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Abstract Our eye movements are driven by a continu-
ous trade-off between the need for detailed examination of
objects of interest and the necessity to keep an overview
of our surrounding. In consequence, behavioral patterns
that are characteristic for our actions and their planning
are typically manifested in the way we move our eyes to
interact with our environment. Identifying such patterns
from individual eye movement measurements is however
highly challenging. In this work, we tackle the challenge
of quantifying the influence of experimental factors on
eye movement sequences. We introduce an algorithm for
extracting sequence-sensitive features from eye movements
and for the classification of eye movements based on
the frequencies of small subsequences. Our approach is
evaluated against the state-of-the art on a novel and a
very rich collection of eye movements data derived from
four experimental settings, from static viewing tasks to
highly dynamic outdoor settings. Our results show that
the proposed method is able to classify eye movement
sequences over a variety of experimental designs. The
choice of parameters is discussed in detail with special
focus on highlighting different aspects of general scan-
path shape. Algorithms and evaluation data are available at:
www.ti.uni-tuebingen.de/scanpathcomparison.html.
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Introduction

The world around us contains by far too much informa-
tion to be processed all at once. Therefore, we have adapted
a strategy of selective attention, i.e., visual processing is
concentrated on currently relevant objects and withdrawn
from less important ones. Further limitations arise due to the
anatomy of the visual system. The human eye is a foveated
system, where optimal visual perception is only possible at
a small, central area of the retina, which is known as the
fovea.

For this reason, already in 1931, Harry Moss Traquair
describes our field of view as an island of vision in a sea
of darkness (Traquair, 1931): Visual acuity drops rapidly
as we move from the fovea towards the periphery. In fact,
5◦ from the fovea only 50 % of visual acuity is reached
(Jacobs, 1979). Visual perception would therefore not be
possible without eye movements. Although we are mostly
unaware of them, when viewing a scene, our eyes are con-
stantly moving (performing saccades) to enable the fovea
to fixate different parts of the scene. This process of atten-
tional shift by means of eye movements is called a change
in overt attention. However, it is possible to attend to the
low-resolution, more peripheral regions of the visual field.
Such a covert attention shift occurs without performing
eye movements, but is usually performed in preparation
of a saccade and directed towards the saccade’s landing
location (Nobre & Kastner, 2013).

This work focuses on eye movement data, addressing
therefore only overt attention. Covert attention is included
in so far as that it is likely to manifest in a saccade shortly
after the covert attentional shift.

Although limitations in processing capacity and the
anatomy of our visual system force us to perform eye move-
ments and to shift attention sequentially, we perceive a
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comprehensive impression of our world stitched together
from different attentional foci in the brain like pieces of a
jigsaw. Focusing on a relevant object in all its detail and
maintaining a complete and up-to-date overview of our large
visual world are both essential, yet opposing goals. This
internal struggle drives our visual exploratory behavior.

The resulting spatiotemporal sequence of eye movements
forms a pattern that is known as the visual scanpath (as
coined by Noton and Stark (1971a,b) in their scanpath the-
ory, without the implication of direct correlation to cognitive
processes).

Although behavioral patterns are manifested in the scan-
path, it is typically a challenging task to identify them
from individual measurements. For example, a best prac-
tice approach for the construction of heatmaps is to average
over at least 30 measurements in order to reach convergence
(Pernice & Nielsen, 2009). For this reason, reproducing
the results obtained by Yarbus is in his famous experiment
(where subjects were instructed to look at a painting under
different tasks and exhibited typical, task-dependent scan-
ning patterns) has proven a lot more difficult than expected
(DeAngelus & Pelz, 2009; Greene et al., 2012).

Therefore, automated methods to compare eye move-
ments and to identify common parts as well as discrimina-
tive sequences between groups of scanpaths are required.
Up to date, most eye movement analysis approaches are
based on time integrated measures, such as the average fix-
ation duration, or the number of fixations directed towards
a specific region of interest (ROI). Thus, they ignore one
of the most essential features of a scanpath, its sequential
nature. While for some tasks the information of gaze den-
sity is sufficient, for other applications the exact fixation
sequence is essential, e.g., does gaze follow composition
lines when viewing fine art, while exploring driving sce-
narios for potential hazards (Tafaj et al., 2013), identifying
characteristic visual exploration patterns of patients with
impaired visual field (Sippel et al., 2014; Kasneci et al.,
2014b), or in the context of activity recognition (Braunagel
et al., 2015).

Scanpath comparison metrics are usually heading at
sequences of fixations and saccades. Other movements,
such as smooth pursuits, micro-saccades, ocular drifts, and
micro-tremor are ignored, since it is difficult to extract them
from the eye-tracking signal. Most methods for scanpath
comparison disregard even saccades, since visual perception
is suppressed during such fast movements. Smooth pursuits
are often represented as a quick succession of short fixations
and low amplitude saccades.

The first step towards scanpath construction is event
detection. Indeed, distinguishing between fixations and sac-
cades is an essential and non-trivial preprocessing step in
data analysis, for which several algorithms are known, e.g.
(Berger et al., 2012; Kasneci et al., 2015; Tafaj et al., 2012).

Scanpath comparison builds on fixation and saccade data,
but can generally be considered a separate analysis step,
although some algorithms for scanpath comparison come
packed with their own fixation filters.

The aim of this paper is to (1) provide a review on
sequence-sensitive scanpath comparison techniques, (2)
introduce a new string kernel method for scanpath compar-
ison, and (3) perform an extensive evaluation on eye move-
ments data collected from a broad spectrum of experimental
designs.

Furthermore, we show the applicability of the string ker-
nel method to a wide variety of experiments. It is of utmost
importance to be aware of the nature of scanpath differ-
ences that can be detected by as well as the restrictions
of a scanpath comparison algorithm. By addressing several
exemplary use-cases (reaching from simple image viewing
to complex real-world driving tasks), we aim at explor-
ing the level of generalization of our method to different
experimental designs as well as identifying its limitations.
Further potential of the proposed scanpath feature embed-
ding and Support vector machine (SVM) classification step
is explored by showing how the identification and extrac-
tion of discriminative features between groups of scanpaths
can be performed.

Review on scanpath comparison methods

Scanpath comparison metrics are mostly designed with a
specific application in mind - in fact they are usually pub-
lished together with a data set to prove their applicability
for that use case. However, their level of generalization to
other applications remains mostly unexplored. The decision,
which algorithm is suited for a specific experimental design
is therefore challenging, since it requires detailed knowl-
edge about the internal details of the algorithm. This is
probably one of the major reasons why automated scanpath
comparison methods have not found broad application yet.
Instead, researchers employ simple time-integrating mea-
sures, such as the average fixation duration, or the number
of fixations directed towards specific ROIs.

We collected a set of representative experiments that
cover a wide range of typical eye tracking applications. Fur-
thermore, we hypothesize that the degree of freedom that
the subject is allowed to perform during the experiment is
an important factor; while some experiments avoid large
head movements by showing stimuli on a screen (e.g., in
(Borji & Itti, 2014; Wang et al., 2012)), real-world scenar-
ios (e.g., Kübler et al. (2015b) and Turano et al. (2002))
require free movement and interaction with a dynamic envi-
ronment (Land et al., 1999; Land and Tatler, 2009). These
factors also impose consequences for the eye-tracking signal
quality and scanpath comparison.
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In the following,wewill first give anoverviewon sequence-
sensitive scanpath comparison methods. A comprehensive
summary of mostly non-sequential eye tracking metrics
can be found in Holmqvist et al. (2011). A good scanpath
comparison metric will produce small distances between
scanpaths with a similar general shape and timing, and high
distances between heterogeneous, spatially and temporally
different scanpaths. How this heterogeneity is defined
computationally depends mainly on the scanpath model
representation chosen by the computational algorithm.
Common scanpath representations are strings, probabilistic
models (such as Markov chains), or geometrical vectors.

String-based comparison of scanpaths

Scanpaths are mostly represented as a string sequence,
i.e., an encoding of the spatial location information of a
sequence of fixations as a sequence of letters. A letter is
assigned to each fixation based on the ROI that contains the
fixation location. An example of such an encoding is shown
in Fig. 1: The presented scanpath can be encoded by the first
letter of the ROI label, e.g., in the order of the fixations as
MPMIOM for the left scanpath, andMPMPOM for the right
scanpath.

Based on such encoding, the scanpath similarity prob-
lem can be mapped to the string similarity problem - a well
known problem in bioinformatics and spell-checking soft-
ware. A basic and often employed string similarity metric
is the Levensthein distance (Noton and Stark, 1971b), i.e.,
which represents the minimal number of letter insertions,
deletions, and substitutions required to convert one string
into the other. In the above example from Fig. 1, just one
edit operation (substitution of I by P) is required to map one
string to the other.

The more sophisticated Needleman Wunsch algorithm is
employed by ScanMatch (Cristino et al., 2010). It can model
relationships between ROIs (e.g., spatially close ROIs or
ROIs with similar semantic context can be associated with
smaller substitution scores). It is also possible to add gaps to

the alignment. Up to here the string representation neglected
fixation durations, but they can be represented by repeating
a letter multiple times. In SubsMatch, Cristino et al. sug-
gest an interval of 50 ms per letter to encode the temporal
information (Cristino et al., 2010). To convert the scanpath
into a letter sequence they recommend either a ROI-based
approach or the employment of a regular grid.

Furthermore, when comparing sequences of different
lengths, one has to be aware of the normalization problem,
since the longer the sequences, the more edit operations
are required to align them. Therefore, the number of edit
operations per letter is a good normalization measure - if
both sequences are roughly of the same length. For differ-
ent sequence lengths, normalization is usually done by the
length of the longer sequence. However, when comparing a
very short sequence to a significantly longer one, there is
a chance of achieving a very good alignment score just by
placing the short sequence at the most similar segment of
the longer one. The likelihood of a good match by chance
increases with the difference in sequence lengths. Normal-
izing the number of edit operations by the longer sequence
cannot compensate adequately for this effect. Since it is
hard to normalize for this stochastic process, most scan-
path comparison methods exhibit insufficient normalization
when comparing sequences of different lengths.

An implementation of the Levensthein distance and
the Needleman-Wunsch algorithm for the analysis of eye-
tracking data can be found in the eyePatterns software (West
et al., 2006) together with some visualization options.

In another approach, Zangemeister and Oechsner (1996)
employed a string comparison method, where saccadic
direction are encoded by letters indicating to the com-
pass directions (N, NE, E,...). This method was applied to
find differences in visual scanning behavior of hemianopic
patients (Zangemeister & Oechsner, 1996). The authors uti-
lized different weights between ROIs and a special weight-
ing of the first fixation. Significant differences in patients’
scanning were identified using the Kolmogorov-Smirnov
test on the distributions of distances between scanpaths.

Fig. 1 Example scanpaths from a Mario Kart driving game. White circles mark fixations, arrows indicate saccades. ROIs were annotated as
colored box overlays for Mario, the position indicator, a power-up item, and the other players
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The iComp method (Duchowski et al., 2010;
Heminghous & Duchowski, 2006) circumvents the subjec-
tive ROI labeling step: fixations are mean-shift clustered,
leading thus to a data-driven string conversion by assigning
a letter to each fixation cluster in an automated way. The
string alignment step requires identical regions of both
scanpaths to be labeled by the same letter. Since the mean-
shift clustering produces slightly different clusters for each
scanpath, corresponding clusters have to be identified by
intersecting the clusters. A similar procedure was employed
by Privitera and Stark (2000) to determine the overlap
between automatically generated and human annotated
ROIs.

In a similar approach (Over et al., 2006), Voronoi cells
are constructed around fixation locations, leading to small
cell sizes in densely fixated regions and larger sizes in
homogeneously viewed regions.

Feusner and Lukoff (2008) propose a permutation test
to determine the significance of differences between scan-
path distance distributions. While the proposed permutation
test is easy to apply (since it is parameter free and does not
require any prior conditions), its sensitivity is limited.

Scanpath comparison based on fixation maps

iMap (Caldara & Miellet, 2011) is based on the comparison
of 3D fixation maps (dimensions are x, y, fixation density).
Random field theory is then applied to statistically test each
pixel of two fixation maps against each other and to cor-
rect for the multiple testing. Since fixation maps are usually
smoothed by a Gaussian filter, neighboring pixels are not
independent of each other, which has further implications
for the statistical analysis. Later versions of iMap (Lao et al.,
2015) use therefore different statistics, such as pixel-wise
linear mixed effect models and a bootstrapping approach.
This leads to an increase in statistical power so that even
more subtle effects can be detected.

The main advantage of heatmap over string-based meth-
ods is that no semantic a-priori expectations of the exper-
imenter are introduced to the data analysis process, since
no ROI annotation is required. Attentional constraints can
be integrated into the fixation map, e.g., by weighting the
Gaussian by fixation duration or modifying the spread of the
Gaussian to the extend of the fovea region or the eye-tracker
accuracy.

However, a fixation map is unable to represent the tempo-
ral dimension and order of a scanpath. Subsequent fixations
to the same location will simply add up and give a simi-
lar impression as one continued, long fixation towards the
region.

There are various fixation map comparison approaches
and some even incorporate a time dimension to a limited
degree (e.g., by considering several fixation maps from

different time slices), but only few like (Leonards et al.,
2007) provide a robust statistical testing.

Geometric scanpath comparison

Given the numerical output format of most eye trackers,
one of the probably most straight-forward approaches to
scanpath comparison is based on their geometrical represen-
tation. In this case, the problem of scanpath comparison can
be defined as finding an optimal mapping between fixation
locations in both scanpaths by matching the closest neigh-
bor fixations, as done by the Mannan distance (Mannan
et al., 1996). This approach requires no ROI annotation and
is easy to implement. However, the devil is in the details:
should we allow to match several fixations of one scan-
path to just one fixation of the other scanpath? Eyenalysis
(Mathôt et al., 2012) for example, performs a double map-
ping to circumvent this problem (see Fig. 2). How do we
proceed with scanpaths of different lengths, where some fix-
ations do not have a matching partner in the other scanpath?
How to include the time dimension? How to choose the dis-
tance/neighborhood of a fixation? The Eyenalysis authors
leave open, which features of fixations to use and how to
weight them, and thereby, formulate a very general measure.
As an extension to the Mannan distance, they normalize by
the length of the longer sequence and suggest to include a
time stamp in the feature vector in order to achieve sequence
sensitivity.

The MultiMatch algorithm (Dewhurst et al., 2012;
Jarodzka et al., 2010) is a more sophisticated vector-based
method. It produces scanpath distances in various dimen-
sions, such as location and duration. Therefore, fixations
are converted to a vector representation by first simplifying

Fig. 2 Double mapping between two scanpaths S1 and S2 represented
by their fixations (white and gray circles). In the first step, for every
fixation of S1 the spatially closest fixation of S2 is determined (solid
arrows). This procedure is then repeated the other way round - each
fixation in S2 is assigned to its closest neighbor in S1 (dotted arrows).
Adapted from Mathôt et al. (2012)
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the scanpath shape (i.e. deleting small saccades and merg-
ing subsequent saccades towards the same direction), then
choosing representative values such as the location and the
fixation duration as vector dimensions. An optimal map-
ping of fixations is determined by the Dijkstra algorithm,
finding the shortest path through a fixation vector similarity
matrix. The method conserves fixation sequence. Scanpath
difference distributions can be statistically tested by the
Kolmogorov-Smirnov test.

FuncSim (Foerster and Schneider, 2013) splits a task into
different functional units (subtasks) and performs compar-
isons only within the same functional unit. This way, the
normalization problem for different scanpath lengths does
not occur. A plausible way to segment a task into subtasks
and a way to label the data (automatically or manually) is
required. Saccade length, direction, fixation duration, and
spatial characteristics of the scanpath can be modeled. The
splitting into functional units represents a sequence conser-
vation, but the algorithm can also include fixation durations
in its alignment step. Additionally, FuncSim provides a
similarity score baseline by comparing to the similarity of
a scanpath to its permuted derivative, making the scores
statistically meaningful.

Probabilistic scanpath comparison

Normal variability in scanpaths may be high and mask the
subtle but existing differences between scanpaths. Proba-
bilistic representations can handle this by learning the level
of variability in scanpaths and comparing against the level of
variability found between two specific scanpaths. An early
mentioning of the transition matrix approach based on fix-
ation location can be found in Ellis and Smith (1985). A
detailed description will be given in Section 2. One advan-
tage of this approach is that transition frequencies can be
normalized for each scanpath separately, resulting thus in a
good normalization for different sequence lengths. To better
cover general scanning patterns, changes in saccadic direc-
tions (N, S, E, W, NE,...) instead of local features were
later proposed (Ponsoda et al., 1995). The authors mention
the necessity of dimension reduction (i.e., deleting seldom
occurring directions from the transition matrix), especially
when employing statistical testing (e.g., χ2 test) on the
transition matrices.

A similar approach to transition matrices is SubsMatch
(Kübler et al., 2014b). The algorithm builds a string rep-
resentation of the scanpath but splits it into smaller sub-
sequences. The frequencies of these subsequences are then
compared between scanpaths. This is basically an exten-
sion of the transition matrix approach to more than just
one transition. SubsMatch constructs the scanpath string by
binning the data by percentiles. Therefore, the number of
occurrences of each letter in the scanpath representation is

the same, resulting thus in an efficient spatial resolution
usage.

Another representative of this group is the Markov
chain/model (e.g., Engbert and Kliegl (2001)). States of the
model are typically represented by ROIs and state transi-
tions are calculated as the transition probability between the
different ROIs (Kanan et al., 2014).

Mast and Burmeister (Mast & Burmester, 2011) employ
t-pattern detection (Magnusson, 2000) in order to find repet-
itive scanning patterns. Based on a statistical critical interval
test, repetitive sequences can be found, even if there is
a constant time-delay contained in the pattern (similar to
an alignment with a sequence of gaps/substitutions inside).
Short t-patterns can be then combined to longer, more
complex ones.

Most of the aforementioned algorithms interpret scan-
path comparison as the problem of finding one similarity
value between the scanpaths. But different experimental
factors may have a huge influence on this measure, masking
thus the effect of other factors. To evaluating the goodness
of such a measure, it is necessary to test for significant
differences in the similarity within and between scanpath
groups. However, this measure does not imply anything
about actual group separability. Therefore, comparing the
performance of these algorithms with the classification
method proposed here is not adequate and we will restrict
the comparison to other scanpath classification approaches.

String Kernel construction

In this section, we will describe the construction of a new
string kernel approach for scanpath comparison and its
application to scanpath classification. First, the scanpath is
encoded as a string and spliced into short subsequences. The
frequency of specific subsequences that resemble typical,
repeatedly occurring behavioral patterns is then used as a
feature of similarity.

The general idea and concept can be derived from the
transition matrix approach: a transition matrix (Ponsoda
et al., 1995) contains the number of transitions from one
ROI to another. An example transition matrix for the two
scanpaths visualized in Fig. 1 is shown in Table 1. The
transition matrix for the left scanpath was constructed by
starting at the first fixation, directed towards Mario and not-
ing the transition from Mario to the position indicator by
adding one to the corresponding entry (row 1, column 2)
in the transition matrix. We continue to add the remaining
transitions for the whole scanpath.

In the next step, transition count matrices are normal-
ized (Table 2), since longer scanpaths would naturally lead
to a higher number of transition counts for all transitions.
In this work, however, we are only interested in the general
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Table 1 Transition count matrices for the two scanpaths MPMIOM
(left) and MPMPOM (right) from Fig. 1

From \To Mario Position Item Others

Mario 0 1 1 0

Position 1 0 0 0

Item 0 0 0 1

Others 1 0 0 0

Mario 0 2 0 0

Position 1 0 0 1

Item 0 0 0 0

Others 1 0 0 0

exploratory patterns. Therefore, we need to compare scan-
paths of different lengths with regard to their shape. L2
normalization is achieved by making each transition matrix
sum up to 1, with each entry corresponding to a transi-
tion frequency. Such transition frequencies can easily be
embedded as a Markov chain.

n-gram features

Note that exploratory gaze patterns often consist of gaze
sequences of more than just two subsequent fixations. A
typical example is the glance to the wing-mirrors and over
the shoulder while driving or changing the lane, e.g., in the
order windshield-side, mirror-side, and window-windshield.
In order to capture such patterns, we need to look at more
than just two subsequent transitions. In the scenario pre-
sented in Fig. 1, there is a pattern of looking towards Mario,
the position indicator, and back towards Mario in both of the
exemplary scanpaths.

While there is no theoretical limitation regarding the
number of subsequent transitions that can be considered,
there are practical implications, since the possible num-
ber of unique transition patterns increases dramatically with
the pattern length. A scanpath of length l encoded with an

Table 2 Normed transition frequency matrices for the above
scanpaths

From \To Mario Position Item Others

Mario 0 0.2 0.2 0

Position 0.2 0 0 0

Item 0 0 0 0.2

Others 0.2 0 0 0

Mario 0 0.4 0 0

Position 0.2 0 0 0.2

Item 0 0 0 0

Others 0.2 0 0 0

alphabet of a unique letters can contain a theoretical num-
ber al combinations of letters. However, actually occurring
patterns are limited to a fraction of the theoretically pos-
sible patterns, thus making them computationally tractable.
Furthermore, we are specifically interested in patterns that
occur more than once (representing a typical behavioral pat-
tern), and will therefore choose the parameters in a way to
reduce the number of occurring patterns to produce a certain
overlap.

An efficient method for the calculation of such scan-
path subsequences and their frequencies was suggested in
SubsMatch (Kübler et al., 2014b). With the following clas-
sification step in mind, we call this subsequence frequency
calculation a conversion to the n-gram feature embedding of
the scanpath, with n being the length of the subsequences.
Such a feature embedding can be performed in linear time.
An easy to use implementation can be found in the Sally
tool (Rieck et al., 2012). The tool associates each letter with
one dimension in the vector space of the embedding. Each
feature is indexed by a hash function to create the usually
large and sparse matrices of feature counts efficiently. These
feature counts are then normalized to represent feature
occurrence frequencies.

The scanpath comparison step proposed by Kübler
et al. in SubsMatch (Kübler et al., 2014b) is based on a
subsequence histogram comparison and suffers from the
following limitations: subsequences that are frequent in two
groups of scanpaths, but not discriminative between the
groups, may have a major influence on the scanpath sim-
ilarity score. While the absolute difference in transition
frequencies for these patterns may be large for individ-
ual scanpaths, the difference relative to their likelihood can
be quite small. Furthermore, there is no notion of sim-
ilar subsequences. Two subsequences that differ only in
one fixation are treated as just as different as completely
different subsequences. Therefore, typical histogram com-
parison methods such as Earth Movers Distance (Rubner
et al., 1998) cannot easily be employed. Finally, the Sub-
sMatch approach can only produce a difference score that
sums over all effects present in the scanpath. When com-
paring scanpaths with multiple factors that may have an
effect on scanpath similarity, the strongest effect is likely to
overwhelm all others.

String conversion

For many applications, labeling ROIs is not an option, either
because there is no unequivocal region (e.g., when viewing
abstract art) or in case of an interactive, dynamic scenario.
While the annotation of a video frame-by-frame is already
an annoyingly and time-consuming task, participants view-
ing the video will all see the same stimulus image at a given
point in time. For scenarios that interact with the user, such
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as the Mario Kart game, each participant will be confronted
with an individual stimulus. ROIs would therefore require
separate labeling for each participant.

There have been approaches to semi-automatically deter-
mine interesting objects and to track them Kübler et al.
(2014a), however they are not generically applicable. We
already mentioned approaches to cluster fixation locations
in order to determine ROIs from the data (Heminghous and
Duchowski, 2006).

In this work we employ two different approaches: a reg-
ular grid over the stimulus as used by Cristino et al. in
ScanMatch (Cristino et al., 2010) and the percentile map-
ping utilized by Kübler et al. in SubsMatch (Kübler et al.,
2014b). The differences between these approaches are visu-
alized in Fig. 3. The percentile mapping approach should
be able to compensate for calibration offsets, drift and
small differences between experimental runs, while losing
some sensitivity versus the regular grid approach in very
controlled experimental conditions.

Discriminative features

There are many scenarios where we want to infer more than
just a scanpath similarity score from the data, e.g., Foerster
et al. (2011) compared between-session, between-subject
and random baseline similarity by applying a statistical
test on the similarity scores. Alternatively to these post-
hoc tests, the challenge of identifying scanning patterns
associated with specific experimental factors can be tack-
led by applying machine learning techniques. In this work,
we employ a SVM with a linear kernel (using liblinear
(Chang and Lin, 2011)). SMVs can learn differences in

Fig. 3 Forming regular, gridded bins (bottom) over the whole data
range versus determining data percentiles (top) and assigning fixations
to the percentile bins. Bins are marked by the background intensity and
assigned fixations by their fill intensity

features of two different classes, e.g. differences in the scan-
path features between two different experimental factors.
For the linear kernel the SVM learns feature weights that
represent the discriminative power between two classes.
When applying these weights to a new scanpath feature vec-
tor, the SVM assigns the scanpath into one of the learned
classes.

We are also able to extract feature weights from the
SVM after learning. This way, a ranking of subsequence
frequencies in terms of their discriminative power can be
performed.

The method was evaluated by computing the classifi-
cation accuracy of the SVM, the percentage of correctly
assigned class labels. We performed a 10-fold cross-
validation, during which the scanpaths used for training and
testing were permuted. The 2-regularized L2-loss support
vector classification solver of the dual problem was used
and the SVM cost parameter was not optimized, except
for adjustments for unequal group sizes (unless stated oth-
erwise). Compensation for unequal group sizes was done
by adjusting the misclassification penalties relative to the
inverse proportion of the group label in the data set. A mis-
classification of a less frequent label would therefore be
penalized more than a misclassification of frequent label.
A cost parameter optimization was not done since we are
already optimizing over a range of n-gram lengths (1-10)
as well as alphabet sizes (2-26) and five different string
encodings. Optimizing over more parameters would require
a validation data set to avoid over-fitting. An adequate sam-
ple size for the validation is not given for most of the data
we analyzed.

Since the scanpath groups in our data were not necessar-
ily of equal size, chance level for the classification accuracy
can be determined by always guessing the majority class
label.

Experimental settings and data

As revised above, there is a rich body of scanpath similarity
measures that have been published so far. However, when
to apply which measure remains unclear. In fact, little is
known about the sensitivity of individual algorithms to
specific experimental factors, nor is their sensitivity to dif-
ferent sources of noise explored. Some of the methods were
evaluated on hours of dynamic real-world tasks, others on
static laboratory conditions with only some seconds of data
per trial, some even exclusively on simulated data. Further-
more, temporal resolution of the eye-tracking data varies
from 25 to 1000 Hz across applications. Considering the
enormous implications that these factors impose on data
quality (pupil detection, calibration accuracy, number of
samples per saccade) and content (less than ten fixations
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Table 3 Three replications of the Yarbus experiment that were used for evaluation

subjects different tasks stimuli viewing time [s] eye-tracker [Hz]

OWN 20 2 2 paintings 30-120 EyeTribe (30 Hz)

RY (Greene et al., 2012) 17 4 20 grayscale images 60 SR Research

DY (Borji & Itti, 2014) 21 7 15 natural scenes 30 Eyelink (1000 Hz)

versus thousands per recording), no method can currently
claim to cover the whole range of applications.

Short trial durations and repeated stimulus display in
a laboratory setting is likely to lead to highly similar
scanpaths and few noise. On the other hand, real-world
experiments are always associated with a high level of
pupil detection failures (a review can be found in Fuhl
et al. (2016)) and identical experimental conditions are hard
to reproduce (e.g., the same amount traffic while driv-
ing). Scanpaths of such experiments are likely to be more
dissimilar and noisy.

The aim of this evaluation section is to give an idea of
the applicability of the proposed measure and to quantify
the influence of experimental parameters on the results. To
approach this, we chose a set of experiments with repre-
sentatives for certain aspects of typical eye-tracking experi-
ments. To show the level of generalization of our proposed
measure over different settings as well as its limitations,
we evaluate the classification power and the discriminative
quality of the feature vectors.

In the following, we first introduce the eye-tracking
experiments in the order of their complexity.

Yarbus: image viewing with different tasks

We performed an evaluation on three replications of the
classic Yarbus experiment (Table 3).

Our replication (further called OWN) contains record-
ings of 20 subjects (age range 20-57, 6 male and 14 female).
All subjects viewed Ilya Repin’s painting The unexpected
visitor in two different settings: free-viewing (without a spe-
cific task requirement) and estimating the age of the people
in the painting. We further presented a similar image by Ilya
Repin with the free-viewing task and varied the viewing
time on the original image (Fig. 4). The complete experi-
ment protocol is shown in Fig. 5. Eye-tracking data of 19
out of 20 subjects was of sufficient quality to be included in
the evaluation. Ten subjects wore glasses, one contact lenses
during the measurement.

Greene et al. (2012) previously published eye-tracking
data (further called RY) of 17 observers performing 4 tasks
(memorize, determine the decade when the picture was
taken, estimate how well the people know each other, esti-
mate the wealth of the people) on 20 different grayscale
images for 60 s viewing time. Four to five observers viewed

the same image with the same task. Greene et al. reported
that replicating Yarbus’ findings is harder than expected.
In response to the Green et al. work, Borji and Itti (2014)
showed that it is in fact possible to determine the observer
task from the scanpath above chance level. In addition, Borji
et al. provided another data set (further called DY) contain-
ing recordings of 21 subjects performing 7 different tasks on
15 images of natural scenes (free-viewing, estimate wealth,
age, what was the family doing before the arrival, memo-
rize the clothes, memorize positions of people and objects,
estimate how long the visitor had been away). The block
design resulted in 3 observers viewing the same image with
the same task assignment.

There are further studies on this topic, but their data
is not publicly available (DeAngelus & Pelz, 2009; Haji
Abolhassani & Clark, 2014). Therefore, a direct comparison
of our results to their performance is not possible.

Conjunction search task

By performing a visual search task according to Machner
et al. (2005), subjects have to count all stimuli of a spe-
cific color (red, blue, green), all stimuli of a specific shape
(square, triangle, circle), and the conjunction of both fea-
tures, namely all stimuli of a specific shape and color.
For these three different tasks, the number of total stimuli
(targets plus distractors) and the number of target objects
can be varied (see Figs. 6 and 8), resulting thus in different
difficulty levels.

This study is of particular interest for scanpath com-
parison, since it involves abstract and quite simple stim-
uli. As for the Yarbus experiment, different tasks can be

Fig. 4 The painting Unexpected by Ilja Repin (left) and a similar,
earlier version (right) were used as stimuli
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Fig. 5 Stimulus presentation and task order in our own experiment replicating parts of Yarbus’ original experiment

distinguished from the viewing pattern. Additionally, a mea-
sure of task difficulty is available by considering the number
of counting errors that occur.

In this work, we looked at the association between task,
task difficulty, and scanpath shape.

The study was performed on a 24 display of 1920×1080
pixel resolution. 21 subjects (age range 22 to 43 years, aver-
age 26.5±4.05, 10 female and 11 male) participated and
completed 35 different stimuli, resulting in 735 individual
trials. Nine subjects wore glasses, four wore contact lenses.
Subjects counted target objects by clicking the left mouse
button and could move on to the next stimulus display with
the right mouse button. Data was recorded by means of an
EyeTribe (Dalmaijer, 2014) tracker at 30 Hz using a chin
rest to minimize calibration errors due to head movements.
51 out of 735 trialswere discarded due to insufficient eye track-
ing (conj. 256, color 193, shape 235). Data included in the
analysis has a minimal tracking rate of 83 % (median 98 %).

Mario Kart video game

The video game is interesting in terms of eye movements,
since it allows to study the effect of dynamic, interactive
stimuli under laboratory conditions. Some seconds after
the game starts, no subject encounters the same stimulus
screen. Even when replicating the same experiment, the rac-
ing game will produce very different settings depending on
user interaction with the game and some random effects.
More specifically, we examine:

1. performance in terms of average lap time.
2. two different routes and how their different attentional

requirements influence scanpath shape.

Data of 21 subjects (identical to those of the conjunction
search task) was recorded using an EyeTribe (Dalmaijer,
2014) tracker at 30 Hz and a chin rest. Median tracking rate
was 91 %. Subjects drove three laps per route on two dif-
ferent routes. A Nintendo Wii console and controller were
employed.

Driving with visual field defects

20 patients with blind areas in their visual field (related to
binocular glaucoma or homonymous visual field defects)
and a healthy sighted control group wore a mobile 30 Hz
Dikablis eye-tracker by Ergoneers GmbH during a ∼40
minutes on-road driving session in real traffic. Details on
data collection can be found in Kasneci et al. (2014a),
Kübler et al. (2015a), and Kübler et al. (2015b). Aim of
these studies was to investigate the relationship between
binocular visual field defects, eye movements, and driving
performance.

In fact, previous work on this topic often mentions the
hypothesis of compensatory eye/gaze movements that allow
for the compensation of the visual field defect and lead
to a successful driving test outcome despite the visual
field loss (Kasneci et al., 2014a; Kübler et al., 2015b).
By moving their eyes or head, subjects affected by a visual

Fig. 6 Conjunction search task with different conditions: Counting all green circles requires different effort depending of the number of green
circles actually present as well as on the number of distractor objects
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field defect are able to shift the blind area of their visual
field. In this work, we look at the scanpaths of the subjects
and search for evidence of this hypothesis by identifying the
above mentioned exploratory patterns.

More specifically, we examine:

1. driving fitness of each subject as judged by a driving
instructor who was blind to the specific health status of
the subject.

2. the effect of a visual field loss on exploratory gaze
behavior.

Preprocessing of eye-tracking data

Eye-tracking data preprocessing is essential to ensure good
data quality, which in this work is measured in terms of
accuracy and the percentage of tracking failures. Such fail-
ures mostly occur due to algorithmic flaw in detecting the
pupil center in the eye tracker’s image. Main error sources
include changing lighting conditions, reflections on the eye-
glasses worn by the subject and dark make-up. If a tracking
failure occurs, no reliable statement about the current gaze
direction can be made. Tracking failures can be corrected
if the eye image is recorded by manually marking the pupil
center in the image. However, this process is very time
consuming. Tracking accuracy on the other hand is asso-
ciated with the calibration step, during which a mapping
of pupil center coordinates towards 3D gaze directions is
performed. Over time, calibration accuracy degrades due to
positional changes between the tracker device and the eye
(for example by displacement of an head-mounted device).
Therefore, long recordings without recalibration will usu-
ally exhibit a larger error margin in the determined 3D
gaze direction than short recordings. Correcting for accu-
racy problems post-experimentally is not trivial, since one
has to find objects that are fixated for sure at a specific
point in time. Is such information available, a recalibration
is possible.

It should be noted that for the very different experimental
designs in this work data quality varies: while the conjunc-
tion search task can be performed with constant lighting
conditions and regular recalibration was done between the
short trials, on-road driving involves regular tracking losses
and no opportunity for recalibration.

Data from the costly on-road driving experiments was
manually annotated in order to reach a tracking failure rate
of less than 20 %. Accuracy was corrected whenever the
data analyst found accuracy to be worse than 5◦, usually
after around 20 minutes of driving. Data from screen-based
laboratory experiments (Yarbus, Conjunction search task
and Mario Kart) with a tracking loss of more than 20 % was
discarded.

Fixations and saccades were identified using aMixture of
Gaussians algorithm (Kasneci et al., 2015) with a maximum
likelihood fit for the Gaussian distributions. String encod-
ing was performed at 40 ms fixation duration intervals,
resembling the 25 Hz recording rate of the Dikablis device
and close to the 50 ms per letter suggested by Cristino et al.
(2010).

Results

The overall scanpath classification results shown in Table 4,
suggest that our method is applicable to most of the exper-
iments and experimental factors. Our results exceed by far
the guessing chance baselines. As stated in the Section
Methods, some trials were excluded from data analysis for
quality reasons, leading to a non-balanced design in some
cases. Therefore, the resulting guessing chance, e.g., for a
four-class classification may exceed 25 %. In the following
subsections, we will report the results for each experiment
in detail.

Yarbus: image viewing with different tasks

On our own Yarbus data (OWN) reported in Table 4 we var-
ied task, image, and viewing time in order to demonstrate
the influence of each of these conditions on the scanpath
similarity measure. A four-class SVM was trained in order
to distinguish between the four conditions. The classifica-
tion results are presented as a confusion matrix in Fig. 7. The
diagonal of the matrix shows the percentage of scanpaths
with a certain label (e.g., free-viewing), which are classified
correctly. The off-diagonal elements represent a misclas-
sification, e.g., a free-viewing task scanpath is wrongly
classified as an age task by the SVM in 29.41 % of the cases.
The confusion matrix reveals that the extremely long view-
ing time of three minutes has the strongest influence on the
scanpath measure, i.e., scanpaths of category free-viewing
(3 min) can be assigned correctly to their category in 93 %
of the cases. We examined this effect by looking at heatmap
visualizations of the data for each subject and found that
there were two ways of dealing with the very long view-
ing time: subjects get bored after some time and start to
explore more subtle details of the painting or they just stare
at one point. This effects causes the scanpaths to be easily
distinguishable from the other categories.

We can also find an effect for the task and the displayed
image: scanpaths of the free-viewing task and the age esti-
mation task can be classified to the correct group above
chance level (53 % and 59 %, Fig. 7), but 29 % of free-
viewing scanpaths are misclassified as age estimation tasks.
Task classification is working, but seems to be a hard task,
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Fig. 7 Confusion matrix of the Yarbus (OWN) experiment with per-
centile binning in vertical direction. The largest influence originates
from the long viewing times. However, also task and image exhibit an
effect that allows to classify many of the scanpaths correctly

considering the relatively high error rate. When we compare
this to the presentation of an alternative image, the confu-
sion with the original image is smaller, suggesting a strong
effect of the image on scanpath shape.

In order to verify these effects, we applied our string
kernel method to data provided by Greene et al. (2012)
(RY) and Borji and Itti (2014) (DY). Both data sets allow
us to compare the string kernel method with methods from
related work. The authors of these data sets used them for
task-from-scanpath classification, so we are able to compare
directly to their results.

On the (RY) data, chance level is at 25 %. Borji et al.
reach a classification performance of 34.1 % using a Boost-
ing classifier, whereas (Kanan et al., 2014) reach 33 %
using a SVM on the parameters of a Hidden Markov Model.
Our approach performs similarly, reaching a classification
accuracy of 34.4 % with SVM parameter optimization and
32.1 % without optimization (Table 4).

On the (DY) data provided by Borji et al., our approach
achieves a classification accuracy of 24.2 % with optimiza-
tion, 21.6 % without optimization, being thus far above the
chance level of 14.3 %. Our results support the findings of
these studies that scanpaths contain information that allows
the prediction of the observer’s task. It should however be
noted that this holds for the overall classification rate; reli-
ably predicting the task from one individual scanpath still
remains a challenging problem.

In a second run, we tried to predict the stimulus image
that caused a specific scanpath. The high correct classifi-
cation rates of up to 50 % are caused by the good spatial

resolution of the string kernel method: for large alphabet
sizes and a percentile binning approach the method basically
performs fixation clustering and thereby learns the posi-
tions of relevant objects in each image. The structure of the
images, i.e., the axis that separates the relevant objects in the
image best, obviously has a major influence on the success
of the classification step.

We can thus conclude that the string kernel method is
sensitive to the performed task at a similar classification rate
as other approaches, but the effect of the stimulus image
displayed is much stronger than that of the task performed.

Conjunction search task

The conjunction search task can be performed under stan-
dardized conditions and has a well defined setup. Therefore,
it is well suited to study the effect of specific experimental
factors on the results of the string kernel method. Further
we can correlate the scanpath results with a performance
measure.

As shown in Fig. 8, the number of fixations performed
differs significantly between the three tasks conditions and
the three stimuli counts employed in this experiment. Over-
all the performance measures indicate that it is very easy to
perform the pop-out color task, but difficult to distinguish
targets by shape. The distribution of task completion times
(median conj. 6.6 s, color 3.1 s, shape 8.8 s) as well as the
number of counting errors (conj. 3.7 %, color 3.8 %, shape
11.9 %) suggest that the conjunction task of filtering by
color and shape together is more similar to the color pop-out
task than to the shape task - probably because a large num-
ber of stimuli can easily be discarded by their color feature
and shape has to be considered only for this reduced stim-
uli set. These performance results are consistent with the
findings of Machner et al. (2009) in their control group.

This effect is also resembled in the scanpath confusion
matrix (Fig. 9), showing that the shape task can be clas-
sified at a high accuracy of 72 %. The confusion between
color and conjunction task is much higher (31 %/33 %) than
towards the shape task (11 %/15 %). The tasks that are more

Fig. 8 Kruskall-Wallis tests with false discovery rate corrected p-
values on task performance and scanpath length for the different
experimental settings of the conjunction search task. p-values < 0.05
are marked by a *

Behav Res (2017) 49:1048–1064 1059



Fig. 9 Confusion matrix for the task classification in the conjunc-
tion search task with percentile binning in horizontal direction. The
shape task is relatively easy to classify, while color and conjunction
get mixed up more often. Averaged over all target types, target counts
and distractor counts

similar in terms of task performance also result in more sim-
ilar scanpaths. The more demanding shape task results in a
more unique, distinguishable scanpath. The overall classifi-
cation accuracy of 62 % supports the finding of the Yarbus
task that observer task classification from scanpath is pos-
sible, also for the conjunction search task with its much
simpler stimulus complexity.

Surprisingly, the string kernel method did not reliably
succeed in separating trials of different stimulus count or
different target object count from each other. This might be
related to the normalizes the transition frequencies in order
to account for different scanpath length. Contrary to the
Yarbus example with the very long viewing time and sub-
jects getting bored, the duration of the conjunction search
experiment was determined by the subject herself. Thus,
we can assume that visual search behavior occurred for the
whole trial duration. In this case, a long search may appear
very similar to a short search process due to normalization.

Especially remarkable is the high accuracy (17 % ver-
sus 3 % chance level) of assigning gaze recordings to a
specific stimulus. Since the same stimuli were presented
to all subjects, exact position information is very sensitive
and a high spatial resolution (represented by a large alpha-
bet size), can capture this effect, just as for the Yarbus
image.

We can conclude that it is possible to detect high level
effects such as the task given to a subject, but also to main-
tain high spatial sensitivity for image classification. Viewing
time does not seem to have a relevant influence on scan-
path similarity, as long as viewing behavior is similar for the
whole duration. This implies scanpath length normalization
is working well in eliminating the duration factor from the
scanpath.

Mario Kart

60 % of the study participants were familiar with the Mario
Kart game. In consequence, we found a high correlation of
experience and average lap times. In this work, racing game
average lap times are therefore split at the 60 % marker
as shown in Fig. 10 in order to separate slow from fast
drivers.

Separating scanpaths from players with a fast average lap
time from scanpaths with a slow average lap time was pos-
sible significantly above chance level (86 %). This video
game experiment is especially interesting since it involves a
dynamic, interactive stimulus: every interaction of the payer
with the game (and some random events) will change the
game. In consequence, a different image is displayed on
the screen. Contrary to the Yarbus and conjunction search
experiment, local fixation positions will map to very dif-
ferent in-game objects and ROIs. However, this does not
seem to have a negative impact on the separability of the
scanpaths.

As for the Yarbus and conjunction search data, we
found that different stimuli (here different routes) invoke
very different scanning patterns, leading thus to a very
high classification accuracy of 93 % as shown in
Table 4.

Fig. 10 Mario Kart lap times for both routes split by participants who played the game before and novices
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Driving experiments

For the driving experiment, we would expect that patients
with visual field defects employ so-called compensatory
gaze in order to shift their intact visual field towards
potentially relevant areas of the driving scenario. This
compensatorymechanism should be reflected in the resulting
scanpath, and can therefore be used to distinguish between
patients and the control group. However, not all patients are
able to utilize these patterns and some of them exhibit a gaze
behavior indistinguishable from the control group.

Our results suggest that compensatory gaze patterns can
be identified using the proposed method: separating the
patient and the control group is possible above chance level
at 78 % (Table 4). Using the linear SVM weights, we are
able to identify these discriminative gaze patterns that dis-
tinguish patients from the control group. These patterns
suggest that the frequency of a switch between left and
right hemifield is altered between the patient and the control
group.

However, predicting driving fitness from the scanpath is
not possible above chance level (78 % at 69 % chance level).
The correlation between employed gaze patterns and driv-
ing fitness seems to be weak and not what we would expect
from the compensatory gaze theory.

This finding rather suggests that there might be no such
thing as an alteration of gaze behavior that facilitates driving
fitness, but rather that there is a break-down of normal gaze
behavior in patients that are not fit to drive. This is supported
by the confusion matrix shown in Fig. 11. Distinguishing

Fig. 11 Confusion matrix of the on-road driving experiment. The
group of patients failing the driving test can be separated from the other
groups best. Patients fit to drive exhibit a gaze behavior similar to that
of the control group

patients that passed the driving test from the control group
seems to be impossible - 67 % of the control group get
misclassified as patients that passed the test and 38 % of
fit-to-drive patients get misclassified as control group mem-
bers. However, only few of the fit-to-drive subjects are
misclassified as not fit-to-drive patients (13 %/0 %).

Maintaining a normal gaze behavior may be a difficult
task for patients with visual field defects and can as such of
course be considered a compensatory pattern. However, the
often mentioned increase in saccadic length and distribution
of attention towards the blind side in hemianopic patients
rather suggested an alteration of the viewing behavior of
fit-to-drive patients. Of course it is possible that there are
compensatory movements that we were unable to capture
with our approach.

It should also be noted that we mixed various kinds
of visual field defects (glaucoma and hemianopic patients,
with both left- and right-sided defects) for this analysis and
that a typical compensation routine for a specific defect type
may exist, however we were unable to identify it.

The influence of n-gram length and alphabet size

There are certain factors to consider when choosing the
n-gram length: The method was designed to examine the
frequency differences in n-grams. Therefore, n-grams have
to occur multiple times in the scanpath. Choosing a large n

will produce many unique n-grams and requires a long scan-
path to allow subsequence counts to pile up. On the other
hand, a low n value might not be able to capture charac-
teristic patterns. For example, while n = 1 corresponds to
simple ROI frequencies, n = 2 represents ROI transition
frequencies as in aMarkov chain. The higher the n, the more
specific the gaze patterns will get. The influence on classi-
fication accuracy can be observed in Fig. 12 for the Yarbus
experiment.

The choice of the alphabet size is highly stimulus depen-
dent. We observed that for static stimuli and an expected
high scanpath similarity a large alphabet is advantageous,

Fig. 12 Classification accuracies for different combinations of alpha-
bet size and n-gram length. In general, larger alphabets require a
smaller n, since subsequences get more and more unique
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for more abstract tasks and dynamic stimuli with an
expected low scanpath similarity a small alphabet size is
preferable. For large alphabet sizes the method basically
learns image properties, while low alphabet sizes seem to
facilitate a better generalization behavior for more abstract
factors.

The influence of string encoding

As a general rule of thumb we can conclude that binning,
either horizontally or vertically, works well for stimuli pre-
sented on a computer screen. The real-world task adds
additional complexity, i.e., relatively high measurement
inaccuracies, calibration drift, and measurement errors call
for a more robust string encoding. Using the data percentile
seems to work well, however, one has to be aware of the
severe limitations induced by this step. For example, a right-
wards bias of one scanpath compared to another one would
not be visible in this encoding.

Limitations and considerations

While the proposed method is able to separate scanpath
groups for most experiments and experimental factors,
results for the static experimental settings (Yarbus and
Conjunction search task) are generally better than for the
dynamic tasks (Mario Kart and driving experiment).

Our results suggest that a classification of both the
viewed material (OWN: screen, RY: image, DY: image,
search screen, Mario Kart route) and the performed task
(OWN: screen, RY: task, DY: task, search task) is relatively
easy. Classification of participants performance, however, is
more challenging (patients vs. controls, lap times, driving
fitness) either due to the amount of actual change in visual
scanning, or the sensitivity of the algorithm to the nature of
the change.

Yarbus data and intuition suggests that best separability
between classes can be achieved by choosing an encod-
ing that represents the stimulus ROIs in a meaningful way.
Manual ROI annotation would be the gold standard and
computer vision methods are currently lacking the potential
of segmenting ROIs in a meaningful way for all possi-
ble experiment designs. An improvement over the current
string mapping approach could be achieved by applying a
principal component analysis to the gaze data and perform-
ing string conversion along the axis of highest variance.
However, it is a common misconception that ROIs are nec-
essarily required to represent semantic objects in the viewed
scenery. While this is certainly advantageous, we were
able to show that a simple grid- or percentile-based letter
assignment is often sufficient.

An approach similar to the string encoding is the use
of shapelets (Rakthanmanon and Keogh, 2013). Shapelets
are a one-dimensional representation of a 2d contour. The
features constructed by shapelets will be very similar to
our substring features, however there is the possibility to
construct masked shapelets that are able to tolerate a lim-
ited number of mismatches, finally leading to a similar
effect as the mismatch kernel. However, this comes at a
computational cost.

A similar effect could be achieved by means of string
mismatch kernels (Leslie et al., 2004) that allow for a certain
degree of variation in the subsequence pattern and can there-
fore represent a similarity between features. This would
however increase the complexity, i.e., for longer patterns not
only the actually occurring patterns but also the ones similar
to them have to be considered.

On the other hand the possibility to consider all patterns
remedies the very sparse feature vectors for short exper-
iments analyzed with a high alphabet and n-gram size.
Classification accuracy without considering mismatches
might drop to chance level. Allowing for mismatches
in the subsequences would make the feature vector less
sparse. As an alternative feature selection could be per-
formed to identify the discriminative power of individ-
ual features relevant for the classification problem at
hand.

By accident a programming error in an earlier version
of the algorithm resulted in a unique labeling for the very
first n-gram in the sequence (a space separating the class
label from the fixation sequence was considered as part of
the sequence). We found that for short scanning sequences
marking the first fixation n-gram uniquely can improve
the results. This underlines the importance of the first few
fixations in a static context (Zangemeister & Oechsner,
1996).

This effect should also be observable in a global align-
ment of the sequences as a higher degree of conservation.
It was not included in the final version of the algorithm
and the evaluation at hand. For long lasting experiments and
for studying general scanning patterns, the effect becomes
negligible.

Conclusion

We introduced a new scanpath comparison and classifica-
tion method. In an extensive evaluation the generalization
over a vast field of eye-tracking applications, from labora-
tory conditions to real-world scenarios, was demonstrated.
SubsMatch 2.0 is a measure for finding discriminating
patterns between groups of scanpaths and for calculating
scanpath similarity.

Behav Res (2017) 49:1048–10641062
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Machner, B., Sprenger, A., Kömpf, D., Sander, T., Heide, W., Kimmig,
H., & Helmchen, C. (2009). Visual search disorders beyond pure
sensory failure in patients with acute homonymous visual field
defects. Neuropsychologia, 47(13), 2704–2711.

Behav Res (2017) 49:1048–1064 1063

http://dx.doi.org/10.1167/14.3.29.doi
http://dx.doi.org/10.3758/s13428-011-0092-x
http://dx.doi.org/10.3758/BRM.42.3.692
http://dx.doi.org/10.3758/s13428-012-0212-2
http://dx.doi.org/10.1145/1743666.1743719
http://dx.doi.org/10.1145/1344471.1344481
http://dx.doi.org/10.1007/s00138-016-0776-4
http://dx.doi.org/10.1016/j.visres.2012.03.019
http://dx.doi.org/10.1371/journal.pone.0087470


Magnusson, M.S. (2000). Discovering hidden time patterns in behav-
ior: T-patterns and their detection. Behavior Research Methods,
Instruments, & Computers, 32(1), 93–110.

Mannan, S.K., Ruddock, K.H., & Wooding, D.S. (1996). The rela-
tionship between the locations of spatial features and those of
fixations made during visual examination of briefly presented
images. Spatial Vision, 10(3), 165–188.

Mast, M., & Burmester, M. (2011). Exposing repetitive scanning in eye
movement sequences with t-pattern detection. Proceedings IADIS
International conference IHCI 137–145.

Mathôt, S., Cristino, F., Gilchrist, I., & Theeuwes, J. (2012). A sim-
ple way to estimate similarity between pairs of eye movement
sequences. Journal of Eye Movement Research, 5(1), 1–15.

Nobre, K., & Kastner, S. (2013). The Oxford handbook of attention.
Oxford: Oxford University Press.

Noton, D., & Stark, L. (1971a). Eye movements and visual perception.
Scientific American.

Noton, D., & Stark, L. (1971b). Scanpaths in eye movements during
pattern perception. Science, 171(3968), 308–311.

Over, E.A., Hooge, I.T., & Erkelens, C.J. (2006). A quantitative mea-
sure for the uniformity of fixation density: The voronoi method.
Behavior Research Methods, 38(2), 251–261.

Pernice, K., & Nielsen, J. (2009). How to conduct eyetracking studies.
Nielsen Norman Group.

Ponsoda, V., Scott, D., & Findlay, J.M. (1995). A probability vec-
tor and transition matrix analysis of eye movements during visual
search. Acta Psychologica, 88(2), 167–185.

Privitera, C.M., & Stark, L.W. (2000). Algorithms for defining visual
regions-of-interest: Comparison with eye fixations. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(9), 970–
982.

Rakthanmanon, T., & Keogh, E. (2013). Fast shapelets: A scalable
algorithm for discovering time series shapelets. In Proceedings of
the thirteenth SIAM conference on data mining (SDM).

Rieck, K., Wressnegger, C., & Bikadorov, A. (2012). Sally: A tool
for embedding strings in vector spaces. The Journal of Machine
Learning Research, 13(1), 3247–3251.

Rubner, Y., Tomasi, C., & Guibas, L.J. (1998). A metric for distribu-
tions with applications to image databases. In Computer Vision,
1998. Sixth International Conference on, (pp. 59–66).

Sippel, K., Kasneci, E., Aehling, K., Heister, M., Rosenstiel,
W., Schiefer, U., & Papageorgiou, E. (2014). Binocular glau-
comatous visual field loss and its impact on visual explo-
ration - a supermarket study. PLoS ONE, 9(8), e106,089.
doi:10.1371/journal.pone.0106089

Tafaj, E., Kasneci, G., Rosenstiel, W., & Bogdan, M. (2012). Bayesian
online clustering of eye movement data. In Proceedings of
the Symposium on Eye Tracking Research and Applications,
ACM, ETRA ’12. doi:10.1145/2168556.2168617, (pp. 285–
288).
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