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wolfgang.fuhl@uni-tuebingen.de

Thiago Santini
University of Tübingen
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Abstract

The correct identification of the eyelids and its aperture
provide essential data to infer a subject’s mental state (e.g.,
vigilance, fatigue, and drowsiness) and to validate or re-
duce the search space of other eye features (e.g., pupil,
and iris). This knowledge can be used not only to improve
many applications, such as eye tracking and iris recogni-
tion, but also to derive information about the user (such
as, the take-over readiness of the driver in the automated
driving context). In this paper, we propose a computer-
vision-based approach to eyelids identification and aper-
ture estimation. Evaluation was performed on an exist-
ing data set from the literature as well as on a new data
set introduced in this work. The new data set contains
4000 hand-labeled eye images from 11 subjects driving in
a city; these contain several challenges such as reflections,
makeup, wrinkles, blinks, and changing illumination. The
proposed method outperformed state-of-the-art methods by
up to≈16.11 percentage points in terms of average similar-
ity to the hand-labeled eyelid outline (from 34px to 12px)
and ≈21.7 pixels (or 7.53% of the eye image height) in
terms of average eyelid aperture estimation error. The pro-
posed method implementation runs in real time even on a
single core (≈7ms) and is available, together with the new
data set, at http://www.ti.uni-tuebingen.de/
Eyelid-detection.2007.0.html

1. Introduction
The human eye is an important multipurpose organ for

which the eyelids serve as protection and maintenance
system. Eye protection includes hindering particles from
reaching the eye and limiting the amount of light enter-
ing the pupil [7]. For maintenance, the eyelids spread the
tear film over the cornea during blinks [6]. Thus, eyelashes,
blinking, and squinting are essential mechanisms to ensure

eye healthiness; however, these mechanisms also create sev-
eral challenges for computer vision based algorithms that
operate on eye images, such as video-based eye tracking.
Some of these challenges are shown in Figure 1; for in-
stance, eye features can be occluded by eyelashes or are
occluded by the eyelid during a blink (Figure 1a and 1b),
eyelid movements can result in motion blur perturbing edge
detection (Figure 1c), and false positive detections may
arise, such as a wrong pupil detection in the dark circu-
lar region on the top right corner of Figure 1d. Due to
these challenges, a robust and accurate detection of eye-
lids can significantly improve the robustness and validity of
other methods that are based on the analysis of eye images
and videos, such as the automatic detection of eye move-
ments [13, 21] or the analysis of human visual exploration
behavior [14, 15]. Moreover, the area restriction imposed
by the eyelids allows significant improvements in terms of
run time and accuracy of other eye feature detection algo-
rithms (e.g., pupil detection). Furthermore, the eyelid infor-
mation can be employed for blink detection [2] and, thus, to
extract information regarding a person’s mental state (e.g.,
vigilance, fatigue, and drowsiness [17, 26, 22]).

(a) (b) (c) (d)

Figure 1: Some of the challenges caused by the eyelids,
such as occlusion and motion blur.

In this work, we will focus on single eye images that
are produced by head mounted eye trackers (see Figure 2).
However, the proposed method makes no assumption re-
garding the resolution of the images and could be co-
employed in images acquired with remote eye trackers to
detect eyelids as well as validate the resulting eye-box

Link to data:
https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%2FEyelid%
20detection&mode=list



found by typical face detection algorithms (e.g., Viola-
Jones [23]). We introduce a new hand-labeled data set con-
taining 4000 challenging images (Section 3) as well as a
novel approach to eyelid identification and aperture esti-
mation (Section 4). The proposed method is evaluated on
an existing data set from the literature and on the new data
set against two state-of-the-art algorithms, exhibiting per-
formance improvements up to ≈16.11 percentage points in
terms of average similarity to the hand-labeled eyelid out-
line and ≈21.7 pixels (or 7.53% of the eye image height) in
terms of average eyelid aperture estimation error.

Figure 2: Dikablis essential head mounted eye tracker and
an easy eye image in terms of computer-vision algorithms;
some hard instances can be seen in Figure 1.

2. Related Work
Most methods available in the eye-tracking realm focus

on the detection of the pupil to derive the gaze informa-
tion, e.g., [8, 10, 11, 12]. The first eyelid extraction meth-
ods originated as a byproduct of attempting to improve iris
recognition due to occlusion by the eyelids [5]. Wildes [25]
used the Hough transform for parabolas to detect the eye-
lids. Daugmann [5] first searches for the iris and pupil re-
gions. Within the iris region the upper and lower eyelid
are searched as curvilinear edges. Due to the shape change
induced to the iris circle by the eyelids, Daugmann [5]
uses a statistical spline fitting method for outline estima-
tion. Suzuki et al. [22] starts with partitioning the input
image into vertical regions. Afterwards candidates for the
upper and lower eyelid are selected based on the intensity
distribution of the region. Those candidates are grouped
into upper and lower eyelid, and outliers are removed. For
eye aperture, the average distance between all vertically cor-
responding points from both groups is used. Adam et al. [1]
first preprocess the input image using anisotropic diffusion,
and a Canny edge detector is applied. The region above
and below the iris are assume to contain valid eyelid candi-
dates, and edges with a length smaller than the mean edge
length are ignored. Parabolic curves are fitted to the re-
maining candidates for the upper the lower eyelids. For the
lower and upper eyelid, the curves with the highest hori-
zontal edge values are selected. Yang et al. [26] define the
eyelids as two parabolic curves intersecting at two points,
which can be described by four points. To select these
points, a likelihood map is generated based on the texture

and color similarity areas in the current frame to that of a
reference points in a reference frame. Radman et al. [20]
perform a radial analysis of the outer iris boundary in the
HSI (Hue Saturation Intensity) color space. For each pixel,
the saturation of ten adjacent pixels is averaged, and the
pixel is considered as an iris-eyelid intersection point if this
value exceeds a fixed threshold. This results in two points
for the upper and two for the lower eyelid, which are con-
nected using the live wire method [19]. As cost function,
a weighted combination of the Canny edge detector, gra-
dient orientation, gradient magnitude, and Laplacian zero-
crossing are used. The resulting connection path represents
an eyelid. Cai and Wang [4] start with iris and pupil de-
tection. The iris region is filtered using the morphological
closing-opening operation to remove eyelashes and punc-
tual bright light spots. Afterwards, the intensity distribution
for each column is analyzed. This step is done for the up-
per and lower part of the iris to seperate between upper and
lower eyelid. In each column distribution the minimum is
selected as an eyelid point. Afterwards a parabola is fit-
ted to those points in a least squares sense. VASIR [16] is
a open source, state-of-the-art iris recognition tool, devel-
oped by the National Institute of Standards and Technol-
ogy. Initially, iris and pupil detections are performed based
on circular Hough transforms. Afterwards, linear Hough
transforms are used to locate the upper and lower iris re-
gions. The found eyelid points in one region are used to
fit a third order polynomial in a least squares sense. The
resulting polyniomal is used as eyelid. Fuhl et al. [9] con-
struct a eyelid likelihood map based on a set of features
(mean intensity, standard deviation, skewness, and an hor-
izontal Sobel operator); disjointed high likelihood regions
are connected using a box filter. Non-maxima surpression
and hysteresis are applied, resulting in reconstructed eye-
lid edges. All resulting edge pairs are evaluated based on
features such as enclosed intensity and relative obliqueness.
The highest ranked edge pair is selected as upper and lower
eyelid reconstructions, and Bezier splines are fit to the cor-
ners of these edges to represent the eyelid outline. In this
work, we compare the proposed method to the technique
proposed by Fuhl et al. [9] since it is the current best per-
former and runs in real time. Similar to the literature, we
also evaluate VASIR [16] as it is a good representative of
the methods based on shape recognition.

3. Data Sets
As pointed out by Fuhl et al [9], the few publicly avail-

able data sets containing eyelid annotations stem from bio-
metric related research, which are typically collected in lab-
oratory conditions and follow guidelines to ensure a cer-
tain noise-to-signal ratio; thus, these data are not real-
istic when real-world scenarios are considered. In their
work, Fuhl et al. introduced a realistic data set containing



1100 hand-labeled images, which we employ for evalua-
tion. Furthermore, in this work we are introducing a new
publicly available data set containing 4000 hand-labeled
eye images, significantly increasing the amount of evalu-
ation data available. Each frame was annotated with ten
roughly equally-spaced points: one point on each eye cor-
ner (canthus), four points lying on the lower eyelid, and
four points lying on the upper eyelid (see Figure 3). These
images were collected from eleven subjects using a Dikab-
lis Essential head-mounted eye tracker1 as part of an eye-
tracking experiment conducted while driving in real-world
scenarios [14]. For subjects 1 to 8, we follow the data se-
lection mechanism from [9]: a hundred frames were ran-
domly sampled respecting a minimum temporal distance
between frames to increase frame dissimilarity while keep-
ing labeling efforts tractable. Additionally, to evaluate al-
gorithm performance over an extended period of time, for
other three subjects we have hand-labeled entire video sec-
tions, yielding 1601, 823, and 777, images for subjects 9,
10, and 11, respectively. These data contain high chal-
lenging noises for eyelid detection such as strong skin
wrinkles, blinks, half blinks, blurry images, reflections,
and changing illumination; examples for each subject are
shown in Figure 4. The data set and hand-labels can be
downloaded at http://www.ti.uni-tuebingen.
de/Eyelid-detection.2007.0.html

Figure 3: Labels for eye corners (red) and eyelid points
(blue) labels. The eyelid outline can be accurately approxi-
mated through Bezier splines fit to the hand-labeled points.

4. Method
The general idea behind the proposed approach are ori-

ented edges; in other words, we approximate the upper and
bottom eyelids by two functions that define a path along
which the sum of orthogonal edge values is maximed. Let
e1, e2 be the positions of the eye corners, uup(x), bbp(x)
be the polynomials representing the upper and lower eyelid
with parameters up, bp, respectively. The task can then be
formulated as the general optimization problem

argmax
e1,e2,up,bp

∫ e2

e1

|∆uup(x)|+ |∆bbp(x)| dx, (1)

1The device produces 384x288 pixels images at 30 frames per second.

where ∆ is the difference between the inner and outer in-
tensity values orthogonal to the respective polynomial gra-
dient. Let p be a polynomial line of the form p(x) =
ax2 + bx+ c, then delta is inner − outer intensity, where
inner/outer depend on the eyelid orientation (lower/upper)
along p.
This optimization problem is not convex and, thus, approx-
imations with the Levenberg-Marquardt method can yield
wrong maxima [18]. Therefore, either all combinations of
e1, e2, up, bp have to be evaluated or a good initialization
has to be found. Since the former is prohibitively expen-
sive, we propose a heuristic that tries to approximate this
optimization problem by searching for suitable starting po-
sitions that restrict the polynomials parameters, thus requir-
ing only partially solving the overall problem. The work
flow of the algorithm can be seen in Figure 5, which will be
described in detail in the following subsections. It is worth
noticing that a downscaling of the input image is ommited in
this figure. This process downscales the input image based
on one side of the image, preserving its aspect ratio; this
allows us to optimize algorithm parameters and computa-
tional costs indepdently of the input image resolution. In
our implementation, we employ a median rescaling to an
image 76 pixels wide – in practice, this downscales the data
sets images by a factor five.

In the first step, the algorithm searches for a possible
bottom eyelid location as initial position, assuming the bot-
tom eyelid to be easier to locate. The rationale behind this
step is that the bottom eyelid tends to exhibit less variabil-
ity than its upper counterpart (since its eyelashes are less
pronounced) as well as present an overall straighter outline.
The position is then validated based on its surrounding in-
tensity; notice that if the eye is slightly open, the upper eye-
lid assumes a similar form, thus requiring us to analyze if
the valid position belongs to the upper or lower eyelid based
on its orientation. If the position is valid and correctly ori-
ented, bottom eyelid points are searched through a vertical
position optimization paired with an outlier removal mecha-
nism. Polynomials are then iteractively fitted to the left and
right side of these points, removing extremeties points when
invalid fits are found. The algorithm then approximates the
upper eyelid area restriction using the intensity distribution
orthogonal to the lower eyelid orientation as well as coarse
eye corners locations; from these, the upper eyelid approxi-
mation is derived.

4.1. Bottom Eyelid Search

The search of the bottom eyelid is performed solely in
the lower two thirds of the input image to avoid eyebrows
and reduce computational costs. This step first looks for the
maximal row wise summed horizontal edge value (i.e., a
straight line) to be used as initial position, based on the bot-
tom eyelid invariability assumption. This values are com-



Figure 4: Examples from the new data set, which contain 4000 hand-labeled images. Three frames for subjects 1 to 8 (one
column per subject) and six frames for subjects 9 to 11 (two columns per subject) are shown.

Figure 5: General overview of the algorithm work flow.

puted as

HEy =

X∑
1

|Ix,y−2 + 2Ix,y−1 − 2Ix,y+1 + Ix,y+2|, (2)

where Ix,y is the intensity at position x, y and X the image
width. It is worth noticing that a deviation of ±2 pixels is
employed to compensate for recording skewness and slight
bottom eyelid curvature; this approach also translates into
less computational costs relative to a employing a vector as
indexing orientation. The raw result of this evaluation is
shown in green in Figure 6d. However, directly employ-
ing these values may yield wrong results due to outliers or
recording artifacts, such as the black border at the bottom
of Figure 6a, which result in artifical peaks. Hence, the
raw signal is smoothed through a mean filter following the
range from Equation (2), shown in blue in Figure 6d. The
highest peak in the smoothed histogram (smooth(HEy)) is
then selected as starting position (shown as a white line in
Figure 6c).

4.2. Bottom Eyelid Validity and Orientation

In particular cases, the previous step may wrongly select
the upper eyelid instead of the lower one; for instance, if

Figure 6: The input image (a) and its downscaled version
(b). The histogram of horizontally oriented edge values is
shown as a green line in (d), whereas the smoothed ver-
sion is shown as a blue line. Based on the peak in the
smoothed histogram, the selected starting position is shown
as the white line in (c).

both eyelids are relatively straight (see Figure 7a) or the eye
is shut. Thus, we employ the mean intensity above and be-
low the eyelid position for validity and orientation, assum-
ing that the intensity above the lower eyelid must be lower
than below it due to the low intensity of iris and dark pupil
– the opposite being true for the upper eyelid. If the validity
or orientation assumptions are violated, the starting posi-
tion is then moved to the next smooth(HEy) maximum;
this procedure is exemplified in Figure 7b and evaluated as

Ori(mpy) =

∑X
i=1

∑mpy−10
j=mpy−1 Ii,j∑X

i=1

∑mpy+10
j=mpy+1 Ii,j

, (3)

where mpy is the position of the selected eyelid on the y
axis and X is the width of the image. If Ori(mpy) > 1 the
next maximum has to be searched; if 1 ≥ Ori(mpy) > 0.9
the eye is considered closed.

4.3. Bottom Eyelid Approximation

As can be seen in Figure 7b and Figure 6c, the start-
ing position does not necessarily lays on the lower eyelid.
Unfortunately, a complete search over possible lower eye
courses is computationally too expensive, and occlusions
limit the discovery of pareto-optimal courses. Thus, we ap-



(a) (b)

Figure 7: The downscaled input image (a), and an overlay
showing the first (and wrong) selected position (white line),
which violates the method’s assumptions. Thus, the next
(and correct) maximum is searched, yielding the correct se-
lection (gray line).

(a) (b) (c)

(d) (e) (f)

Figure 8: The lower eyelid approximation procedure. The
input image (a), starting point (b), and possible candidate
points (c). The black dots in (d) are the corrected posi-
tions; the remaining points after outliers removal is shown
as white dots in (e). The resulting two parabolas are shown
in (f).

proach the bottom eyelid approximation through an alter-
native method. The point lying on the selected mpy line
(white line in Figure 8b) that maximizes an area difference2

is selected as starting position (white circle in Figure 8b) to
have an entry point for shape evaluation of the later fitted
polygons. In practice, this area difference acts as a coarse
edge detector, with higher robustness but lower accuracy.
Afterwards, candidates for optimization on the line are se-
lected starting from the entry point, using a stride of five
pixels, and limited to the inner ninety percent of the image
width (white circles in figure 8c). For each candidate, its
vertical position is optimized (black dots in figure 8d). This
is done by shifting each point vertically until the maximum
area difference value is reached (again square of five pixels
above and below the actual position). Because the posi-

2This area difference is defined by a square of five pixels above and
below the line.

tion is already expected to be close to the eyelid and many
higher but wrong positions are likely, only continuously in-
creasing maximums are selected in this way. The next step
is the first outliers removal step, which is performed bidi-
rectionally and outgoing from the selected starting position.
This is done by inspecting the gradient between consecu-
tive optimized candidate positions. The vector v = p2 − p1

between two points p1, p2 is calculated, which yields the
gradient g =

vy
vx

. Outliers are filtered based on a gradient
threshold of one quarter, thus removing consecutive posi-
tions with low changes (compare Figure 8c to Figure 8e).
In other words, let g1 and g2 be consecutive gradients along
the polynomial; g2 is considered an outlier if g2

g1
< 1

4 or
g1
g2
< 1

4 .
This is a consequence of the five pixel stride between can-
didates, which should result in more than a single pixel ver-
tical shift. The second outliers removal step is based on the
convexity of the resulting least squares polynomial fit3 (Fig-
ure 9). If the resulting polynomial is concave (i.e., curved
downwards) (red line in Figure 9) the outermost point is
dropped (red dots in Figure 9), and a new least squares
polynomial fit is performed. This is done until the result-
ing polynomial is convex and removes candidates that are
out of the range of the eyelid. The resulting two polynomi-
als (i.e., for the left and right directions) are used as bottom
eyelid approximation (shown in Figure 8f).

Figure 9: Second outliers removal step illustration. The
blue point is the starting point; green and red dots are can-
didate points. Lines in green have the correct convexity,
whereas the red line is concave. Dots in red are removed
iteratively until the green line results from the least squares
polynomial fit.

4.4. Upper Eyelid Approximation

For the fast approximation of the upper eyelid, first the
search region has to be specified, and the coarse positions of
upper and bottom eyelid intersections have to be estimated.
Therefore, the algorithm starts by selecting a second max-
imum in HEy , but this time over the complete image and
starting from the last maximum position. Due to the invalid
responses produced by skin folds above the upper eyelid,
we search only for the next local maximum. As can be seen
in figure 6d, there is another local maximum between both
eyelids, which is caused by the pupil and the cornea reflec-
tion (white dot below the pupil in figure 6a). The result of

3In our implementation we used second order polynomials ax2+bx+c



this step can be seen as the white line in figure 10b. The
area between this white line and the second gray line in fig-
ure 10b is the search region. For future use we define the
distance between those lines as ∆WG. This second gray
line is calculated by doubling the distance between the bot-
tom eyelid and the white line (next local maximum). We do
not select the third local maximum as gray line because it is
likely that it does not exist.
After the search region has been found, the start, passage
and ending points of the upper eyelid polynomial have to be
found. In figure 10c the used initial positions are marked
as black diamonds. The center diamond is the center of the
bottom eyelid on the x axis, around which the algorithm
searches for the upper eyelid high position (between the
white and the gray line in figure 10b). The left and right
black diamonds in figure 10c are the estimated eye corners.
Those are set to the position were the bottom eyelid polyno-
mial intersects the starting line of the search region (white
line in figure 10b) or to the outmost position on the bottom
eyelid. Those initial positions are only coarse, and will be
refined in the following three steps.
Due to the computational costs for estimating all three vari-
ables at the same time and the non convexity of the problem,
we estimate each variable separately. For each variable the
algorithmic steps for optimization are:

1. Shift position of variable

2. Fit polynomial4 to three points

3. Evaluate polynomial with equation 4

OEV (f(x)) =

X∑
i=1

|I(i, f(i) + | ⊥ f ′(i)|)

−I(i, f(i)− | ⊥ f ′(i)|)| (4)

Equation 4 describes the valuation of a polynomial based
on its oriented edge value. f(x) is the polynomial, I(x, y)
the intesity value at location (x, y) and X the width of the
image. | ⊥ f ′(i)| is the normed orthogonal of the tangent of
the polynomial at position i. OEV (f(x)) is therefore the
summed difference between opposite intensity values along
the polynomial. In addition to equation 4 we square single
differences if the previous difference has the same sign. In
other words, if d1 and d2 are positive, then d2 = d2

2, where
d1 and d2 are consecutive deltas along the polynomial.

The first refined position is the high point. Therefore the
initial x axis position from the center of the bottom eyelid
(centered black diamond in figure 10c) is shifted vertically
in the search region and horizontally between −∆WG and
+∆WG (step 1 in the enumeration list). The other left and
right eye corner stay fixed, and, for each shift of the high

4The used polynomial is ax2 + bx+ c

position, a polynomial is fitted to the three points (step 2 in
the enumeration list). This polynomials are evaluated with
equation 4 (step 3 in the enumeration list) and the maximum
is selected. The result of this step can be seen in figure 10d
as the gray polynomial.
For the eye corners the same procedure is carried out. The
shift region around each initial eye corner position is ∆WG

2
in each direction. For the left eye corner the result can be
seen in figure 10e and the final result in figure 10f.

(a) (b) (c)

(d) (e) (f)

Figure 10: Upper eyelid approximation procedure. The in-
put images is shown in (a). In (b) the area in which the
search takes place is shown through the two lines. The
preliminary intersection points and the center are shown as
black diamonds in (c). (d) shows the result of the hight
approximation (light gray polynomial). In (e) and (f) the
approximation for the left and right side of the upper eyelid
is shown (white polynomials).

5. Evaluation
As metric for similarity between the estimated eyelid

outline and the ground truth, we used the Jaccard index,
which is typically used for image segmentation evaluation.
This index is given by A∩B

A∪B , where A and B are the areas
defined by the estimated and ground truth eyelid outlines.
Additionally, we evaluated the eyelid aperture estimation
error through the Hausdorff distance max(min(d(C,D))),
where C and D are the sets of points from the upper and
lower eyelid and d() the Euclidean distance (let M be the
minimal distance for each point, then the result is max(M)).
The eyelid aperture estimation error is then given by the
absolute distance between the detected and labeled eyelid
Hausdorff distances. We report our results using boxplots:
the central mark is the median, edges of the box are the 25th
and 75 percentiles, and whiskers extend to the extreme non-
outliers data points; points lying further than 2.7σ from the
mean are considered outliers and ploted individually5.

5σ denotes standard deviation.



Figure 11a shows the overall similarity results – where
higher is better. While a score of > 0.5 is already consid-
ered similar, the proposed approach reaches a mean similar-
ity score of 0.66 (σ = 0.18), whereas the method proposed
by Fuhl et al. [9] scores 0.5 (σ = 0.17), and VASIR [16]
0.47 (σ = 0.24), yielding an improvement of about 16.11
percentage points in terms of average similarity. Regarding
the eyelid aperture estimation error (reported in Figure 11b)
the proposed method reached an average eyelid aperture es-
timation error of 12.93 (σ = 16.72) pixels (or 4.4% of the
input image height); in contrast, The method proposed by
Fuhl et al. [9] reached 36.84 (σ = 25.74) and VASIR [16]
34.65 (σ = 31.66), improving eyelid aperture estimation
by ≈21.7 pixels. Moreover, Fuhl et al. [9] also consider
their results in terms of cumulative detection error for an
error up to ten pixels, which is shown in Figure 11c; in
this regard, the proposed method presents a significant ad-
vantage, reaching 61.94% detection rate, against 9.08% by
Fuhl et al. [9] and 19.53% by VASIR [16].

Additionally, we report results per subject in Figure 12
to allow for a better accessment on a per-challenge basis,
which can be linked to Figure 4. In particular, we call
the reader’s attention to the last two subjects on the right
side (one from the new data set, one from the data set
contributed by Fuhl et al. [9]) as these are subjects with
glasses, which resulted in several and heavy reflections,
making these subjects particularly challenging. Nonethe-
less, the proposed method is still able to perform satis-
factorily, whereas state-of-the-art methods fail. Finally, in
terms of average run time, the algorithm by Fuhl et al. [9]
was the fastest (3.4ms), with the proposed algorithm requir-
ing 7.1ms, and VASIR [16] 3305.3ms; evaluation was per-
formed using single core C++ implementations on a i5-4570
(@3.2GHz). While not the fastest performer, the proposed
method can still reach real-time performance considering
state-of-the-art head-mounted eye trackers, which typically
require a processing time below 8.33ms (@120 Hz).

6. Conclusion
We proposed a real time capable algorithm for eye-

lid detection. The proposed method outperforms the
state-of-the-art in terms of eyelid outline similarity and
eyelid aperture estimation. Furthermore, we signifi-
cantly increase the amount of publicly available hand-
labeled data for eyelid detection evaluation by provid-
ing a new data set with over 4000 images from real-
world and challenging scenarios. To foster further re-
search in the area, we provide the data set and C++
code freely at http://www.ti.uni-tuebingen.
de/Eyelid-detection.2007.0.html
Future work will include the evaluation on remote eye track-
ing data and also algorithmic improvements concerning the
use of regression forests for an supportive candidate selec-

(a) Outline similarity (higher is better).

(b) Eyelid aperture estimation (lower is better).

(c) Cumulative detection rate (top and left is better).

Figure 11: Overall results in terms of outline similarity, eye-
lid aperture estimation, and cumulative detection rate.

tion, as proposed in [24]. In addition the use of a parametric
eye model [3] would help validating results and reconstruct
covered eyelids.
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lipse selection for robust pupil detection in real-world envi-
ronments. In ETRA, pages 123–130, New York, NY, USA,
2016. ACM.

[12] W. Fuhl, M. Tonsen, A. Bulling, and E. Kasneci. Pupil de-
tection for head-mounted eye tracking in the wild: an evalua-
tion of the state of the art. Machine Vision and Applications,
pages 1–14, 2016.

[13] E. Kasneci, G. Kasneci, T. C. Kübler, and W. Rosenstiel.
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