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ABSTRACT
A popular topic in eye tracking is the difference between novices
and experts and their domain-specific eye movement behaviors.
However, very little is researched regarding how expertise develops,
and more specifically, the developmental stages of eye movement
behaviors. Our work compares the scanpaths of five semesters of
dental students viewing orthopantomograms (OPTs) with classifiers
to distinguish sixth semester through tenth semester students. We
used the analysis algorithm SubsMatch 2.0 and the Needleman-
Wunsch algorithm. Overall, both classifiers were able distinguish
the stages of expertise in medical image reading above chance level.
Specifically, it was able to accurately determine sixth semester
students with no prior training as well as sixth semester students
after training. Ultimately, using scanpath models to recognize gaze
patterns characteristic of learning stages, we can provide more
adaptive, gaze-based training for students.
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1 INTRODUCTION
Experts ranging from Olympic athletes and chess players to sur-
geons, doctors, and teachers are often characterized by their profi-
cient abilities. Their skills are built over time, through practice and
developing the knowledge that accompanies their expertise. Not
only does expertise relate to performance, but also eye movement
behavior [Gegenfurtner et al. 2011]. Here, it has been consistently
found that differences between experts’ and novices’ task related
eye movements are indeed apparent and can be reflective of per-
formance [Eivazi et al. 2017; Gegenfurtner et al. 2011; Kübler et al.
2015; Moran et al. 2002; Reingold et al. 2001; Van der Gijp et al.
2017]. Conventionally, most of the expertise literature focuses on
this stark group contrast and, to an extent, the novice - intermediate
- expert differences. In this work, we aim to determine whether eye
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movement differences within the novice category become apparent
and, if so, at what level of task-knowledge they appear.

1.1 Expert and Novice Differences
There are tenable theories for eye movement behavior differences
in experts and novices. Task-relevant information gathered more
rapidly [Haider and Frensch 1999], more rapid processing and re-
trieval of information stored in memory [Ericsson and Kintsch
1995], and more thorough global image analysis [Kundel et al. 2007]
are considered by Gegenfurtner and colleagues [Gegenfurtner et al.
2011] to be the most supported by the literature.

In the medical domain, expertise is relevant to image interpreta-
tion; for instance, accurate detecting of anomalies in radiographs
[Kundel et al. 2007; Van der Gijp et al. 2017, 2014]. Here, it has been
found that experts employ fewer fixations than novices [Gegen-
furtner et al. 2011; Nodine et al. 1996; Van der Gijp et al. 2017], as
well as longer saccade lengths [Gegenfurtner et al. 2011; Van der
Gijp et al. 2014] and they are overall faster and more accurate at
detecting anomalies [Gegenfurtner et al. 2017, 2011; Kok et al. 2016;
Kundel et al. 2007]. Efficient detection lies in the search strategy
experts employ. For instance, a global - to - focal search strategy
[Nodine et al. 1996; Van der Gijp et al. 2017], where the whole image
is quickly scanned for overall assessment, then more subtle issues
are focused in on. In contrast, novices show more initial centralized
search that systematically covers an image and more attention to
salient structures[Van der Gijp et al. 2017]. Van der Gijp and col-
leagues also looked at search patterns related to expertise and found
that, within tasks (e.g. looking at chest x-rays or mammography),
expert’s visual patterns (e.g. diffusive, left-right comparison) are
consistent [Van der Gijp et al. 2017].

To the best of our knowledge, only one study has looked at
expert-novice gaze differences in the context of radiograph images
specifically for dentistry (orthopantomogram, short: OPT). Turgeon
and Lamm [Turgeon and Lam 2016] found that the complexity
of the image affected search time regardless of expertise. Also,
experts had fewer fixations on OPTs where the anomalies were
more obvious compared to novices, though for images with no
anomalies, scanning behavior for both groups was not significantly
different [Turgeon and Lam 2016]. These findings could imply that
visual search behavior in OPTs may have similar gaze behaviors
to other types of radiographs, but the OPT visual search strategy
patterns may differ.

1.2 Developing Expert Behavior
Although literature on gaze behavior in the particular context of
OPTs is sparse, the majority of radiographs are taken in dental
medicine1. In contrast to other medical fields, OPTs are major part
of the routine diagnosis. However, given how critical OPTs are to
dental medicine, like radiographs, they are susceptible to under-
detections and missed information (dental OPTs:[Baghdady et al.
2014, 2009], non-dental radiographs:[Kok et al. 2016; Krupinski et al.
2006; Kundel et al. 1978, 2008]).

The rate of correct detection can be increased in both the den-
tal and general medical fields. In dentistry for instance, patients

1According to the statistics of the Federal Agency for Radiation Protection, 39% of all
x-rays in Germany were taken within dental medicine in 2012 (www.bfs.de).

Figure 1: Visualization of fixations from a student in each
semester evaluated in the current study as indicated by the
colored numbers respectively. In this condition, the sixth se-
mester student’s data is prior to training.

benefit greatly from early detection of calcifications of the cervical
vessels or pathologies of an inflammatory or neoplastic nature in
the jawbones or maxillary sinuses. Thus, there is large potential
for addressing methodologies in the teaching of radiologic feature
identification and interpretation [Van der Gijp et al. 2017]. In ad-
dition, previous work provides evidence that eye-tracking can be
successfully deployed to design training techniques [Van der Gijp
et al. 2017]. Therefore, augmenting the learning material to pro-
mote how to read radiographs is a promising approach for novice
training.

The expert-novice discussion is important because it may have
implications for the question of how to teach. Given what is known
of an expert’s eye movements, how can learning interventions
impart expert eye movement patterns to a student? Jarodzka and
colleagues [Jarodzka et al. 2010b] found that novices were more
likely to focus on irrelevant information because they lacked the
conceptual knowledge to filter out the extraneous details. As a
training intervention, they found that displaying an expert gaze be-
havior model improved visual attention to the relevant information
in visual stimuli [Jarodzka et al. 2010b]. Furthermore, Jarodzka and
colleagues [Jarodzka et al. 2012] found that by combining verbal
instruction and expert gaze overlay, these eye movement modeling
examples (EMMEs) improved visual search behavior for medical
students in a clinical reasoning task. Despite these encouraging
results, it is yet an open question whether using a model that is
only slightly ahead of the student and modeling of gaze behav-
ior in a progressive fashion could be even more effective. For that
question to be answered, one first needs to better understand the
developmental stages of students.

The purpose of this work intends to address the visual search
behavior related to the developmental stages of students. With
their differences in mind, we can use these progressive models in
learning interventions. Therefore, the future goal will be to detect
when and where a student’s visual search of an OPT deviates from
a more advanced visual search model and, in real time, redirect
him or her towards the gaze behavior most optimal for the best
performance.
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1.3 Gaze Behavior
Gaze behavior differences between novice and experts have been
reliably measured in multiple studies [Gegenfurtner et al. 2011].
However, it is interesting to see whether differences appear within
one dimension: e.g. novices. Differences between students based on
their conceptual knowledge may be apparent at the semester level.
Figure 1 shows the scanpath of a student from each semester, six
through ten, taken from the current study. Here, the sixth semester
student’s scanpath visualized is prior to the OPT analysis course; he
or she has some basic anatomy knowledge, but not in the context
of OPTs. His or her scanpath shows fixations only on the teeth and
no peripheral area exploration. A change in exploratory behavior
is seen from the sixth semester to the seventh semester, where
scanning behavior that compares similar areas of the jaw on the
left and the right is present. Then, eighth, ninth, and tenth semester
students show more coverage of the OPT; specifically, less fixations
on the teeth and longer saccades spanning the upper and lower jaw
areas.

Differences in exploratory behavior, as characterized in the scan-
paths of experts and novices, is often under-explored in the litera-
ture. Even more, scanpath differences relating to the developmental
stages has yet to be measured: Such as scanpaths reflecting acquired
knowledge in each semester. Understanding gaze behavior in an
effort to find patterns determinant of a students’ developmental
level can ultimately build an adequate model representation of eye
movements for the complete learning process. Therefore, we aim to
distinguish exploratory behavior differences at the semester level.

1.4 Scanpath analysis
One of the most accepted methods for scanpath analysis is rela-
beling fixations to characters. Then, patterns of fixations are ex-
pressed as a string of characters. String representations are often
constructed to provide information on how a subject views a stim-
ulus relative to areas of interest (AOIs). Then, we can measure the
similarity of one subject’s scanpath to another’s: For instance, via a
distance score [Goldberg and Helfman 2010; Jarodzka et al. 2010a;
Kübler et al. 2014]. The scores relate to how the sequences can
be aligned. Thus, these metrics are known as sequence alignment
techniques.

According to Jarodzka and Colleagues [Jarodzka et al. 2010a],
AOIs can either be semantic, where they are manually defined,
or gridded. The gridded-AOI approach divides the stimulus into
blocks. This approach saves time compared to the former approach
and maintains the sequential order, shape, and the length of the
scanpaths [Jarodzka et al. 2010a]. An example of two scanpaths
represented as strings, as well as their alignment, is depicted in
Figure 2. In general, string alignment techniques are dependent
on the AOIs, meaning they are susceptible to noise [Cristino et al.
2010; Holmqvist et al. 2011; Jarodzka et al. 2010a]. Aside from the
sequence alignment approaches to scanpath comparison, there are
other methods such as implementations of Hidden Markov Models
[Ellis and Stark 1986; Goldberg and Helfman 2010; Hacisalihzade
et al. 1992; Josephson and Holmes 2002] as well as vector-based
approaches [Dewhurst et al. 2012; Jarodzka et al. 2010a]; though
they are more complex and may be less sensitive to sequence order.
This paper deals largely with sequence alignment.

Figure 2: Scanpath comparison example with two scanpaths
for same stimuli and AOI grid. Below the image is the global
string alignment calculated with the Needleman-Wunsch al-
gorithm. Matches, mismatches, and gaps are [ | , : , - ] respec-
tively.

Global String Alignment Approach. As previously mentioned,
string alignment methods score a scanpath against another based
on their similarity. These methods can either align locally, where
subsequence alignment takes precedence, or globally. One global
alignment approach is the Needleman-Wunsch algorithm. For two
sequences, a matrix is created, and each element is filled with ei-
ther corresponding penalties for gaps or substitutions or rewards
for matches. Compared to other sequence alignment techniques,
the scoring system can offer more flexibility, such as limiting the
penalties for either gaps or mismatches [Baichoo and Ouzounis
2017; Day 2010].

Originally used in bioinformatics, the Needleman-Wunsch al-
gorithm was developed for genetic sequence alignments [Needle-
man and Wunsch 1970]. It has also become a staple of scanpath
analysis. Since string alignment methods’ first appearance in the
eye-tracking world in the nineties [Brandt and Stark 1997; Hacisal-
ihzade et al. 1992], the Needleman-Wunsch algorithm has been
used for numerous studies. For instance, [Day 2010] used it to clas-
sify differing visual search behavior strategies during a decision
making task. Pan and colleagues [Pan et al. 2004] determined that
scanpath differences on web pages were affected by the complexity
of the web page design. Additionally, an implementation of the
Needleman-Wunsch algorithm supported that expert and novice
programmers showed scanpath differences while reading lines of
Java code [Busjahn et al. 2015]. In both [Busjahn et al. 2015; Pan et al.
2004], group and behavioral differences were measured by grouping
similarity scores. Day and colleagues [Day 2010] validated it as a
classifier rather than post hoc similarity grouping. They found that
it was capable of distinguishing six decision making strategies at
from 88% accuracy [Day 2010].

An issue with the Needlman-Wunsch and other sequence align-
ment algorithms is that they can be time costly [Goldberg and
Helfman 2010]. Pairwise comparisons have O(mn) complexity for
both time and space for very large sequences m and n [Baichoo
and Ouzounis 2017]. Furthermore, it does not account for fixation
duration, though other implementations of the Needleman-Wunsch
algorithm, as well as other string alignment approaches, have com-
pensated for temporal information loss. [Cristino et al. 2010].
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String Kernel Approach. SubsMatch [Kübler et al. 2014] combines
string representation with transition frequency analysis. Contrary
to transition matrices or Markov chains, transitions between multi-
ple subsequent fixations can be handled, which can correspond to
behavioral patterns. Initially, a scanpath string is constructed by
assigning letters to fixations in a way that the final scanpath string
contains roughly the same number of occurrences of each letter.
Therefore, horizontal bins of different sizes are constructed so that
each bin contains the same number of fixations [Kübler et al. 2014].
The number of such bins, and thereby of letters to use, is one of the
parameters of the algorithm. Then, all possible subsequences of a
given size (so-called n-grams, where n stands for the length of the
sequence and is the second parameter in the algorithm) and their
occurrence frequencies are calculated. A similarity metric between
scanpaths can be calculated as the sum of differences between all
subsequence frequencies.

Relatively new to scanpath analysis metrics, SubsMatch has
demonstrated its versatility across task based eye movements [Brau-
nagel et al. 2017a,b; Kübler et al. 2015, 2014, 2017]. Originally, it
was developed and evaluated on dynamic driving scenarios to de-
termine safe versus unsafe drivers [Kübler et al. 2014]. Moreover,
Subsmatch was able to determine expert and novice microneurosur-
geon viewing behavior for multiple images with significant between
group differences compared to other metrics such as Scanmatch,
Multimatch, and Eyenalysis [Kübler et al. 2015]2.

SubsMatch was further improved in the version SubsMatch 2.0
[Kübler et al. 2017] by replacing the similarity metric with a SVM
classification. The frequencies of n-grams are then features used
for a support vector machine (SVM) with a linear kernel. Feature
weights are determined by their importance for distinguishing be-
tween two conditions during the training phase. Fundamentally,
SubsMatch 2.0 sets out to determine the best-fit subsequence length
in conjunction with the best-fit string representation in order to
perform SVM classification based on subsequence occurrences. Sub-
sMatch 2.0 was evaluated on four different data sets (see [Kübler
et al. 2017]). It was capable of accurately distinguishing group based
scanpath patterns in varying laboratory and real-world experiments
[Kübler et al. 2017]. Reported accuracies ranged from approximately
20% to 90% for all experimental data evaluated. Where the highest
classification accuracies were for experts and novices in MarioKart
video game driving scenario and the lowest were for image pre-
diction for both a conjunction search task and the Yarbus task. It
should be noted, even the low accuracies were significantly above
chance level [Kübler et al. 2017].

In general, sequence alignment algorithms can offer insight
into the exploratory eye movement behavior of individuals and
groups. The Needleman-Wunsch algorithm has shown great flexibil-
ity across fields in eye tracking and is regularly applied to determine
scanpath similarity. We aim to distinguish exploratory behavior
differences at the semester level; therefore, such an algorithm is
applicable to our cause. Another interesting aspect is the subse-
quence patterns that may develop based on a student’s level of
understanding, i.e., a representation of the associations between
different stimulus areas. The SubsMatch algorithm is able to analyze

2False Discovery Rate adjusted p-values of a permutation test were provided showing
differences in gaze behavior detected for [Kübler et al. 2015],[Kübler et al. 2014]

patterns of this nature. They can be substantially different from
those found by global sequence alignment, and are an interesting
addition. SubsMatch is less commonly used than the Needleman-
Wunsch algorithm, but its versatility in classifying scanpaths in
laboratory and real-world scenarios has been demonstrated and
it can be interpreted as a generalization of the more commonly
found transition matrices. From this analysis, we can further work
towards developing a representative model of the stages of learning
development.

2 METHODOLOGY
2.1 Participants
Dentistry students in the sixth, seventh, eighth, ninth, and tenth
semesters from the University Hospital Center for Dentistry, Oral
Medicine, and Maxillofacial Surgery were invited to participate
in an assessment of their OPT analysis training. This assessment
was held in a classroom equipped with 30 remote SMI RED250
eye trackers, each attached to a laptop3. Data from a total of 103
students were collected: Sixth semester (n = 17), seventh semester
(n = 18), eighth semester (n = 26), ninth semester (n = 28), and
tenth semester (n = 14). Students in the seventh through tenth
semesters were invited to participate once during the semester,
whereas the sixth semester students were assessed three times: At
the beginning of the semester (n = 17), then again in the middle
of the semester (n = 17), and lastly, at the end of the semester (n =
15). These students were measured on multiple occasions because
the sixth semester is the first and only semester in the dentistry
program where they receive explicit instruction and start massed
practice OPT interpretation.

2.2 Eye Tracker
The SMI RED250 remote eye tracker is a commercial eye tracker
with 250Hz sampling frequency. The experiment was created and
controlled using the SMI software ExperimentCenter 3.7.60. Stimuli
were web-based4, with a 13-point5 calibration prior to presentation.
Analysis of the data was performed with the software BeGaze.

2.3 Data Collection
All students were presented with two sets of ten OPTs with varying
anomalies, some more difficult than others. Each OPT was viewed
twice: Once to explore, then again to draw and indicate any anom-
alies found (e.g. Periodontal disease, cavities, insufficient fillings and
abscesses, not including sufficient fillings, missing teeth needing
no further treatment, or prosthetics). Students fixated on a fixation
cross for two seconds. Then, for the exploration phase, they had 1:30
minutes to look at the OPT. Here, they were instructed to search the
OPT for anomalies6. For the marking phase, they were instructed
to mark anomaly areas with a red circle7. A web-based tool bar was
used with a paint-palette symbol in order to draw red circles on
the OPT image presented on the screen. For this phase, they had

3Display: 1920 ×1080 pixel resolution.
4 Mozilla Firefox version 45.9.0
5However, a 9-point calibration was used for pre-training sixth semester students.
6Exploration: “Das Panoramaröntgenbild lediglich betrachten und nach Auffälligkeiten
mit Krankheitswert suchen.”
7Marking: “...Nun sollen Sie Auffälligkeiten markieren.”
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Figure 3: Outline of Experimental Session. After a calibra-
tion, there is an introduction to the task and a tutorial
on marking the anomalies. After, a verbal instruction was
presented with information on what kind of anomalies he
should focus on. The subject is primed with a fixation cross.
Then in the exploration phase, he has 1:30minutes to search
the image in a clinical context. After, there is another in-
struction slide for drawing anomalies. Then, in the drawing
phase, he marks the issues using an on-screen drawing tool.
Here, he has unlimited time and clicks a button on the top
right corner to advance. There are 10 OPTs presented in a
set, each in an visual exploration and marking phase.

as much time as they needed and could click the continue button
to advance. In all, one set comprised of a calibration, introduction,
and instruction, then for the ten images, a fixation, exploration,
and drawing. Figure 3 illustrates the experimental protocol. In one
testing session, two OPT sets were presented with a ten minute
break in between.

2.4 Data Analysis
In the current study, eye movement data during the visual explo-
ration phase of OPTs in the first set were evaluated. Fixations and
saccades for the left eye, including tracking ratios per image, were
calculated using the BeGaze software. Fixations were calculated
using the standard SMI high-speed settings for the I-VT [Salvucci
and Goldberg 2000]: 50ms for minimum duration and 40°/s peak ve-
locity threshold and peak velocity start at 20% of the saccade length
and peak velocity end at 80% of saccade length. Eye movement data
was removed for images where the tracking ratio was below 80%.
Furthermore, participants were removed if they had missing data
for more than two of the ten images. Ultimately, for the scanpath
comparison, eye movement data from 88 participants were used.

Scanpaths were evaluated in three conditions. First, six semes-
ter students prior to their first OPT analysis training course were
compared to seventh, eighth, ninth, and tenth semester students
(pre-training). Second, sixth semester students during the train-
ing course were compared to each of the higher semesters (mid-
training). Third, sixth semester students at the semester end were
compared to each of the higher semesters (post-training). By eval-
uating the pre-training condition, we can determine how distin-
guishable their gaze behavior is due to their lack of OPT exposure.
For the post-training condition, we can determine how similar the

gaze behavior of sixth semester students is to other semesters, e.g.
seventh semester students. Since the time-course of each semester
is a few months, with roughly two month difference between con-
secutive semesters, we also expect similarities in gaze behaviors in
consecutive semesters, e.g. ninth and tenth semester students.

3 RESULTS
We aim to determine whether there are differences in OPT ex-
ploratory behavior of dentistry students at incremental levels of
their training. We evaluated the SubsMatch algorithm and the
Needleman-Wunsch algorithm on three conditions. Since the clas-
sifiers are trained on five semesters (and trials are almost balanced),
guess chance level is roughly 20 percent. The accuracy of the clas-
sifier is measured as the total number of correctly predicted labels
over the total data set.

Since both classifiers employ supervised learning, data is divided
and used for either training or validation. For training, pre-, mid-,
and post- conditions each had 73, 68, and 68 participants respec-
tively. These values were the total students from each of the five
semesters, with data differing only for the sixth semester students:
since they were evaluated over three occasions. For the validation
data, a total of 15 participants – three per each semester– were set
aside. Each participant viewing up to ten OPTs would result in a
maximum of 150 data sets, though after removal of data with low
tracking ratios, 139 data sets were included. As per the training
data, the validation data for all semesters was the same for each
condition, with the sixth semester students’ data differing.

3.1 SubsMatch 2.0 Algorithm Classification

Table 1: Model Classification Accuracy for Data

Condition Subsmatch 2.0 Needleman-Wunsch

Test Validation Test Validation
Pre-Training 37.20% 28.06% 37.20% 30.90%
Mid-Training 34.49% 20.14% 36.30% 20.14%
Post-Training 34.48% 25.18% 33.73% 23.74%

For training the SVM, both the percentile binning (from [Kübler
et al. 2017]) and the gridded bins (from [Cristino et al. 2010]) were
evaluated. We chose the latter approach for our data because it pro-
vided higher accuracies. However, it should be noted that the overall
difference in classification accuracy for gridded and percentile bin-
ning was minimal and either approach could be employed.

After a leave one out cross validation on the training data, as
described in [Kübler et al. 2017], the SVM model suggested the
respective n-gram and alphabet size parameters for all conditions:
2 and 3 for the pre-training condition, 3 and 7 for the mid-training
condition, and 2 and 7 for the post-training condition.

Table 1 details the overall accuracies for the models for both the
test data and the validation data. The classifier is capable of distin-
guishing semesters above chance level for pre- and post-conditions.
Above all, the classifier shows the highest accuracy for the pre-
training condition, where the sixth semester students before their
OPT analysis training.
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Figure 4: SubsMatch semester classification on the validation data. From left to right, confusion matrices for conditions pre-
training, mid-training, and post-training are presented. With true positive rate for each semester along the diagonals. Note
that the colorbar for all conditions is scaled at .5.

More important than overall performance is how the semesters
were distinguished. Figure 4 shows the confusion matrices for each
condition. From the first matrix in figure 4. The model accurately
predicts pre-training sixth semester students (53.33%) and ninth
semester students. However, it often predicts eighth semester stu-
dents as ninth semester students (69.23%). Additionally, tenth se-
mester were falsely classified as ninth semester or seventh semester
students.

Concerning the mid-training condition, overall performance was
at chance level. The middle confusion matrix in figure 4 also shows
that misclassification was more often high for all semesters.

Similar to the pre- training condition, post-training sixth semes-
ter students were accurately classified (36.67%). Interestingly, the
ninth and tenth semester were more likely to be misclassified as
lower semesters (See last matrix in figure 4).

This error in classifying the tenth semester students was also
apparent in all three conditions, where they are often misclassified
as either seventh or ninth semester students. Moreover, eighth
were more likely to be accurately classified, or misclassified as
ninth semesters in all conditions. Sixth semester students were
able to be accurately classified in both the pre- and post-training
condition.

3.2 Needleman-Wunsch Algorithm 1-Nearest
Neighbor Classification

We ran the Needleman-Wunsch algorithm for each scanpath in the
training set against all others to create a matrix of similarity scores
for each pair. For scoring, 2, −2, and −1 for matches, mismatches,
and gaps respectively.

For the grid-overlay size, we divided the stimulus evenly into
blocks: For example, a 10 × 8 size grid means ten blocks wide and
eight blocks high. We ran a multiple-pairwise NW alignment on
the training data for grid sizes from 5 × 5 to 10 × 10. The most
optimal grid size was 6 × 5 width and height respectively8. Then,
with the multiple-pairs similarity matrix, a one-nearest neighbor
classifier determined the best matched similarity score for each
scanpath. The idea is that the scanpaths in the same class will have
the highest similarity score and will be classified accurately.
8For our stimuli: 320 × 216 pixels for each block size

Table 1 reports the overall accuracies for the Needleman-Wunsch
classifier for both training and validation data. Figure 5 shows the
confusion matrix for semester classification for each condition.

In the pre-training condition (first matrix of figure 5), sixth se-
mester students are classified accurately 80% of the time; however,
the model also tends to over-classify other semesters as sixth se-
mester, such as the eighth semester and the tenth semester students.
Otherwise, ninth semester students are accurately classified. Simi-
lar to SubsMatch, seventh semester students were also more likely
to be classified as ninth semester.

In the mid-training condition (middle matrix of figure 5), again,
performed overall at chance level and similar to SubsMatch. For
example, the ninth semester students are accurately detected. Also,
sixth semester students were more likely to be misclassified as ninth
semester students. Finally, tenth semester students were highly
likely to be classified as seventh semester students (51.85%).

Lastly, in the post-training condition (last matrix of figure 5),
tenth semester students are again misclassified as seventh semester
students (48.15%) which is similar to SubsMatch. More interesting,
is the slight shift in the sixth and seventh semester students, where
they were misclassified more often as higher semester students.

Moreover, therewere no significant differences between semesters
sixth through tenth regarding the overall fixation time on expert
defined anomalies (p = .826). Moreover, differences in fixation time
within the 6th semester (pre, mid, post-training) were not signif-
icant as well (p = .881). Thus, the classifiers were able to extract
pattern information related to learning where the eye movement
data alone could not. Both algorithms were highly capable of dis-
tinguishing sixth semester students in the pre-training condition,
and if they falsely classified students in a semester, they were likely
classified as either the preceding or successive semester.

4 DISCUSSION
Both SubsMatch and Needleman-Wunsch algorithms are similarly
capable of distinguishing semesters from the scanpath data. Both
are highly accurate at classifying sixth semester students with no
prior training in OPT analysis as well as distinguishing sixth semes-
ter students at the end of the semester. These results indicate that
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Figure 5: Needleman-Wunsch semester classification on the validation data. From left to right, confusion matrices for condi-
tions pre-training,mid-training, and post-training are presented.With true positive rate for each semester along the diagonals.
Note that the colorbar for all conditions is scaled at .6.

learning in the first semester (pre-training vs post-training condi-
tion) is very relevant. As previously mentioned, the sixth semester
is where they are first exposed to OPT analysis and interpretation.
This lack of previous exposure in the pre-training is clearly observ-
able in the classifiers. The 1-nearest neighbor Needleman-Wunsch
classifier is very sensitive to the pre-training sixth semester and,
therefore, more likely to classify any trial as such. As apparent in the
confusion matrix (first matrix in figure 5), where eighth and tenth
semesters are frequently misclassified as sixth. With this consider-
ation, SubsMatch performs better separation between pre-training
sixth semester students and all others.

Regarding the mid-training condition, both classifiers performed
similarly and barely above chance level. This behavior from the
classifier could be an effect of heterogeneity in learning speed and
success. In the framework proposed by [Van der Gijp et al. 2014], the
initial stage of expertise development is multi-faceted. Not only is it
a foundation of anatomy and pathology knowledge, but also spatial
abilities and ability to mentally manipulate images. Possibly, some
students advance in one of these areas, but not in another (i.e. high
anatomy recall, but not yet in a clinical context), hence the overall
behavior is not consistent enough to be easily distinguishable.

Sixth semester students at the end of the semester, the post-
training condition, are distinguishable from higher semesters, but
at a much lesser extent than they were prior to training. A possible
effect seen in this condition could be the imminent final exams
motivating students to study. Hence, these students were likely
to be misclassified, as higher semesters as seen in the Needleman-
Wunsch classifier and, to a lesser extent, in the SubsMatch classifier.

Al-Moteri and colleagues [Al-Moteri et al. 2017] comprised lit-
erature regarding eye movements and medical decision making
and found that clinical experience was related to gaze behavior
that was more goal-driven and less stimulus-driven [Al-Moteri et al.
2017; Krupinski et al. 2006]. This finding supports the research
that experts are less drawn to salient features with no diagnostic
relevance. However, differences in gaze behavior before and after
massed training (i.e. within the novice level) could also be explained
by their findings. For instance, less experienced students may still
be more drawn to salient areas, such as the teeth, and may neglect

more important areas that have more subtle cues in comparison to
a more experience student in the same semester.

Overall, it is apparent that OPT exploratory behavior shows
considerable initial change. However, these patterns become more
homogeneous over the course of the higher semesters. This behav-
ior can be inferred by the classifiers consistently misclassifying
eighth, ninth, and tenth semester students. The gaze behavior dif-
ferences between eighth through tenth semester may not be as
large or clear as between other semesters. Thus, there seems to be
a gaze behavioral plateau once students reach the later semesters,
where visual search behavior of OPT does not appear to change
drastically. For example, table 2 shows fixation clusters of the vali-
dation data for three of the ten OPTs. Even without the sequential
information, we can see that image coverage differences are the
most visible when comparing the sixth semester students with no
prior OPT analysis training against the sixth semester students
after OPT analysis training. More complicated to decipher are the
clusters of the eighth, ninth, and tenth semester students; in the
second row of table 2 we see minimal difference in image coverage
between the semesters.

Due to the classifier’s behavior, we decided to look at the data in
another context: The content of the curriculum for each semester.
The sixth semester students receive the OPT analysis and inter-
pretation course alongside lectures on radiology protection and
methods and clinical based lectures on dental, oral and maxillo-
facial diseases. In the seventh semester, the curriculum includes
another radiology lecture as well as other courses dental care and
orthodontology. After the seventh semester, the curriculum has
no courses addressing OPT analysis, rather other concepts related
to orthodontics, prosthetics, or diseases and treatment. Students
in higher semesters also take practical training courses as well as
supervised treatment of patients, though there is no requirement to
review OPTs, nor is there further training targeted at OPT analysis.

Interesting enough, the tenth semester students are classified as
seventh semesters relatively often (see third row of table 2). This
finding could be due to lack of OPT exposure in the curriculum
of the higher semesters. Whether their gaze behavior is similar to
that of seventh semester students due to outstanding effects has yet
to be determined. One possibility could be the expertise reversal
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Table 2: Validation data fixation clusters per semester on
three separate images

Pre-training 6th (red) vs Post-training 6th (pink)

8th (green), 9th (blue), 10th (purple)

7th (yellow) vs 10th (purple)

effect [Kalyuga et al. 2003], where at some point in their studies
they have may have increased cognitive load (a prime example
being their final medical school examinations). Another possibility
could be that the tenth semester students start to slowly develop
and test their own gaze shortcuts. Tenth semester students could
be transitioning towards intermediate level, and their visual search
strategies start becoming more personalized. Cooper and colleagues
[Cooper et al. 2010] found that radiologist trainees, though more
accurate than novices at identifying anomalies in magnetic reso-
nance images, spend the same amount of time searching the image.
The authors liken this behavior to constructing their own visual
pattern; where more advanced trainees shows similar gaze pat-
terns to experts[Cooper et al. 2010]. Future research could further
compare students in their last semester at university against first
year interning in order to determine if there are any changes in
performance as well as visual search strategy.

In the present study, data was collected from only 14 participants
in the tenth semester. Since each participant had scanpath data for
ten different images, this sample size was determined to be adequate.
There is a chance that the nearest neighbor classifier was affected by
the group sizes, but the SVM classifier used in SubsMatch balanced
class weights. However, more participants in this semester could
improve the classifiers prediction accuracy for these students.

Although the fixation data did not show significant differences
between students, both the SubsMatch and Needleman-Wunsch
classifiers were able to detect patterns in the visual search behavior
at the semester level. These patterns were more reflective of learn-
ing that occurs in the initial training course in the sixth semester
in the curriculum. Even with only a few months between these
semesters, subtle differences were still apparent.

The overall accuracy was relatively low when comparing to the
previous work for both the Needleman-Wunsch and Subsmatch
2.0. In [Busjahn et al. 2015], the Needleman-Wunsch achieved dis-
tinguishable differences between of experts and novices. Where
novices were 14 introduction to computer science students and ex-
perts were 6 experienced software engineers [Busjahn et al. 2015].

Based on much of the literature reviewed in [Gegenfurtner et al.
2011], we can also conclude that students compared to engineers
or even, in our case, students compared to experienced radiologists
would have highly contrasting behavior that would affect higher
classification accuracy. [Day 2010] achieves high accuracy (88%)
for classifying 6 decision strategies, but the authors specify that
participants were trained in each strategy for two hours prior to
evaluation.

Similarly, Subsmatch 2.0 was evaluated on varying data from the
Yarbus task (66%) to MarioKart (92%), and consistently achieved
high classification [Kübler et al. 2017]. More important, Kübler and
colleagues note that the algorithm performs better when classifying
stimuli differences or performed task, but performance differences
(i.e. passing or failing a driving test) can be challenging [Kübler
et al. 2017]. Given that our task used semester level as a measure of
learning differences, classification in this context is very difficult.
Moreover, eye movements, such as number of fixations, between
semesters do not differ as dramatically as between novices and
experts. Hence, our work was less intent on such high level abstrac-
tion and more on the complex pattern distinction. Considering the
curriculum for dentistry students offers the OPT analysis course
only in the sixth semester and that higher semester dentistry stu-
dents have no mandatory OPT exposure, we were able to see the
learning from this course as represented in the scanpaths.

5 CONCLUSION
With scanpath comparision, we were able to distinguish OPT ex-
ploratory gaze behavior at a semester level. Both models evaluated
indicated that there was an initial effect in the sixth semester stu-
dents, which is in line with the sixth semester curriculum. Addi-
tionally, higher semesters become less distinguishable in their gaze
behavior, which could also be an effect of minimal OPT training
in the curriculum of these semesters. Whether continuous routine
OPT image interpretation in higher semesters would lead to more
effective visual search strategies and ultimately performance poses
further interesting future research questions.

Performance data of each semester, such as detection rate and
number of false positives, were out of the scope of this paper since
the main focus was scanpath analysis. However, this information
would serve as an ideal baseline for comparing classifier behavior.
Future research could measure performance of the semesters and
how scanpath differences are intertwined. From previous litera-
ture, employing learning interventions to promote expert visual
search strategies in students often neglects improving the perfor-
mance [Gegenfurtner et al. 2017; Jarodzka et al. 2012, 2010b; Kok
et al. 2016; Van der Gijp et al. 2017]. This discord is attributed to
semantic knowledge or reasoning that novices have yet to develop.
In order to coalesce both search strategy and performance of stu-
dents, future research can concentrate more on the progressive
behavior modeling rather than expert behavior modeling. Gaze-
based learning interventions that model each stage of expertise
development rather than the absolute end may provide promising
outcomes regarding the performance. Consequently, adapting the
model behavior to the level of the student may be more effective
for dependable diagnoses later on in the dental and even medical
fields.
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