is to apply the learned detectors con-
secutively so that subsequent ones can use the results of previous
detectors. Meaning, they are not allowed to override results from
previous detectors. In figure 1, an example of the training proce-
dure is shown. In the first iteration, detectors for type one and two
are searched for since both still exist training data. In the inner
loop, rules which fulfill equation 1 are searched for. Here, the rule
where a previous set type is searched (Mi (S) == TYPE) cannot
apply because no type was set so far. For the type one detector,
one rule is enough and the result cannot be improved further since
the false positive rate is zero. The type two detector, in contrast,
produces one misclassification with the first selected rule but has
a true positive rate of one hundred percent. With equation 2, this
error is minimized to zero by selecting an additional rule. Since both
detectors now have the same false positive rate, the one with the
highest true positive rate is selected, which is the detector for type
two. This finishes the first iteration and starts the detection and
next iteration of the outer loop. In this iteration, all eye movements
of type two are already classified, which means that no detector
has to be trained for this. The inner loop selects two rules, where
the second rule uses information from previous detection results.
In this case, at position +4 (four timestamps in the future), it means
that it is not an online classifier. For an online classificator, positive
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shifts have to be forbidden, which can be specified at the beginning
of the training.

Figure 2: The consecutive detection of three detectors and
two manipulated data streams. First detector one is applied
and afterwards two and three. Detector two and three can
use the information of the previous detections.

The final classificator consists of multiple detectors for different
types. In figure 2 an detection example is shown. The first classifica-
tion is performed by detector one (green) which detects nearly all
type one eye movements. Afterward, detector two (blue) is applied,
which also relies on the results of the first detector (first rule). This
detector detects all type two eye movements. The final detector
three (pink) sets the last type one eye movement type and also
relies on the detections from detector one. Since all detectors of the
classificator rely only on the current or past information, it is an
online classificator.

4 EVALUATION
For comparison, we used the state-of-the-art algorithms from [27]
(IBDT), [23] (EV), [9] (I2MC), and [19] (LS). We evaluated all al-
gorithms on the publicly available data set from [27] (DS-IBDT)
and [1] (DS-AND). For the data set from [1], we only used the an-
notations from the annotator MN. Since we are interested in the
evaluation of real data, we did not remove noise nor unannotated
data. Each recording was given to the algorithm without modifica-
tion. For the final analysis of the detection rates, we only considered
the annotated data points. Meaning the detected eye movement
type for unannotated data points was ignored and has no influence
on the resulting statistics.

For our proposed approach, we considered two experiments one
with only three example files given for training and onewhere it was
trained on the entire remaining data (without files from the same
subject) together with simulated data using the generator from [8].

Thus, we made a cross-validation per annotated file where also data
from the same subject was excluded for training. We performed
those two evaluations to show the impact of the training data to
our method, which is also a limiting factor for the applicability of
machine learning. For the proposed approach, the training uses all
remaining data and simulated data with a Power8 server. This was
due to large amounts of RAM is necessary to hold all of the data
stream manipulations. In addition, we evaluated these data streams
in parallel to compute the optimizations in equation 1 and 2.

All of the evaluated state-of-the-art algorithms are configured for
offline use. Since all algorithms except IBDT are for offline use only,
this means that we did not deactivate the data smoothing, which
makes it only applicable offline. For a fair comparison, the trained
classifiers also consider subsequent detections and velocities in the
data. Therefore, the trained detectors are only applicable offline
too.

Algorithm Limitations
EV Cannot detect smooth pursuits.
IBDT Cannot detect Errors and post saccadic movement.

Problems with error in the data.
LS Cannot detect post saccadic movement.
I2MC Cannot detect Errors and post saccadic movement.

Problems if smooth pursuits are present.
Table 1: Overview of the limitations of the state of the art
algorithms.

Preliminary stated limitations by the authors of the state of
the art algorithms are shown in table 1. As can be seen, not all
algorithms can detect all the evaluated types. Therefore, we decided
two use two statistics to determine the quality of the algorithms.
The first statistic is recall (TP/(TP + FN )), which is not influenced
by the number of different types that could be incorrectly classified
as another type (for example a smooth pursuit as a fixation). Recall
specifies how much of one class is correctly classified. The second
statistic is precision (TP/(TP + FP)). This value is influenced by
the number of different types, for instance, a smooth pursuit that is
classified as a fixation counts to the false positives (FP). Precision
is used to evaluate how reliable the detection per type is.

Data Alg. Recall
Fixation Saccade Pursuit PSM

D
S-
A
N
D

EV 0.61 0.73 0 0.02
IBDT 0.78 0.44 0.61 0
LS 0.92 0.90 0.16 0
I2MC 0.02 0.96 0 0

D
S-
IB
D
T

EV 0.32 0.35 0 -
IBDT 0.98 0.56 0.84 -
LS 0.95 0 0.07 -
I2MC 0.92 0.1 0 -

Table 2: Recall for each eye movement type without errors
in the data. PSM stands for post saccadic movement.

Table 2 shows the recall of all state-of-the-art algorithms on the
data where all errors are removed from the data (for IBDT they
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where marked with setting the position to zero). The rest of the data
with unannotated samples was given as input to the algorithms.
The IBDT does not perform as good as in the original paper, which
is because we did not use the provided data class which smooths
out errors by replacing them with previously recorded positions. It
was not used to keep the evaluation equal between all algorithms.

Data Alg. Recall
Fixation Saccade Pursuit Noise PSM

D
S-
A
N
D

EV 0.61 0.73 0 0.94 0.02
IBDT 0.65 0.35 0.63 0 0
LS 0.91 0.88 0.15 0.13 0
I2MC 0.02 0.95 0 0 0
Proposed 0.79 0.85 0.69 0.67 0.78
Proposed (all) 0.92 0.92 0.89 0.94 0.97

D
S-
IB
D
T

EV 0.18 0.25 0 1.0 -
IBDT 0.97 0.28 0.84 0 -
LS 0.95 0 0.06 0 -
I2MC 0.92 0.10 0 0 -
Proposed 0.94 0.91 0.89 0.65 -
Proposed (all) 0.97 0.99 0.92 0.98 -

Table 3: Recall for each eye movement type with errors in
the data. PSM stands for post saccadic movement.

Table 3 shows the results giving the algorithms the unmodified
data. As can be seen for the algorithm EV [23], the error has no
impact to the algorithm. This is due to the construction of the algo-
rithm, which tries in the first step to remove the noise by separating
it from saccades. Overall, LS [19] seems to be the best state of the
art algorithm on the high-frequency data set DS-AND [1](1250Hz)
for saccades and fixations. For different recording frequencies as
it is in the DS-IBDT [27](30Hz), the algorithm fails to estimate its
parameters. The same can be seen for EV, which still detects the
noise very well. In table 4, it can be seen that exactly this is the
main problem of EV in the DS-IBDT dataset, since it annotates
most of the data points as noise. In general, it has to be mentioned
that the annotation in DS-IBDT slightly differs from DS-AND. In
DS-IBDT, saccades are annotated after the velocity peek. This is
because of the low-frequency recording of the data and a disad-
vantage especially for I2MC [9], which detects the saccades too
early. This issue has to be especially highlighted because different
annotators assign different labels to data samples. Therefore, algo-
rithms have also to adapt to the researcher-wanted annotation. The
proposed approach is based on machine learning, which is capable
of learning from samples. Meaning, based on the annotations given
in the training data, the detector learns how to label the data. As
can be seen in table 3, the proposed approach outperforms the state
of the art algorithms. It has to be especially noted that the impact
of the amount of training data (proposed vs proposed (all)) is not as
high for the low-frequency data as for the data set DS-AND with
1250 Hz. This is due to the smoothing of the data through the low
sampling rate itself. The proposed approach was capable of detect-
ing all data types and also the noise in the data which also opens
up the possibility of detecting misdetections in images through the
movement of the eye.

Data Alg. Percision
Fixation Saccade Pursuit Noise PSM

D
S-
A
N
D

EV 0.68 0.37 0 0.73 0.03
IBDT 0.72 0.70 0.35 0 0
LS 0.82 0.33 0.63 0.06 0
I2MC 0.09 0.08 0 0 0
Proposed 0.79 0.65 0.82 0.59 0.32
Proposed (all) 0.94 0.88 0.94 0.94 0.51

D
S-
IB
D
T

EV 0.78 0.31 0 0.01 -
IBDT 0.93 0.73 0.76 0 -
LS 0.77 0 0.23 0 -
I2MC 0.76 0.071 0 0 -
Proposed 0.98 0.86 0.89 0.61 -
Proposed (all) 0.98 0.92 0.95 0.75 -

Table 4: The precision for each eye movement type
with errors in the data. PSM stands for post saccadic move-
ment.

Table 4 shows the precision of each algorithm per eye movement
type. As can be seen for the proposed approach the post-saccadic
movement in the high-frequency data set is still difficult to detect
even with large amounts of data (proposed all). In our experiment,
this also comes from the generated data since the simulator is not
able to generate post saccadic movement. We, therefore, generated
two saccades successively the latter being approximately one-third
of the first one. This is not the same as the real post saccadic move-
ment but even in this simple approximation, it helped to improve
the detection rate.

5 CONCLUSION
We proposed a novel eye movement detection approach that is
based on machine learning. It is capable of training detectors for
specific eye movements and extendable to new eye movement types.
The detectors are capable of outperforming the state-of-the-art and
adaptable to new challenges from new eye trackers. In addition, the
detectors can be trained for offline and online analysis, enabling a
second validation and refinement stage for eye movement detection.
Future research will go into the training of detectors, which are
independent of the sampling frequency as far as possible. This could
help in reusing detectors even if the eye tracker has changed, which
could happen if the used technology is outdated.
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