
Weight and Gradient Centralization in Deep Neural Networks

Wolfgang Fuhl

University of Tübingen

Sand 14, 72076 Tübingen, Germany

wolfgang.fuhl@uni-tuebingen.de

Enkelejda Kasneci

University of Tübingen

Sand 14, 72076 Tübingen, Germany

enkelejda.kasneci@uni-tuebingen.de

Abstract

Batch normalization is currently the most widely

used variant of internal normalization for deep neural

networks. Additional work has shown that the normal-

ization of weights and additional conditioning as well

as the normalization of gradients further improve the

generalization. In this work, we combine several of

these methods and thereby increase the generalization

of the networks. The advantage of the newer methods

compared to the batch normalization is not only increased

generalization, but also that these methods only have to

be applied during training and, therefore, do not influence

the running time during use. Link to CUDA code https:

//atreus.informatik.uni-tuebingen.de/

seafile/d/8e2ab8c3fdd444e1a135/

1. Introduction

Deep neural networks (DNN) [50] are currently the most

successful machine learning method and owe their recent

progress to the steadily growing data sets [48], improve-

ments in massively parallel architectures [46], high-speed

bus systems such as PCIe, optimization methods [57, 44],

new training techniques [36, 45], validation [19, 26], and

the regularly growing fields of application like eye track-

ing [6, 15, 14] for pupil [33, 22, 17, 15, 31, 13] or eyelid ex-

traction [29, 28, 30], semantic segmentation [16, 27, 12] or

gesture recognition [7]. These advances in technology make

it possible to train deep neural networks on huge datasets

like ImageNet [48], however, further techniques had to

be introduced to prevent the gradients from becoming too

small [39]. The normalization of the data [42] has a huge

impact on the generalization of large networks. Generaliza-

tion alone is not the only quality feature of a good learn-

ing process of neural networks. Another important point

is the acceleration of the learning process and the resource-

saving [20] use of the techniques. This is due to the fact that

the most successful architectures already have an intrinsi-

cally high resource requirement and additional techniques

to improve generalization can, therefore, only use a small

number of supplementary resources. This can be seen very

clearly when comparing the optimization techniques them-

selves. The most popular methods are Stochastic Gradient

Decent (SGD) with momentum [57] and Adam [44] which

introduces a second momentum. There are many other op-

timization algorithms [57, 44, 2, 4], but SGD and Adam are

the most popular. Both methods allow batch based learning

and require only a constant multiple of the gradient (for the

momentum) as additional memory. Comparing this with the

Levenberg-Marquardt algorithm (LM) [51, 53], which was

the most popular method for training neural networks for

quite some time, it is noticeable that the memory consump-

tion in the case of LM grows quadratic to the weights. This

is due to the fact that the LM algorithm calculates the exact

derivatives for each weight over the whole network and not

only local derivatives as is the case with backpropagation.

Further procedures like the residual layers [39], weight ini-

tialization strategy [35, 38], activation functions [54], gra-

dient clipping [55, 56], algorithms for adaptive learning rate

optimization [57, 44], and many more have been introduced

and are subject to the same conditions of generalization

improvement, training stabilization, and resource conserva-

tion.

In neural networks themselves, statistics are also col-

lected and used to balance the forward and backward flow

of data and errors. The best known method used directly on

the activation of neurons is Batch Normalization (BN) [42].

Other procedures that work on the activation functions are

instance normalization (IN) [63, 41], layer normalization

(LN) [1] and group normalization (GN) [64]. These pro-

cedures smooth the optimization landscape [61] and lead

to an improvement of the generalization. The disadvan-

tages of BN are that it continues to process the data in the

neural network as an independent layer even after train-

ing and that it must be applied to a relatively large batch

size. To avoid these disadvantages, weight normalization

(WN) [60, 40] and weight standardization (WS) [58] were

introduced. These must only be applied during training and

are independent of the batch size. WN limits the weight

9876

vectors via different standards whereas WS normalizes the

weight vectors via the mean and standard deviation. A

newer technique that works only on the gradient is Gradient

Centralization (GC) [65], which subtracts the mean value

from the gradient. All these advanced techniques smooth

the error space and lead to a faster and, typically, better gen-

eralization of neural networks.

In this work, we deal with these extended techniques and

seek to find a good combination of the methods. In our

evaluation, it has been shown that the combination of the

filter mean subtraction and the gradient mean subtraction in

union is very effective for different networks. We have also

tested other combinations and found that many also depend

on batch normalization. Our main contributions are as fol-

lows:

1 The combination of mean gradient and mean filter sub-

traction
2 Publicly available CUDA implementations
3 Description of the integration into the back propagation

algorithm
4 A comprehensive comparison with advanced techniques

2. Related Work

In this section, we describe the related work based on

three groups. The first group is the manipulation of the data

after the activation functions, which has the disadvantage

that the activation functions have to be executed in the later

application of the model. The second group is the manip-

ulation of the weights during training. Here, the weights

can be standardized or otherwise restricted. The last group

is the manipulation of the gradients. In this instance, after

each back propagation, normalizations and restrictions are

applied to the gradients before they are being used to change

the weights.

2.1. Manipulation of the output of the activations

This type of normalization is the most common use of in-

ternal manipulation in DNNs today. In batch normalization

(BN) [42], the mean value and standard deviation are calcu-

lated over several batches and used for normalization. This

gives the output of neurons after the activation layer a mean

value of zero and uniform variance. With group normaliza-

tion GN [64], groups are formed over which normalization

is performed unlike BN where normalization occurs over

the number of copies in a batch, this eliminates the need for

large batches, which is the case with BN. Other alternatives

are instance normalization IN [63, 41] and layer normal-

ization LN [1]. For IN, each specimen is used individually

for the calculation of the mean and standard deviation, and

for LN, the individual layers. IN and LN have been suc-

cessfully used for recurrent neural networks (RNN) [62].

However, all these methods have the disadvantage that nor-

malization has to be applied even after training.

2.2. Manipulation of the weights of the model

In weight normalization (WN) [60, 40], the weights of

the neural network are multiplied by a constant divided by

the Euclidean distance of the weight vector of a neuron.

This decouples the weights with respect to their length,

thereby accelerating the training. An extension of this

method is weight standardization (WS) [58], which does

not require a constant, but calculates the mean and standard

deviation thus normalizing the weights. Like the previous

manipulation methods, this method smooths the error land-

scape, which speeds up training and levels the generaliza-

tion of the final model. An advantage of these methods is

that they only have to be applied during training and not in

the final model. These methods, however, have a limitation

and that is the fine-tuning of neural networks. If the original

model was not trained with a weight normalization, these

methods cannot be used for fine-tuning without creating a

high initial error on the model. This is due to the fact that

the restrictions and norms for the original model’s weights

most likely do not apply.

2.3. Manipulation of the gradient after back prop-
agation

Another very common technique is gradient manipula-

tion over the first [57] and second moment [44]. This gradi-

ent impulse allows neural networks to be trained in a stable

way without the gradients exploding, which is interpreted

as a damped oscillation. The second momentum leads, in

most cases, to a faster generalization, but the model’s fi-

nal performance is usually slightly worse when compared

to training with only the first momentum. These moments

are moving averages which are formed over the calculated

gradients and represent a pre-determined portion of the next

weight adjustment. An advanced method in this area is gra-

dient clipping [55, 56] wherein randomly selected gradients

are set to zero or a small random value is added to each

gradient. Another technique is to project the gradients onto

subspaces [37, 49, 3]. Here, for example, the Riemannian

approach is used to map the gradients onto a Riemannian

manifold. After the mapping, the gradients are used to ad-

just the weights. Finally, in [65] a very simple procedure

was presented which subtracts the current mean value of

the gradients in addition to the moments.

3. Method

Since our approach is a combination of several previ-

ously published approaches (Weight mean subtraction and

gradient centralization), we proceed as follows in this sec-

tion: we formally describe the already published methods

and introduce a naming convention, which we use later in

the evaluation. This should make it easier for the reader

to evaluate the effectiveness of different methods. In the

9877

following, we will refer to operations on the data in for-

ward propagation as Fs,c,y,x where s is the sample, c is the

channel and y, x is the spatial position in the data. For the

weights we use Wout,in,y,x. Where out is the output chan-

nel, in is the input channel and y, x is the spatial position

for fully connected layers. In the case of convolution lay-

ers, y, x is the position in the two-dimensional convolution

mask, which together with in defines the convolution ten-

sor. To manipulate the gradient we use ∆Wout,in,y,x with

the same indices as we used for the weights (Wout,in,y,x).

Since a normalization can be applied not only to the data

and the gradient, but also to the back propagated error, the

error is denoted by Es,c,y,x where the indices are the same

as the indices of the forward propagated data (Fs,c,y,x).

3.1. Weight normalization

In this section, the equations used for weight normaliza-

tion are presented. In all equations, j represents the axis to

which the normalization was performed orthogonally. This

means that we have calculated a separate mean value, stan-

dard deviation or Euclidean distance for each index of j.

Wj,in,y,x =Wj,in,y,x ∗
k

||Wj,in,y,x||
(1)

In Equation 1, the weight normalization [60, 40] is de-

scribed (WN). This normalizes each weight in a tensor with

the ratio of a constant k (in our experiments 1) divided by

the Euclidean distance of the tensor.

Wj,in,y,x =Wj,in,y,x −W j,in,y,x (2)

Since the pure normalization over the mean value of the

tensor of the weights has no separate designation, we use

WC in our work. WC is defined in Equation 2 and calculates

a separate mean value for each weight tensor and subtracts

it from each weight.

Wj,in,y,x =
Wj,in,y,x −W j,in,y,x

std(Wj,in,y,x)
(3)

The final normalization of the weights is the weight stan-

dardization [58] which is defined in Equation 3. Here, as in

WC, the mean value is subtracted and each weight of a ten-

sor is also divided by the standard deviation.

3.2. Gradient normalization

In this section, the gradient normalization is introduced.

Modern optimizers already use moving averaging with mo-

mentum [57, 44]. We also think that the authors explor-

ing gradient centralization [65] already tried different ap-

proaches like the standardization. We only present the re-

cently published approach here. Also, as in the weight nor-

malization section, j corresponds to j against the axis along

which orthogonal normalization is performed.

∆Wj,in,y,x = ∆Wj,in,y,x −∆W j,in,y,x (4)

As can be seen in Equation 4, the mean value is sub-

tracted from each gradient tensor. The mean value is recal-

culated for each output layer.

3.3. Data normalization

In this section, we briefly describe the different data nor-

malizations. In our analysis, we only used batch normaliza-

tion [42]. In this section, j as well as j1 and j2 (in case

of instance normalization) stand for the axis or plane to

which the normalization is orthogonal. Since scal and shift

is learned in data manipulation, we denote them with γ and

β respectively.

Fs,j,y,x = γ ∗ (
Fs,j,y,x − F s,j,y,x
std(Fs,j,y,x)

) + β (5)

Equation 5 describes the batch normalization[42]. As

mentioned above, γ and β are the scale and shift param-

eters which are learned during training. Since j is on the

second index, each channel has its own average and stan-

dard deviation.

Fj,c,y,x = γ ∗ (
Fj,c,y,x − F j,c,y,x
std(Fj,c,y,x)

) + β (6)

Equation 6 is the layer normalization [1]. Compared to

batch normalization [42], layer normalization is the normal-

ization of the samples in a batch. This means that each sam-

ple has its own average and standard deviation.

Fj1,j2,y,x = γ ∗ (
Fj1,j2,y,x − F j1,j2,y,x

std(Fj1,j2,y,x)
) + β (7)

In the case of instance normalization [63, 41], each sam-

ple is normalized on its own. Equation 7 describes this pro-

cedure. It does not normalize along an axis like the other

methods, but each sample and each channel separately.

The only approach still missing is group normaliza-

tion [64]. Here groups are formed between the individual

instances, which have their own mean values and standard

deviations. Since we cannot simply describe this with our

annotation, the equation for the group normalization [64] is

not included in this paper.

3.4. Error normalization

Inspired by the data normalization, we have also done

some small evaluations regarding error normalization as a

separate normalization approach. For this purpose, we eval-

uated the standardization as well as the simple mean value

subtraction. The simple mean subtraction is based on the

fact that, in the case of weight normalization, the simple

9878

Table 1. The used naming convention for our evaluation.

Name WN WC WS GC BN LN IN EBN ELN EB EL

Eq. 1 2 3 4 5 6 7 8 9 10 11

mean has proven to be very effective. In our simple imple-

mentations we did not use the scale and shift (γ, β) param-

eters and applied the normalization directly.

Es,j,y,x =
Es,j,y,x − Es,j,y,x
std(Es,j,y,x)

(8)

Ej,c,y,x =
Ej,c,y,x − Ej,c,y,x
std(Ej,c,y,x)

(9)

The Equations 8 and 9 describe error normalization

along the channels and samples. The procedure is the same

as for batch normalization [42] and layer normalization [1].

As you can see in the equations, we have omitted the learned

γ and β parameters and the remainder of the equations are

the same. Thus, the standard deviation and the mean value

are calculated in each iteration and normalization is per-

formed by subtracting the mean value and dividing by the

standard deviation.

Es,j,y,x = Es,j,y,x − Es,j,y,x (10)

Ej,c,y,x = Ej,c,y,x − Ej,c,y,x (11)

For the two other Equations 10, 11, we calculated only

the average value over the samples or the channels and sub-

tracted it. This was recalculated accordingly in each itera-

tion. An overview of the abbreviations used in the rest of

the document is shown in Table 1.

One way to include the normalizations is to add them

to the back propagation workflow. This is shown in algo-

rithm 1 were each normalization is placed in either the for-

ward, backward, or gradient computation flow. Since batch

normalization [42] is a separate layer and learns the scaling

and shifting, it was not inserted.

As you can see in Algorithm 1, filter normalization is

applied before use in the forward path and gradient normal-

ization is applied immediately after the gradient calculation.

This is because the filters must be adjusted first, otherwise

the gradient will not match the weights and the weights will

have no influence on the forward pass. For gradient normal-

ization, it is applied after the calculation so that the gradi-

ents are correctly available for the weight update in the op-

timizer. In the case of the back propagated error, the error is

normalized after the calculation of the back propagation, in

which case it would, of course, also be possible to normal-

ize the input error. However, since this is normalized in the

previous layer, it is already normalized.

In this paper, we present the combination of GC [65] and

WC, whereas WC without the standard deviation (division

Data: Data,Weights

Result: Output

Function Forward is

Weights=Normalize(Weights);

Output=cuDNNFWD(Weights,Data);

end

Data: ErrorIn,Weights

Result: ErrorOut

Function Backward is

ErrorOut=cuDNNBWD(Weights,ErrorIn);

ErrorOut=Normalize(ErrorOut);

end

Data: ErrorIn,Data

Result: Grad

Function CompGradis

Grad=cuDNNCompGrad(Data,ErrorIn);

Grad=Normalize(Grad);

end

Algorithm 1: Algorithmic description of the function

placement for the normalizations. Since batch normal-

ization is implemented as its own layer with learned

scaling and shifting, it is not considered in this illus-

tration. It could be placed functionally in the forward

propagation and would normalize the output.

with the standard deviation) has, to our knowledge, never

been published independently. GC [65] and WC can also

be integrated into the optimizer itself. In the following, we

give two examples: One for SGD [2] with momentum [57]

and the other for ADAM [44].

Data: W t
j,in,y,x,∆W t

j,in,y,x,α,ψ,M t
j,in,y,x

Result: W t+1

j,in,y,x

Function SGD is

∆W t
j,in,y,x = ∆W t

j,in,y,x −∆W
t

j,in,y,x;

M t
j,in,y,x = ψ∗M t

j,in,y,x+(1−ψ)∗∆W t
j,in,y,x;

W t+1

j,in,y,x =W t
j,in,y,x − α ∗M

t
j,in,y,x;

W t+1

j,in,y,x =W t+1

j,in,y,x −W
t+1

j,in,y,x;

end

Algorithm 2: Integration of the GC and WC normal-

ization into the stochastic gradient decent optimization

with momentum. The variables are weights W t
j,in,y,x,

gradients ∆W t
j,in,y,x, learning rate α, momentum fac-

tor ψ, and momentum M t
j,in,y,x. j again is the index of

the normalization.

In Algorithm 2, the integration of the GC and the WC

normalization in combination with SGD is shown. Here the

first line (∆W t
j,in,y,x = ∆W t

j,in,y,x − ∆W
t

j,in,y,x) is the

gradient centralization. Afterwards, the momentum is com-

bined with the gradients by the factor ψ. In the next step,

9879

the weights are adjusted using the learning rate α and the

mean value is subtracted from the final weights. This last

step is the weight centralization (W t+1

j,in,y,x = W t+1

j,in,y,x −

W
t+1

j,in,y,x).

Data: W t
j,in,y,x,∆W t

j,in,y,x,α,ψ1,ψ2,M t
j,in,y,x,V tj,in,y,x

Result: W t+1

j,in,y,x

Function ADAM is

∆W t
j,in,y,x = ∆W t

j,in,y,x −∆W
t

j,in,y,x;

M t
j,in,y,x = ψ1 ∗M

t
j,in,y,x;

M t
j,in,y,x+ = (1− ψ1) ∗∆W

t
j,in,y,x;

V tj,in,y,x = ψ2 ∗ V
t
j,in,y,x;

V tj,in,y,x+ = (1−ψ2)∗∆W
t
j,in,y,x⊙∆W t

j,in,y,x;

M̂ t
j,in,y,x =

Mt
j,in,y,x

1−ψt
1

;

V̂ tj,in,y,x =
ψ2∗V

t
j,in,y,x

1−ψt
2

;

W t+1

j,in,y,x =W t
j,in,y,x − α ∗

M̂t
j,in,y,x

√

V̂ t
j,in,y,x

+ǫ
;

W t+1

j,in,y,x =W t+1

j,in,y,x −W
t+1

j,in,y,x;

end

Algorithm 3: Integration of the GC and WC normal-

ization into the ADAM optimization. The variables are

Weights W t
j,in,y,x, gradients ∆W t

j,in,y,x, learning rate

α, first order momentum factor ψ1, second order mo-

mentum factor ψ2, first order momentum M t
j,in,y,x, and

second order momentum V tj,in,y,x. j again is the index

of the normalization.

In Algorithm 3 shows the integration of GC and WC in

the ADAM optimization. For this, as with SGD, GC is ap-

plied first (∆W t
j,in,y,x = ∆W t

j,in,y,x −∆W
t

j,in,y,x). Then

the new first order momentum is calculated in the following

two lines using the factor ψ1 (M t
j,in,y,x = ψ1 ∗M

t
j,in,y,x +

(1 − ψ1) ∗ ∆W t
j,in,y,x). Subsequently, the second order

momentum is calculated with the factor ψ2 (V tj,in,y,x =
ψ2 ∗ V

t
j,in,y,x + (1 − ψ2) ∗ ∆W t

j,in,y,x) ⊙ ∆W t
j,in,y,x).

In the penultimate step, the weights are adjusted with the

learning rate α as well as the two momentums (W t+1

j,in,y,x =

W t
j,in,y,x − α ∗

M̂t
j,in,y,x

√

V̂ t
j,in,y,x

+ǫ
). The last step is then, again,

the weight centralization WC (W t+1

j,in,y,x = W t+1

j,in,y,x −

W
t+1

j,in,y,x).

4. Neural Network Models

Figure 1 shows the architectures used in our experimen-

tal evaluation. The first model (Figure 1 a)) is a small model

with batch normalization. We used this model to show the

impact of the different normalization approaches on small

models with and without batch normalization. The second

model (Figure 1 b)) is a ResNet-34 and a commonly used

larger deep neural network. We used it with and without

batch normalization during our experiments to show the im-

pact of the normalization approaches on residual networks.

The third model (Figure 1 c)) is a classical architecture for

neural networks without batch normalization. This model

was used to show the impact of the normalization to clas-

sical neural network architectures. The last model (Fig-

ure 1 d) is a fully convolutional neural network [52]. It

uses the U-connections [59] to improve the result for se-

mantic segmentation. We used this network, together with

the VOC2012 [5] data set, in the semantic segmentation task

to show the impact of the normalizations. For training and

evaluation, we used the DLIB [43] library for deep neural

networks. In this library we have also integrated our nor-

malization and the state of the art approaches against which

we compare our work.

5. Data sets

In this section, we present all used data sets, describe the

used training parameters as well as the optimization tech-

niques and the data augmentation. For a simplified repro-

ductibility, we have limited ourselves to a minimum of data

manipulation and only used public data sets. The batch size

and input resolution, as well as the random weight initial-

ization, are given too.

CIFAR10 [47] has 60,000 colour images each with a

resolution of 32 × 32. The public data set has ten differ-

ent classes. For training, 50,000 images are provided with

5,000 examples per class. The validation set consists of

10,000 images with 1,000 examples for each class. The task

in this data set is to classify a given image to one of the ten

categories.

Training: We used a batch size of 50 and an initial learn-

ing rate of 10−3. As optimizer, we used ADAM [44] with

weight decay of 5 ∗ 10−5, momentum one with 0.9 and mo-

mentum two with 0.999. As random weight initialization we

used formula 16 from [35] and all bias terms are set to 0.

For data augmentation, we cropped a 32 × 32 region from

a 40× 40 image with zero padding of the original image at

the borders. In addition, we used a constant mean subtrac-

tion (mean-red 122.782, mean-green 117.001, mean-blue

104.298) and division by 256.0 for the input image. The

training itself was conducted for 300 epochs whereby the

learning rate was decreased by 10−1 after each 50 epochs.

CIFAR100 [47] is a more difficult but similar public data

set like CIFAR10 and consists of color images each with

a resolution of 32 × 32. The task here, as in CIFAR10,

is to classify the given image to one of the one hundred

classes provided. The training set consists of 500 examples

per class and the validation set has 100 examples per class.

This means that CIFAR100 has the same number of images

as CIFAR10 for training and validation, but one hundred

instead of ten classes.

9880

Figure 1. All used architectures in our experimental evaluation. (a) is a small neural network model with batch normalization. (b) is

a ResNet-34 architecture. (c) is a small model without batch normalization. (d) is a residual network using the interconnections from

U-Net [59] for semantic image segmentation.

Training: We used a batch size of 50 and an initial learn-

ing rate of 10−1. As optimizer we used SGD with momen-

tum [57] 0.9 and a weight decay of (5∗10−4). For data aug-

mentation, we cropped a 32×32 region from a 40×40 image

with a zero padding of the original image at the borders. In

addition, we used a constant mean subtraction (mean-red

122.782, mean-green 117.001, mean-blue 104.298) and di-

vision by 256.0 for the input image. The training itself was

conducted for 300 epochs whereby the learning rate was

decreased by 10−1 after each 50 epochs. For weight initial-

ization we used formula 16 from [35] and all bias terms are

set to 0.

VOC2012 [5] is a publicly available data set which can

be used for detection, classification and semantic segmen-

tation. In our experiments we only used the semantic seg-

mentation annotations as well as the semantic segmentation

task. For the semantic segmentation task, a class is assigned

for each output pixel. This data set has twenty different

classes and each image can contain different object classes

and different amounts of the same object. This also means

that not every object is present in every image. The training

set consists of 1,464 images with 3,507 segmented objects

and the validation set has 1,449 images with a total of 3,422

segmented objects on it. The number of objects in this data

set is not balanced, which increases the challenge. There is

also a third data set which does not contain any annotations

and can be used initially in an unsupervised fashion to have

a good weight initialization. We did not use the third data

set in our training nor in our evaluation.

Training: The initial learning rate was set to 10−1 with

a constant batch size of ten. As optimizer we used SGD

with momentum [57] set to 0.9 and additionally weight de-

cay of 1 ∗ 10−4. For weight initialization, we used formula

16 from [35] and all bias terms were set to 0. The data

was augmented by cropping 227 × 227 regions out of the

input image. In addition, we used random color offset and

left right flipping of the image. Before the image was pro-

cessed we subtracted a constant mean (mean-red 122.782,

mean-green 117.001, mean-blue 104.298) and divided each

value by 256.0. We trained each model for 800 epochs and

reduced the learning rate by 10−1 after each 200 epochs.

6. Evaluation

In this section, we show the results on CIFAR10, CI-

FAR100 and VOC2012. We use the models from Figure 1

and apply the training parameters and procedures from Sec-

tion 5. In the first experiment, we show over which areas in

the data the mean value subtraction can be used most effec-

tively. In the following three experiments we compare the

combination of GC and WC with the state of the art.

Table 2 shows the evaluation of mean subtraction on dif-

ferent areas of weights, gradients and back propagated er-

rors. As can be seen, the mean subtraction on the error

propagated back is not very effective because it significantly

worsens the generalization of the deep neural network. This

shows that error normalization without data normalization,

9881

Table 2. The results for the mean subtraction normalization on CI-

FAR10 on different target areas for mean computation. The used

model was c) from Figure 1.

Reference area Target Accuracy

Baseline non 84.14%

Global Weight 84.91%

Tensor Weight (WC) 85.95%

Channel Weight 85.63%

Instance Weight 84.37%

Global Gradient 84.01%

Tensor Gradient (GC [65]) 84.89%

Channel Gradient 84.38%

Instance Gradient 83.36%

Global ERROR 79.03%

Sample ERROR (EL) 72.15%

Channel ERROR (EB) 75.40%

Instance ERROR 69.73%

as it happens in batch normalization [42], only brings dis-

advantages. For the weights and gradients, a convolutional

tensor seems to be most effective for normalization. This

means that each tensor is used for the mean calculation and

this mean is subtracted only from this tensor. It is also

clearly seen that weight normalization provides better re-

sults independent of gradient normalization with the excep-

tion of instance based normalization. In instance based nor-

malization, an average value is calculated for every two di-

mensional mask and this average value is subtracted from

the mask. Based on these results, we decided to define WC

on the tensor and to discard the normalization of the back

propagated error for further evaluations.

In Table 3, the results on CIFAR10 show different nor-

malizations and the baseline, which is CNN without nor-

malization. As you can see, the combination WC and GC

can be effectively applied to all convolutions and also to

the penultimate fully connected layer (indicated by the key-

word fully). This can be seen in model a) and c) from Fig-

ure 1. In model b), there is only one fully connected layer

in which normalization is not effective because it generates

the output. For model a) and b), we have also performed

the evaluations with and without batch normalization. As

you can see, the combination WC and GC works even bet-

ter without batch normalization for model a). This is the

best result for the model, especially together with normal-

ization in the penultimate fully connected layer. In case of

model b), the additional use of batch normalization is much

better, because of the residual blocks. Therefore, for the ad-

ditional evaluations, all residual blocks were evaluated with

batch normalization only. Since model c) does not have an

integrated batch normalization, we only evaluated without

batch normalization.

The combination of WS and GC has not proven to be ad-

vantageous for all models, which is why we will not use

Table 3. Classification accuracy on the CIFAR10 data set. The first

column specifies the methods, the second column the used model

from Figure 1, and the third column is the classification accuracy.

Models a) and b) where evaluated with and without batch normal-

ization. For the models a) and c) we also used the normalization in

the penultimate fully connected layer which is specified with the

keyword fully.

Method Model Accuracy

Baseline a 81.87%

WN [60, 40] k = 1 a 71.74%

WC a 85.01%

WS [58] a 73.00%

GC [65] a 81.42%

WS [58], GC [65] a 74.51%

WC, GC [65] a 85.75%

WC, GC [65], fully a 87.07%

Baseline, BN [42] a 84.67%

WN [60, 40] k = 1, BN a 82.95%

WC, BN [42] a 85.38%

WS [58], BN [42] a 79.65%

GC [65], BN [42] a 84.01%

WS [58], GC [65], BN [42] a 81.01%

WC, GC [65], BN [42] a 85.48%

WC, GC [65], BN [42], fully a 85.95%

Baseline b 88.35%

WN [60, 40] k = 1 b 58.77%

WC b 80.15%

WS [58] b nan

GC [65] b 69.85%

WC, GC [65] b 89.61%

Baseline, BN [42] b 91.00%

WN [60, 40] k = 1, BN [42] b 61.02%

WC, BN [42] b 92.50%

WS [58], BN [42] b 79.83%

GC [65], BN [42] b 92.01%

WS [58], GC [65], BN [42] b 79.71%

WC, GC [65], BN [42] b 92.68%

Baseline c 84.14%

WN [60, 40] k = 1 c 83.73%

WC c 85.95%

WC, fully c 86.64%

WS [58] c 10.05%

GC [65] c 84.89%

GC [65], fully c 85.37%

WS [58], GC [65] c 10.72%

WC, GC [65] c 87.46%

WC, GC [65], fully c 87.62%

it in further evaluations. In general, the best normaliza-

tion across all evaluations on CIFAR10 is the combination

of WC and GC. For residual blocks, batch normalization

is added. Considering normalizations individually without

batch normalization, WC is clearly the best, with GC a close

9882

Table 4. Classification accuracy on the CIFAR100 data set. The

first column specifies the methods, the second column the used

model from Figure 1 and the third column is the classification ac-

curacy. Model a) was evaluated with and without batch normal-

ization. For the models a) and c) we also used normalization in

the penultimate fully connected layer which is specified with the

keyword fully.

Method Model Accuracy

Baseline a 46.31%

WN [60, 40] k = 1 a 45.93%

WC a 50.19%

WS [58] a 41.19%

GC [65] a 45.55%

WC, GC [65] a 50.99%

WC, GC [65], fully a 52.03%

Baseline, BN [42] a 54.04%

WN [60, 40] k = 1, BN a 44.26%

WC, BN [42] a 55.01%

WS [58], BN [42] a 48.99%

GC [65], BN [42] a 53.59%

WC, GC [65], BN [42] a 56.45%

WC, GC [65], BN [42], fully a 56.78%

Baseline, BN [42] b 68.99%

WN [60, 40] k = 1, BN [42] b 52.97%

WC, BN [42] b 69.89%

WS [58], BN [42] b 63.52%

GC [65], BN [42] b 69.34%

WC, GC [65], BN [42] b 70.24%

Baseline c 46.31%

WN [60, 40] k = 1 c 10.31%

WC c 52.05%

WS [58] c 34.65%

GC [65] c 47.95%

WC, GC [65] c 53.16%

WC, GC [65],fully c 53.90%

second.

Table 4 shows the results of models a), b), and c) of

Figure 1 on the CIFAR100 data set. As you can see, again

the combination WC and GC is the most effective. As with

CIFAR10 (Table 3), this applies in particular to the addi-

tional use of normalization in the last fully connected layer

(Indicated by the keyword fully). Like CIFAR10 (Table ??),

the normalization WC always delivers better results in com-

parison to GC, if both normalizations are evaluated alone.

However, there is a difference in the batch normalization for

model a). The additional batch normalization is much more

effective than model a) is without batch normalization. In

all evaluations in Tables 3 and 4 one also sees that the nor-

malizations WS and WN have worsened the generalization

of the model. In one case, WS even led to a NaN result.

Table 5 shows the evaluation of different normalization

methods on the VOC2012 data set with model d) from Fig-

Table 5. The average pixel accuracy classification results for dif-

ferent normalization methods on the VOC2012 validation set using

model d) from Figure 1. We applied the normalization specified in

column one to all layers except for the last convolution.

Method Average Pixel Accuracy

Baseline, BN [42] 85.15%

WS [58], BN [42] 81.23%

WN [60, 40] k = 1 75.76%

GC [65], BN [42] 85.91%

WC, BN [42] 86.92%

WC, GC [65], BN [42] 88.98%

ure 1. Normalization was used in all layers except the final

convolution before output. As you can see, both GC and

WC improve the result significantly. In combination with

the batch normalization, the result is improved by more than

3%. This clearly shows that the combination of WC and GC

can be used very effectively together with batch normaliza-

tion for residual blocks. For the methods WS and WN, how-

ever, the generalization of the deep neural network is even

worse.

7. Limitations

A disadvantage of WC and GC is that for residual blocks

without batch normalization the results are also poor. This

can be seen in Table 3 for model b) from Figure 1. Here

you can see in the evaluations that for both, as a single nor-

malization without batch normalization, the results are sig-

nificantly worse. In combination, however, they work bet-

ter than the model without normalization and without batch

normalization. An advantage of the combination of WC and

GC compared to batch normalization is that they only need

to be used in training (see Algorithm 2 and 3). For batch

normalization, however, it is necessary to apply the mean

subtraction, division by the standard deviation, scaling, and

shift at runtime. However, since this can be calculated with

a complexity linear to the input, it hardly affects the run-

time.

8. Conclusion

In this work, we have shown that weight centralization is

a very effective normalization method. Together with gra-

dient centralization and, for residual networks, batch nor-

malization, this combination exceeds the state of the art.

We have also shown over which area mean subtraction is

most effective. Our results were generated with four dif-

ferent nets on three public data sets and clearly show that

the additional use of weight centralization is effective and

improves the generalization of deep neural networks. Fur-

ther research will evaluate the applicability of the weight

and gradient normalization in the fields of gaze behaviour

analysis [21, 23, 34, 24] which includes eye movement seg-

9883

mentation [25, 32, 9, 10, 18, 25] and scan path classifica-

tion [8, 11].

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] Léon Bottou. Stochastic gradient learning in neural net-

works. Proceedings of Neuro-Nımes, 91(8):12, 1991.

[3] Minhyung Cho and Jaehyung Lee. Riemannian approach

to batch normalization. In Advances in Neural Information

Processing Systems, pages 5225–5235, 2017.

[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-

gradient methods for online learning and stochastic opti-

mization. Journal of machine learning research, 12(7), 2011.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[6] W. Fuhl. Image-based extraction of eye features for robust

eye tracking. PhD thesis, University of Tbingen, 04 2019.

[7] Wolfgang Fuhl. From perception to action using observed

actions to learn gestures. User Modeling and User-Adapted

Interaction, pages 1–18, 08 2020.

[8] Wolfgang Fuhl, Efe Bozkir, Benedikt Hosp, Nora Castner,

David Geisler, Thiago C Santini, and Enkelejda Kasneci. En-

codji: encoding gaze data into emoji space for an amusing

scanpath classification approach. In Proceedings of the 11th

ACM Symposium on Eye Tracking Research & Applications,

pages 1–4, 2019.

[9] W. Fuhl, N. Castner, and E. Kasneci. Histogram of ori-

ented velocities for eye movement detection. In International

Conference on Multimodal Interaction Workshops, ICMIW,

2018.

[10] W. Fuhl, N. Castner, and E. Kasneci. Rule based learning for

eye movement type detection. In International Conference

on Multimodal Interaction Workshops, ICMIW, 2018.

[11] W. Fuhl, N. Castner, T. C. Kbler, A. Lotz, W. Rosenstiel, and

E. Kasneci. Ferns for area of interest free scanpath classifi-

cation. In Proceedings of the 2019 ACM Symposium on Eye

Tracking Research & Applications (ETRA), 06 2019.

[12] W. Fuhl, N. Castner, L. Zhuang, M. Holzer, W. Rosenstiel,

and E. Kasneci. Mam: Transfer learning for fully automatic

video annotation and specialized detector creation. In In-

ternational Conference on Computer Vision Workshops, IC-

CVW, 2018.

[13] W. Fuhl, S. Eivazi, B. Hosp, A. Eivazi, W. Rosenstiel, and E.

Kasneci. Bore: Boosted-oriented edge optimization for ro-

bust, real time remote pupil center detection. In Eye Tracking

Research and Applications, ETRA, 2018.

[14] W. Fuhl, H. Gao, and E. Kasneci. Neural networks for opti-

cal vector and eye ball parameter estimation. In ACM Sympo-

sium on Eye Tracking Research & Applications, ETRA 2020.

ACM, 01 2020.

[15] W. Fuhl, H. Gao, and E. Kasneci. Tiny convolution, decision

tree, and binary neuronal networks for robust and real time

pupil outline estimation. In ACM Symposium on Eye Track-

ing Research & Applications, ETRA 2020. ACM, 01 2020.

[16] W. Fuhl, D. Geisler, W. Rosenstiel, and E. Kasneci. The ap-

plicability of cycle gans for pupil and eyelid segmentation,

data generation and image refinement. In International Con-

ference on Computer Vision Workshops, ICCVW, 11 2019.

[17] W. Fuhl, D. Geisler, T. Santini, T. Appel, W. Rosenstiel,

and E. Kasneci. Cbf:circular binary features for robust and

real-time pupil center detection. In ACM Symposium on Eye

Tracking Research & Applications, 06 2018.

[18] W. Fuhl and E. Kasneci. Eye movement velocity and gaze

data generator for evaluation, robustness testing and assess

of eye tracking software and visualization tools. In Poster

at Egocentric Perception, Interaction and Computing, EPIC,

2018.

[19] W. Fuhl and E. Kasneci. Learning to validate the quality of

detected landmarks. In International Conference on Machine

Vision, ICMV, 11 2019.

[20] W. Fuhl, G. Kasneci, W. Rosenstiel, and E. Kasneci. Train-

ing decision trees as replacement for convolution layers. In

Conference on Artificial Intelligence, AAAI, 02 2020.

[21] W. Fuhl, T. C. Kbler, H. Brinkmann, R. Rosenberg, W.

Rosenstiel, and E. Kasneci. Region of interest generation

algorithms for eye tracking data. In Third Workshop on

Eye Tracking and Visualization (ETVIS), in conjunction with

ACM ETRA, 06 2018.

[22] W. Fuhl, T. C. Kbler, D. Hospach, O. Bringmann, W. Rosen-

stiel, and E. Kasneci. Ways of improving the precision of eye

tracking data: Controlling the influence of dirt and dust on

pupil detection. Journal of Eye Movement Research, 10(3),

05 2017.

[23] W. Fuhl, T. C. Kbler, K. Sippel, W. Rosenstiel, and E. Kas-

neci. Arbitrarily shaped areas of interest based on gaze den-

sity gradient. In European Conference on Eye Movements,

ECEM 2015, 08 2015.

[24] Wolfgang Fuhl, Thomas C Kübler, Thiago Santini, and

Enkelejda Kasneci. Automatic generation of saliency-based

areas of interest for the visualization and analysis of eye-

tracking data. In VMV, pages 47–54, 2018.

[25] Wolfgang Fuhl, Yao Rong, and Kasneci Enkelejda. Fully

convolutional neural networks for raw eye tracking data seg-

mentation, generation, and reconstruction. In Proceedings of

the International Conference on Pattern Recognition, pages

0–0, 2020.

[26] Wolfgang Fuhl, Yao Rong, Thomas Motz, Michael Scheidt,

Andreas Hartel, Andreas Koch, and Enkelejda Kasneci. Ex-

plainable online validation of machine learning models for

practical applications. In Proceedings of the International

Conference on Pattern Recognition, pages 0–0, 2020.

[27] W. Fuhl, W. Rosenstiel, and E. Kasneci. 500,000 images

closer to eyelid and pupil segmentation. In Computer Anal-

ysis of Images and Patterns, CAIP, 11 2019.

[28] W. Fuhl, T. Santini, D. Geisler, T. C. Kbler, and E. Kas-

neci. Eyelad: Remote eye tracking image labeling tool.

In 12th Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications (VISIGRAPP

2017), 02 2017.

9884

[29] W. Fuhl, T. Santini, D. Geisler, T. C. Kbler, W. Rosenstiel,

and E. Kasneci. Eyes wide open? eyelid location and eye

aperture estimation for pervasive eye tracking in real-world

scenarios. In ACM International Joint Conference on Perva-

sive and Ubiquitous Computing: Adjunct publication – PET-

MEI 2016, 09 2016.

[30] W. Fuhl, T. Santini, and E. Kasneci. Fast and robust eyelid

outline and aperture detection in real-world scenarios. In

IEEE Winter Conference on Applications of Computer Vision

(WACV 2017), 03 2017.

[31] W. Fuhl, T. Santini, and E. Kasneci. Fast camera focus esti-

mation for gaze-based focus control. In CoRR, 2017.

[32] W. Fuhl, T. Santini, T. Kuebler, N. Castner, W. Rosenstiel,

and E. Kasneci. Eye movement simulation and detector

creation to reduce laborious parameter adjustments. arXiv

preprint arXiv:1804.00970, 2018.

[33] W. Fuhl, T. Santini, C. Reichert, D. Claus, A. Herkommer, H.

Bahmani, K. Rifai, S. Wahl, and E. Kasneci. Non-intrusive

practitioner pupil detection for unmodified microscope ocu-

lars. Elsevier Computers in Biology and Medicine, 79:36–44,

12 2016.

[34] D. Geisler, W. Fuhl, T. Santini, and E. Kasneci. Saliency

sandbox: Bottom-up saliency framework. In 12th Joint Con-

ference on Computer Vision, Imaging and Computer Graph-

ics Theory and Applications (VISIGRAPP 2017), 02 2017.

[35] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on artifi-

cial intelligence and statistics, pages 249–256, 2010.

[36] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014.

[37] Harshit Gupta, Kyong Hwan Jin, Ha Q Nguyen, Michael T

McCann, and Michael Unser. Cnn-based projected gradient

descent for consistent ct image reconstruction. IEEE trans-

actions on medical imaging, 37(6):1440–1453, 2018.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[40] Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng

Tao. Centered weight normalization in accelerating training

of deep neural networks. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2803–2811,

2017.

[41] Xun Huang and Serge Belongie. Arbitrary style transfer in

real-time with adaptive instance normalization. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1501–1510, 2017.

[42] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[43] Davis E King. Dlib-ml: A machine learning toolkit. Journal

of Machine Learning Research, 10(Jul):1755–1758, 2009.

[44] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[45] Durk P Kingma, Tim Salimans, and Max Welling. Vari-

ational dropout and the local reparameterization trick. In

Advances in neural information processing systems, pages

2575–2583, 2015.

[46] David Kirk et al. Nvidia cuda software and gpu parallel com-

puting architecture. In ISMM, volume 7, pages 103–104,

2007.

[47] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[49] Måns Larsson, Anurag Arnab, Fredrik Kahl, Shuai Zheng,

and Philip Torr. A projected gradient descent method for crf

inference allowing end-to-end training of arbitrary pairwise

potentials. In International Workshop on Energy Minimiza-

tion Methods in Computer Vision and Pattern Recognition,

pages 564–579. Springer, 2017.

[50] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[51] K Levenberg. A method for the solution of certain problems

in least squares, 1944.

[52] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015.

[53] Donald W Marquardt. An algorithm for least-squares esti-

mation of nonlinear parameters. Journal of the society for

Industrial and Applied Mathematics, 11(2):431–441, 1963.

[54] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010.

[55] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.

Understanding the exploding gradient problem. CoRR,

abs/1211.5063, 2:417, 2012.

[56] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On

the difficulty of training recurrent neural networks. In Inter-

national conference on machine learning, pages 1310–1318,

2013.

[57] Ning Qian. On the momentum term in gradient descent

learning algorithms. Neural networks, 12(1):145–151, 1999.

[58] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and

Alan Yuille. Weight standardization. arXiv preprint

arXiv:1903.10520, 2019.

[59] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015.

9885

[60] Tim Salimans and Durk P Kingma. Weight normalization: A

simple reparameterization to accelerate training of deep neu-

ral networks. In Advances in neural information processing

systems, pages 901–909, 2016.

[61] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and

Aleksander Madry. How does batch normalization help op-

timization? In Advances in Neural Information Processing

Systems, pages 2483–2493, 2018.

[62] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent

neural networks. IEEE transactions on Signal Processing,

45(11):2673–2681, 1997.

[63] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016.

[64] Yuxin Wu and Kaiming He. Group normalization. In Pro-

ceedings of the European conference on computer vision

(ECCV), pages 3–19, 2018.

[65] Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and

Lei Zhang. Gradient centralization: A new optimiza-

tion technique for deep neural networks. arXiv preprint

arXiv:2004.01461, 2020.

9886

