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ABSTRACT
Deep learning is a promising technique for real-world pupil detec-
tion. However, the small amount of available accurately-annotated
data poses a challenge when training such networks. Here, we
utilize non-challenging eye videos where algorithmic approaches
perform virtually without errors to automatically generate a foun-
dational data set containing subpixel pupil annotations. Then, we
propose multiple domain-specific data augmentation methods to
create unique training sets containing controlled distributions of
pupil-detection challenges. The feasibility, convenience, and advan-
tage of this approach is demonstrated by training a CNN with these
datasets. The resulting network outperformed current methods
in multiple publicly-available, realistic, and challenging datasets,
despite being trained solely with the augmented eye images. This
network also exhibited better generalization w.r.t. the latest state-
of-the-art CNN: Whereas on datasets similar to training data, the
nets displayed similar performance, on datasets unseen to both
networks, ours outperformed the state-of-the-art by ≈27% in terms
of detection rate.

CCS CONCEPTS
• Computing methodologies → Image processing; Feature se-
lection; Shape analysis.
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1 INTRODUCTION
Algorithmic approaches to pupil detection rely on traditional com-
puter vision methods such as edge detection, intensity thresholds,
and intensity gradient distribution. However, crafting a detector
robust to the multitude of eye-tracking challenges (e.g., reflections,
occlusion by eyelids, makeup) present in pervasive scenarios re-
mains an elusive challenge. Conditions vary dramatically with
scenario, for instance during driving [Kübler et al. 2015; Schmidt
et al. 2017; Wood et al. 2017], museum visits [Santini et al. 2018a],
shopping [Kasneci et al. 2014a], walking [Sugano and Bulling 2015],
in an operating room [Tien et al. 2015], and during human-robot
interaction [Aronson et al. 2018].

Similar to other computer vision tasks, as human-constructed al-
gorithms’ performance saturate, pupil detection is shifting towards
data-driven approaches, as evidenced by recent machine-learning-
oriented pupil detection studies such as [Chinsatit and Saitoh 2017;
Fuhl et al. 2018a,b, 2016a, 2017b; Kan et al. 2018; Vera-Olmos and
Malpica 2017; Vera-Olmos et al. 2019; Zhu et al. 2018]. The key issue
with data-driven approaches is the requirement of large amounts
of labeled data, which is a tedious, costly, slow, and error-prone
manual process. Alternatively, previous work attempted to gener-
ate large amounts of data by using a reverse calibration approach1
in combination with a refinement step [Tonsen et al. 2016]. This
approach requires the subjects to be put under the specific chal-
lenges of interest, and the resulting labels are of lower quality than
human-annotated ones.Wood et al. [Wood et al. 2015] proposed syn-
thesizing perfectly labeled photo-realistic eye images for training
data generation. Using a collection of dynamic eye-region models
obtained from head scans they generated eye images to simulate
various head poses, gaze directions, and illumination conditions.
However, training on synthetic images did not result in a high
inference performance due to differences between synthetic and
real eye image distributions [Kan et al. 2018]. Kan et al. also found
that simple generic affine transformation for data augmentation on
real eye images lead to a better learning rate when compared to
synthetic eye images. In this work, we:

1Estimating the pupil position from an automatically detected target in the field camera.
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• propose multiple domain-specific data augmentation meth-
ods to enhance labeled data to create unique training sets
containing desirable distributions of eye-tracking challenges
(e.g., low contrast, reflections),

• demonstrate that by utilizing data recorded in constrained
scenarios where state-of-the-art pupil trackers already per-
form virtually without errors, it is possible to generate a
foundational data set with high-quality subpixel accuracy
labels,

• combine the augmentation techniques and foundational data
set to create labeled data sets with controlled distributions
of eye-tracking challenges,

• demonstrate the feasibility and convenience of the proposed
approach by training a CNN solely with the foundational
data set images augmented on the fly. The resulting CNN
outperformed the state-of-the-art for pupil detection in mul-
tiple publicly-available, realistic, and challenging data sets,
despite being trained solely with the augmented images, dis-
playing better generalization capabilities across all evaluated
data sets.

2 TRAINING DATA GENERATION
2.1 Foundational Data Set
To construct a reliable and accurately labeled foundational data
set, we propose employing existing state-of-the-art pupil detection
methods paired with unchallenging data sets. Similarly to the work
from [Tonsen et al. 2016], this also implies involving participants
to record data. However, with our approach a) these recordings can
be done virtually in any simple environment devoid of additional
infrared illuminations, and b) no calibration or target following is
required. Consequently, this translates into an additional advan-
tage: Allowing one to reuse already recorded data that meets the
unchallenging criteria. Thus, as base for our data set, we could sim-
ply take advantage of data already available from previous studies
in a laboratory [Santini et al. 2016], supermarkets [Kasneci et al.
2014a; Sippel et al. 2014], museum [Santini et al. 2018a], and driv-
ing [Kasneci et al. 2014b; Kübler et al. 2015]2. These data were
collected using multiple eye trackers: Dikablis 1, Dikablis 2, and
a Pupil Labs (with the second eye camera version – Pupil Cam2).
We visually inspected these recordings and selected those that met
our unchallenging criteria and are not part of existing data sets
for pupil detection evaluation employed in Section 4. The selected
recordings include participants with glasses, contact lenses, physi-
ological anomalies, droopy eye lids, and bad eye camera position
for which PuReST was still able to detected the pupil outline prop-
erly. For recordings containing binocular data, we used videos from
both eyes as they represent distinct geometric configurations and
appearances. In total, we selected more than 400 distinct eye record-
ings. The labeling method used PuReST [Santini et al. 2018c] to
automatically detect the pupil center and outline for each frame
in each recording. If the detected pupil had a confidence over 0.66
(following the threshold suggested by Santini et al. [Santini et al.
2018b]), it was included in the foundational data set, together with
the pupil parameters as labels. Per recording, this was repeated

2Part of these data are already publicly available, and the remaining ones were attained
by contacting the authors of the respective papers.

until a thousand images were extracted or the video terminated,
resulting in over 400 thousand automatically-labeled near-infrared
eye images. The images were normalized to 192 px2, randomly crop-
ping patches away from the labeled pupil to maintain the original
image aspect ratio if necessary.

2.2 Generic and Domain-Specific Data
Augmentation

Multiple generic data augmentation techniques can be applied in
the context of head-mounted eye tracking although their intensi-
ties should be constrained to match physical constrains. Examples
of these augmentations are affine transformations, blurring, and
exposure level adaptation. In this work, we additionally propose
three domain-specific augmentations: mock-up glints, mock-up
pupils, and reflections. In our data generation framework, most
augmentation techniques are parameterized by 1) a probability (P ),
which defines how often the technique is applied, as well as 2)
minimum (min) and maximum (max ) magnitude parameters, con-
trolling to which extent the technique is applied. These parameters
allow one to fine tune the generated data to distinct distributions
of challenges-of-interest. For the experiments in this work, we set
all parameters empirically based on previous experience with head-
mounted eye tracking data and visual inspection of generated data.
These are reported in Table 1.

Table 1: Employed augmentation parameter set describing
the distribution of challenges. Parameters marked with N/A
are not applicable to the associated technique.

Technique P max min

Downscale (Affine) 0.75 0.95 0.5
Crop (Affine) 0.5 0.95 0.5

Horizontal Flip (Affine) 0.5 N/A N/A
Blur 0.25 N/A N/A

Exposure 0.25 1.2 0.7

Mock-up Glints 0.5 0.25 0.05
Mock-up Pupil 0.25 N/A N/A
Reflections 0.75 0.75 0.25

Affine transformations are employed to augment the images from
a geometric perspective – i.e., distinct camera positions. Given the
wide range of distinct geometric positions in the eye recordings
already available in our foundational data set, we have limited affine
transformations to downscaling, cropping, and horizontal flipping.
The first two are used to distribute pupil sizes across the generated
augmented data, whereas the last one balances the data between
left and right eye cameras. Additionally, cropping (achieved by
combining upscaling with translations) assists in distributing pupil
position w.r.t. image more evenly.

Blurring is employed to augment the images from a camera focus
perspective – i.e., to emulate effects resulting from recording with
a fixed camera depth at different distances. We employ a Gaussian
blur parameterized by a Gaussian kernel of size ks in the range
[3, 9] and standard deviation (σ ) in the range [0.25, 0.75] based on
empirical tuning.
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Exposure level adaptations augment the images from a camera
exposure perspective – i.e., to emulate the amount of light received
by the imaging sensor, which is usually controlled by shutter speed
and illumination strength. This is achieved by multiplying all image
pixels intensities by a certain factor.

Mock-up glints are used to deter the network from using glint
position to infer pupil position. On a first glance, onemight advocate
that using the glint can improve network inference capabilities.
Whereas this holds for a unique eye tracking device, distinct eye
trackers produce different glint patterns. Thus, this can deteriorate
network generalization. In our framework, we add up to six mock-
up glints as high-intensity pixel blobs.

Mock-up pupils are utilized to guide the network to learn more
global rather than local features. Learning relations between pupil
position and, e.g., eyelids or the iris, is enforced this way. For in-
stance, a network that learns to search for the pupil as a dark blob
might easily be fooled by other dark blobs in the image such as those
resulting from makeup, eye lashes, or shadows. This is achieved by
creating pupil-like objects around the input image.

Reflections are one of the most challenging issues with state-of-
the-art eye trackers [Fuhl et al. 2016c]. In order to achieve realistic
reflections, we opted to superimpose real reflections. We recorded a
set of more than fourteen thousand reflection frames while moving
through indoors and outdoor environments using the device shown
in Figure 1. For the outdoor environments, frames were recorded in

Object

Reflection

Frontal View Top View

Coated lens

Camera

Outdoor Reflection

Figure 1: The device used to record reflections consisted of a
store-bought reading glasses covered on one side by an ultra-
pigmented black acrylic paint. An infrared camera was at-
tached to the eyeglasses to capture images reflecting on the
lenses. In practice, this results in images from a specular
mirror from which reflection masks can be extracted.

several sessions on sunny and cloudy days while walking through
a) coarsely and densely forested areas, b) human-constructed land-
scapes, and c) driving through the city. Considering each captured
frame as an 8-bit grayscale image, superimposition is achieved by
combining the input eye image (E) pixel (e) and reflection image
(R) pixel (r ) pixel-wise to produce the output image (O) pixel (o) as

o = e +
γr (255 − e)

255
, (1)

where
γ =max

(
min

(
0,

r

255
+

e

255
− α

)
, β

)
. (2)

α and β are hyperparameters weighting how much dark pixels in
the input eye image should be affected by the reflections. These
parameters were fixed to α = 0.5 and β = 0.75 empirically, but
examples for distinct values are shown in Figure 2.

Figure 2: (a) Input reflection image (R), (b) input eye image
(E), (c) superimpositionwith fixedγ = 1, and (d)–(g) resulting
superimpositioned images for different values of α and β .

3 EMPLOYED NETWORK
Given that this network is merely used to demonstrate the feasibility
of our proposed approach, we only give a brief description of its
model and training here. We expect other networks to be able to
attain similar performances when trained using data generated by
our method. We employed an hybrid model based on Inception
V4 [Szegedy et al. 2016], YOLO [Redmon and Farhadi 2017], and
network in network (NIN) [Lin et al. 2013] models to achieve a
high detection rate while maintaining low latency for real-time
eye tracking. The resulting architecture is shown in Figure 4 and
regresses the pupil center, width, and height.

The network core is similar to the Inception network. We made
the network customizable by employing a) repeatable blocks and b)
a coefficient for the number of filters in each convolutional layer. By
default, the reduction blocks were applied between different block
types. For example, when we used block A and B for our network,
we have to use reduction block A in-between and respectively
reduction-block B between B and C blocks. The final convolutional
layer employs global average pooling (GAP) to reduce overfitting.
Moreover, a 1 × 1 filter was applied to predict the bounding box
parameters. All weights were initialized with the Xavier [Glorot
and Bengio 2010] initializer, and L2 weight decay was employed to
diminish over fitting. Furthermore, we used a dropout layer before
the GAP layer. By default, all convolutional layers were utilized with
batch normalization. Since the labels were generated automatically,
we expect at least a small portion of the labels to be faulty. Thus,
we employed Huber loss as cost function since it is less sensitive to
such outliers. Adam optimizer was used for backpropagation with
the learning rate starting at 0.001, scheduled to decrease every five
epochs. To prevent gradient explosion, we used maximum gradient
norm. During training step, we divided the data into the training
and validation set with a ratio 90/10, respectively.

4 RESULTS
We measure pupil detection error by calculating the Euclidean
distance between the predicted pupil center and the annotation.
Similar to other studies [Fuhl et al. 2016a, 2017b, 2016b; Santini et al.
2018b; Vera-Olmos et al. 2019], detection with an error lower than
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Figure 3: Example of pairs consisting of input images from
non-challenging recordings (left) and the resulting automat-
ically labeled and augmented image (right). The label is
shown in green and better visualized in digital form. Our
approach allows researchers to quickly generate arbitrarily
large data sets with controlled distribution of eye-tracking
challenges for training eye image related tasks such as pupil
detection. For the sake of visualization, we have disabled
affine transformations for these examples.

5 pixels was considered to be successful for detection rate estima-
tion. For this evaluation, we have employed five publicly available
data sets, namely Świrski [Świrski et al. 2012], ExCuSe [Fuhl et al.
2015], ElSe [Fuhl et al. 2016b], LPW [Tonsen et al. 2016], and Pupil-
Net [Fuhl et al. 2016a].

Figure 4: General architecture of the proposed hybridmodel.
Also, in our experiments, we found that dropout before GAP
improve the results by 1.8%. The final change is the regres-
sion layer with Huber loss.

In our experiments, we found that a model with 3 block A and 4
blocks B with half of filters number (3A4BH) performs best in terms
of detection rate and speed on the training data and, thus, select
it as our final network. We compare our network with two algo-
rithmic pupil detectors (ElSe [Fuhl et al. 2016b] and PuRe [Santini
et al. 2018b]) and one pupil tracker (PuReST [Santini et al. 2018c]).
These algorithms were chosen as they represent the state-of-the-art
in pupil tracking, have been shown to significantly outperform
competing commercial approaches (e.g., Pupil Labs) as well as other
academic works [Santini et al. 2018c]. As representative of machine-
learning approaches, we employ the first work to apply CNNs for
pupil detection (PupilNet [Fuhl et al. 2017b]) as well as the most
recent one (DeepEye [Vera-Olmos et al. 2019]).

PupilNet and DeepEye used the ElSe and ExCuSe data sets for
training and testing (with cross-validation for evaluation). All of
these data sets (as well as PupilNet’s) were recorded using a Dik-
ablis 1 eye tracker and are, thus, similar to some extent. Therefore,
we have reasons to believe that these methods might have overfit
to this specific type of data. It is worth noting that part of our foun-
dational data set also includes data from this eye tracker. Results
for these data sets are reported in Table 2. On average, our network
outperforms algorithmic methods and PupilNet by at least 7.89
percentual points. Relative to the most recent CNN (DeepEye), our
network produces similar results – losing by a difference of less
than one percentual point on average. In fact, DeepEye was the
best performer in 15 of the data sets, where as ours was the best
performer in 12.

To test the hypothesis that DeepEye has overfit to the partic-
ular type of data of its training data sets, we have also evaluated
it using the remaining two data sets (Świrski and LPW), which
were recorded with distinct eye trackers from the ExCuSe, ElSe,
and PupilNet data sets. We also included the best algorithmic detec-
tor (PuRe) and the tracker (PuReST) in this evaluation. It is worth
reiterating that neither DeepEye nor our network has seem data from
these eye trackers before. Results are shown in Table 3 and clearly
demonstrate that our network has better generalization capabili-
ties, overperforming DeepEye on average by 34 and 20 percentual
points for the LPW and Świrski data sets, respectively. Moreover,
detection rate for LPW was particularly similar to the one in the
ExCuSe, ElSe, and PupilNet data sets, despite the large difference
in appearance between the data sets, indicating that our network
has learned eye tracker independent features. On the contrary, not
only the performance dropped for the Świrski data sets, but both
PuRe and PuReST have outperformed the machine-learning based
approaches. This can be explained by the nature of that data set,
which is composed by a small set of highly-off-axis images, which
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Table 2: Detection rate (%) results considering a 5 px
threshold. We report the performance reported by the
original publications whenever possible. DeepEye perfor-
mance for PN 1 to PN V were evaluated using the
implementation provided by the authors (Available at
github.com/Fjaviervera/DeepEye).

Data Set Detection Rate (%)
ElSe PuRe PuReST PupilNet DeepEye Ours

I 86 87 89 82 86 90
II 65 29 48 79 83 88
III 64 73 77 66 93 88
IV 83 89 90 92 93 93
V 85 87 87 92 97 97
VI 78 89 91 79 93 94
VII 60 68 73 73 84 81
VIII 68 54 60 81 87 89
IX 87 91 91 86 92 91
X 79 90 90 81 92 94
XI 75 88 87 91 94 97
XII 79 88 88 85 85 88
XIII 74 85 80 83 79 83
XIV 84 88 89 95 96 97
XV 57 62 71 81 89 77
XVI 60 79 66 80 82 87
XVII 90 95 95 97 95 96
XVIII 57 68 69 62 74 75
XIX 33 48 53 37 78 46
XX 78 83 86 79 92 89
XXI 47 70 81 83 88 89
XXII 53 62 72 58 80 76
XXIII 94 97 93 90 96 100
XXIV 53 60 65 55 55 73
PN I 62 87 72 69 64 83
PN II 26 29 48 45 83 60
PN III 39 73 57 49 79 69
PN IV 54 89 81 82 90 88
PN V 75 87 83 81 83 82

Average 67.6 75.7 76.96 76.3 85.6 84.8

are very unusual for practical eye tracking as only a small pupil
range is visible. Thus, such data is under represented in our foun-
dational data set, and, consequently, the network has not learned
these highly-off-axial’ parameter distribution adequatly.

Table 3: Detection rate of the proposed and DeepEye [Vera-
Olmos et al. 2019] models on previously unseen LPW [Ton-
sen et al. 2016] and Swirski [Świrski et al. 2012] data sets.

Data Set Detection Rate (%)
PuRe PuReST DeepEye Ours

LPW 75 82 50 84
Swirski 80 86 54 74

5 CONCLUSION
Over four years now, researchers have demonstrated the potential
of CNN-based techniques to provide reliable pupil detection. The
quality and quantity of training data remarkably affects the perfor-
mance of these techniques. Models trained earlier [Fuhl et al. 2016a,
2017b; Vera-Olmos et al. 2019] usually use the cross-validation tech-
nique with training and testing data coming from the same data
set and, therefore, from a specific distribution. Therefore, these
methods are quite specific to recording devices and, even worse, to
the recording scenarios.

In this study, we demonstrate the feasibility of training a com-
petitive network using automatically labeled data in combination
with the proposed generic and domain-specific augmentation tech-
niques. Importantly, we can demonstrate a high generalization
performance to various data sets, devices and scenarios, unlike pre-
vious work. This implies that our training data contained sufficient
variance to allow the model to fit parameters for the general pupil
detection task, without substantial over-fitting to specific device
properties, illumination conditions or scenarios. As a result we
surpass state-of-the-art CNN-based pupil detection for unseen data
(LPW and Swirski, see Table 3) by an average of 27%. This suggest
that the proposed combination of easy-to-gather and automatically
labeled data represent a significant step in achieving better pupil
detection networks in the future. Furthermore, this approach can
similarly be applied to other eye features such as the eyelids [Fuhl
et al. 2017a] or iris [Abate et al. 2015]. Additionally, the trained
CNN is real-time capable, achieving 34 and 124 FPS on a CPU (In-
tel i7-7700, 16GB RAM) and GPU (Nvidia GTX 1070), respectively
(estimated based on network performance across more than four
minutes of eye videos). In contrast, the most recent CNN-based
approach (DeepEye) is limited to ≈30 FPS [Vera-Olmos et al. 2019].

To increase the detection rate further, we plan to extend our ap-
proach by the use of tracking techniques. Pupil tracking has shown
remarkable ability to stabilize pupil detection and to solve hard
tracking conditions for traditional computer vision approaches [San-
tini et al. 2018c] and could be incorporated in the deep learning
approaches e.g. via Recurrent Neural Networks (RNNs).
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