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Abstract

Smooth pursuit eye movements provide meaningful insights and
information on subject’s behavior and health and may, in particular
situations, disturb the performance of typical fixation/saccade clas-
sification algorithms. Thus, an automatic and efficient algorithm
to identify these eye movements is paramount for eye-tracking
research involving dynamic stimuli. In this paper, we propose
the Bayesian Decision Theory Identification (I-BDT) algorithm, a
novel algorithm for ternary classification of eye movements that
is able to reliably separate fixations, saccades, and smooth pur-
suits in an online fashion, even for low-resolution eye trackers.
The proposed algorithm is evaluated on four datasets with distinct
mixtures of eye movements, including fixations, saccades, as well
as straight and circular smooth pursuits; data was collected with
a sample rate of 30 Hz from six subjects, totaling 24 evaluation
datasets. The algorithm exhibits high and consistent performance
across all datasets and movements relative to a manual annotation
by a domain expert (recall: µ = 91.42%, σ = 9.52%; precision:
µ = 95.60%, σ = 5.29%; specificity µ = 95.41%, σ = 7.02%)
and displays a significant improvement when compared to I-VDT,
an state-of-the-art algorithm (recall: µ = 87.67%, σ = 14.73%;
precision: µ = 89.57%, σ = 8.05%; specificity µ = 92.10%,
σ = 11.21%). Algorithm implementation and annotated datasets
are openly available at www.perception.uni-tuebingen.de
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1 Introduction

The human visual perception involves mainly six types of eye
movements: fixations, saccades, smooth pursuits, optokinetic re-
flex, vestibulo-ocular reflex, and vergence [Leigh and Zee 2015].
The automatic and correct identification of these eye movements
based on the raw eye-position signal is critical for several applica-
tions, such as driver’s activity recognition [Braunagel et al. 2015]
or detection of hazard perception during driving [Kasneci et al.
2015]), marketing applications, and Human Computer Interfaces
(HCI) [Vidal et al. 2013].

Initially, eye-tracking research restrained head movements and em-
ployed static stimuli, such as images and text. In this scenario,
the only relevant movements considered were fixations (in which
the eyes are relatively still) and saccades (rapid transitions from
one fixation point to another); thus, early algorithms for the auto-
matic classification of eye movements focused on segregating only
between these two movements. Nowadays, there is an increasing
interest in using dynamic stimuli (e.g., video clips) [Larsson et al.
2015], where an object of interest moves through the subject’s field
of view and is kept on the fovea, producing a fluent eye motion –
which we denominate a smooth pursuit. It is worth noticing that
during these pursuits, minor eye movements such as tremors and
microssacades exist, albeit these minor movements do not show on
low-resolution eye-tracking data.

The presence of smooth pursuits disturbs the performance of es-
tablished event classification algorithms since these pursuits end
up spread over the two classification classes. Moreover, they
also provide valuable information on subject’s health and behav-
ior; for instance, smooth pursuit impairment and dysfunction have
been linked to mental illnesses, such as schizophrenia [ODriscoll
and Callahan 2008] and Alzheimer’s disease [Fletcher and Sharpe
1988]. Thus, an automatic and efficient algorithm to distinguish
between fixations, saccades, and smooth pursuits is paramount
for eye-tracking research involving dynamic stimuli. Furthermore,
some of the possible applications must be in the form of embedded
systems (e.g., driving assistance) and impose real-time, processing,
and energy consumption constrains on the eye-tracking system. To
meet these constraints, typically eye trackers with a lower sample
rate are used. Consequently, such an algorithm must not only work
in real-time, but also be able to deal with the low resolution arising
from such eye trackers.

In this paper, we propose a novel algorithm for ternary classification
of oculomotor events. Our main contributions are:

• We propose the Bayesian Decision Theory Identification (I-
BDT) algorithm to identify fixations, saccades, and smooth
pursuits in real-time for low-resolution eye trackers. Addi-
tionally, the algorithm operates directly on the eye-position
signal and, thus, requires no calibration.
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• The proposed algorithm is evaluated relative to manual anno-
tation by a domain expert, and performance is measured in
terms of recall, precision, specificity, and accuracy; on aver-
age, the proposed algorithm scores above 90% on all metrics.

• I-BDT’s performance is compared to that of a state-of-the-art
algorithm (Velocity and Dispersion Threshold Identification),
showing a significant improvement in terms of average score
and variability.

• Additionally, we openly provide a MATLAB implementation
for the I-BDT algorithm as well as the annotated datasets used
for evaluation at www.perception.uni-tuebingen.de.

2 Related Work

In 1991, [Sauter et al. 1991] proposed using a Kalman filter coupled
with a χ2-test to separate saccades from other eye movements. This
approach was later extended as the Attention Focus Kalman Filter
(AFKF) by [Komogortsev and Khan 2007], using velocity and tem-
poral thresholds to separate fixations from smooth pursuits. Simi-
larly, several methods use a simple velocity threshold to isolate sac-
cades, followed by a second step to distinguish between fixations
and smooth pursuits. These are typically identified by a name fol-
lowing the pattern I-V*. [Komogortsev and Karpov 2013] proposed
to distinguish between the remaining movements through a second
velocity threshold (Velocity and Velocity Threshold Identification
(I-VVT)) and through a dispersion threshold combined with a tem-
poral window (Velocity and Dispersion Threshold Identification (I-
VDT)). [Berg et al. 2009] proposed analyzing the ratio between first
and second principal components to identify smooth pursuits (Prin-
cipal Component Analysis Identification (I-PCA)) on the intuition
that fixations would have a ratio close to one. [Lopez 2009] started
a subgroup that uses the movement pattern to identify smooth pur-
suits, hence the common prefix I-VMP; [Lopez 2009] used the stan-
dard deviation of the movement directions in a time window to
isolate fixations (Velocity Movement Pattern Standard Deviation
Identification (I-VMPStd)). [Larsson 2010] used a Rayleigh test to
identify smooth pursuits by rejecting the hypothesis of uniformity
of inter-sample vectors around the unit circle (Velocity Movement
Pattern Rayleigh Identification (I-VMPRay)); more recently, this
algorithm was extended with four different spatial features (dis-
persion, consistent direction, positional displacement, and spatial
range) in [Larsson et al. 2015].

[Tafaj et al. 2012] used a Bayesian Mixture Model based on the
Euclidean distance between sequential points to discern fixations
from saccades, which was later extended in [Kasneci 2013] with a
principal component analysis similar to I-PCA to identify smooth
pursuits. This method is called the Bayesian Mixture Model Identi-
fication (I-BMM). [Vidal et al. 2012] defined a set of shape features,
whose expected range is derived from training data. A k-nearest
neighbors classifier (k = 3) is then used to isolate smooth pursuits
from other movements.

As illustrated in Figure 1, the above methods fall mainly into
two classes: threshold-based and probabilistic methods. While
threshold-based algorithms tend to be simpler to implement, their
major drawback is that they usually depend on the eye movements
being clearly discernible from each other. On the other hand, prob-
abilistic methods work based on softer decision rules in the form of
probabilities, making them more flexible. Hybrid methods combine
insights from physiological limits to define clear thresholds (e.g.,
only during saccades the eyes reach velocities above 100 ◦ s [Meyer
et al. 1985]) with a probabilistic approach in other cases. I-BDT, the
method proposed in this paper, falls into the probabilistic group.

Furthermore, most previous work has focused on eye trackers with

I-VDT
I-VVT
I-PCA

I-VMPStd

[Larsson et al. 2015]
I-BMM

I-VMPRay
AFKF

I-BDT
[Vidal et al. 2012]

Threshold-based Probabilistic

Figure 1: Algorithms for the automatic identification of smooth
pursuits according to a broad classification based on their under-
lying mechanisms. The algorithm proposed on this work (I-BDT)
falls within the probabilistic group.

high sampling rates (i.e., above 250 Hz). However, in dynamic sce-
narios where a non-intrusive head-mounted eye tracker is required
(e.g., driving assistance), such high sampling rates are not available.
Currently, mostly head-mounted eye trackers present an upper limit
of 60 Hz for binocular tracking (e.g., Dikablis Pro, SMI Glasses
2, ASL H7 Optics, Tobii Pro Glasses 2). The exception is SR Re-
search’s EyeLink II, which has a binocular sampling rate of 500 Hz.
Despite its clear advantage in temporal resolution, this eye tracker
is rather intrusive, occupying a large part of the subject’s field of
view; for comparison, EyeLink II’s eye cameras measure each ap-
proximately 5 cm× 5 cm× 1 cm whereas Dikablis Pro’s eye cam-
eras measure approximately only 2.5 cm× 2 cm× 1 cm, resulting
in a volume difference of five times.

3 Bayesian Decision Theory Identification

3.1 Problem Statement

Let S = {si|1 ≤ i ≤ N} be a set of N temporally ordered
tuples, each containing two-dimensional pupil position estimates
(xi, yi) and a timestamp (ti) generated by an eye tracker (i.e., an
eye-tracker protocol). The problem, thus, is to classify all peri-
ods between two subsequent tuples according to the set of possible
events E = {fix, sac, pur}, where fix, sac, and pur stand re-
spectively for fixation, saccade, and smooth pursuit.

3.2 Model

In this paper, we propose a Bayesian decision theory approach to
solve the stated problem based on a pair of features derived from
S. In other words, given some data D, we are interested in defining
the likelihoods p(D|e) and priors p(e) for each event e ∈ E in
order to calculate the posteriors p(e|D) of these events. Following
the naming convention from [Komogortsev and Karpov 2013] and
[Salvucci and Goldberg 2000], we will hereby refer to this method
as the Bayesian Decision Theory Identification (I-BDT) algorithm.

The first feature derived from S is the estimated eye speed (vi) be-
tween two subsequent tuples, defined as

vi =

√
∆xi

2 + ∆yi
2

∆ti
(1)
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where ∆xi = xi − xi−1, ∆yi = yi − yi−1, and ∆ti = ti − ti−1.

The second derived feature is the movement ratio ri over the win-
dow Wi = {vj |i − Nw < j ≤ i} of the latest Nw tuples. For
simplicity, we define it as the amount of non-zero eye speed esti-
mates relative to the window size, conveying the idea that the more
movement in the window, the more likely a smooth pursuit is; thus,

ri =
1

Nw

∑
vj∈Wi

[vj > 0] =
1

Nw

∑
([Wi > 0]) (2)

where [...] is the Iverson bracket notation [Knuth 1992] given by

[X] =

{
1 if X is true;
0 otherwise.

It is paramount to note that this feature’s definition is heavily depen-
dent on the eye tracker used to record the data and its temporal and
spatial resolution; zero speed may not be an appropriate representa-
tion for fixations. Nevertheless, the intuition behind this feature is
that fixations exhibit little continuous movement, saccades are brief
and usually separated by fixations, and smooth pursuits tend to ex-
hibit continuous movement during larger periods of time (see Fig-
ure 2). Therefore, ri should be a good smooth pursuit indicator if
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Figure 2: Eye speed compared to manual classification by a do-
main expert. Fixations (fix) tend to be mostly still, with only few
deviations due to micro eye movements and measurement noise,
whereas saccades (sac) result in brief spikes in the eye speed sig-
nal. On the contrary, smooth pursuits (pur) show a distinct speed
pattern during a longer period of time.

an adequate window size is chosen; this time window should be
large enough to encompass the maximum saccade duration, other-
wise misclassification of saccades as pursuits may be exacerbated.
In our model, we use this feature directly as the smooth pursuit
likelihood, i.e.,

p(ri|pur) = ri. (3)

Once a smooth pursuit has started, it tends to continue for an ar-
bitrary period; thus, this should be reflected in one’s belief before
any evidence is taken into account. For this reason, we model the
smooth pursuit prior as the mean of previous smooth pursuit likeli-
hoods (i.e., the set Li = {p(rj |pur)|i − Nw < j < i}) such that

p(pur) =
1

Nw − 1

∑
p(rj |pur)∈Li

p(rj |pur). (4)

Naturally, the joint probability of priors must sum to one. With no
further evidence, we do not have reason to believe either fixations

or saccades are more probable, and, thus, we divide the remaining
joint prior probability equally between these movements such that

p(fix) = p(sac) =
1− p(pur)

2
. (5)

It is worth noticing that if information on the task being performed
by the subject is available, one could improve these priors based
on the duration of the current event. For instance, imagine a task
characterized by fixations with a relatively constant duration: after
a first fixation is found, the following events are likely to be fixa-
tions until the average fixation duration is reached. At this point the
next event becomes less and less probable to be a fixation. Such
behaviour could be taken into account by adjusting the priors.

The fixational and saccadic likelihoods are deemed to be dependent
only on the current eye speed (vi) feature. This feature can be used
to reliably separate high-speed saccades from other events as it has
been shown that no other event can reach a velocity higher than
Vsac, estimated to be around 100 ◦/s [Meyer et al. 1985]. However,
the speed spectra of different eye movements overlap for lower ve-
locities. Nonetheless, it is intuitive that velocities closer to zero
are more likely to stem from fixations whereas velocities closer to
Vsac are more likely to stem from saccades. In fact, [Tafaj et al.
2012] have shown that saccades and fixations can be represented
by a mixture model of two Gaussian distributions based on the dis-
tance between sequential points – one Gaussian generating fixa-
tions, and another one generating saccades. Therefore, we assume
the eye speed feature to also be generated by two such Gaussian
distributions. Intuitively, saccade likelihood should be at its maxi-
mum for speeds above Vsac. Ideally, fixations would exhibit zero
speed; however, as they typically include small movements, such
as microsaccades and tremors, there is a threshold speed Vfix that
encompasses these combination of movements. Thus, fixation like-
lihood should be at its maximum for speeds below Vfix. In the
interval between these thresholds, we assume the likelihood to be
generated by two Gaussian1 distributions, one centered around Vfix
and the other around Vsac (see Figure 3). Thus,

p(vi|fix) =

{
N(Vfix|Vfix, σfix) if vi < Vfix
N(vi |Vfix, σfix) if vi ≥ Vfix

, (6)

and

p(vi|sac) =

{
N(vi |Vsac, σsac) if vi < Vsac
N(Vsac|Vsac, σsac) if vi ≥ Vsac

. (7)

Having defined the priors and likelihoods for all events, we can
calculate the posterior for each event e ∈ E given the data D =
{vi, ri} using Bayes’ Theorem; thus,

p(e|D) =
p(e)p(D|e)
p(D)

, (8)

and the period is classified as the event with highest posterior prob-
ability. Here, p(D) is merely a scaling factor that guarantees that
the sum of the posterior probabilities sum to one. It is worth notic-
ing that this model can be extended to include other eye movements
in the future by determining their priors and likelihoods, and taking
these into account when computing p(D).

1Denoted as

N(x|µ, σ) =
1

σ
√
2π
e−(x−µ)2/2σ2
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Figure 3: Resulting fixational and saccadic likelihoods based on
the eye speed feature (vi).

4 Experimental Setup

4.1 Dataset

To evaluate the proposed algorithm, we designed an experiment to
cover a wide range of induced as well as natural eye movements.
The induced movements are characterized in Table 1.

Movement Amplitudea/Radiusb (◦) Velocity (◦/s)

Saccadea 6, 11, 14 —
Straight Pursuita 6, 12, 22, 28 10, 20, 30
Circular Pursuitb 6, 8, 14 18, 25, 44

Table 1: Induced movements used within the experiment. Degrees
are expressed in terms of visual angle. Straight pursuit amplitudes
and velocities were combined such that their durations were within
0.4 and 2 seconds to account for subject latency while keeping
pursuit duration realistic. Circular pursuits were conducted at a
constant angular velocity of 180◦/s. Pursuits were separated from
other movements by one second fixations. Saccades were separated
from each other by fixations of 0.75 seconds. The directions of the
movements were chosen randomly and differ per subject.

Prior to the recording, each user was shown a tutorial with detailed
on-screen instructions and examples of movements for each class
in Table 1. Four datasets were recorded per subject, and all datasets
had a common beginning: first, four dots were shown at 15◦ of vi-
sual angle diagonally from the screen center for five seconds (Fig-
ure 4a); subjects were instructed to look at these stimuli at will.
During this period natural saccades and fixations are collected; sac-
cades of ≈ 20 and 30◦ of visual angle were expected, separated by
fixations of arbitrary duration. Afterwards, a single dot appeared
at the screen center for two seconds (Figure 4b); subjects were in-
structed to focus on and follow this target. The subsequent move-
ments differ per dataset and are listed in Table 2.

Dataset Movements

I Fixations, saccades, and all possible straight pursuits.
II Fixations and saccades. No pursuits.
III Fixations, saccades, and all circular pursuits.
IV Fixations, saccades, straight and circular pursuits.

Table 2: Movements distribution per dataset.

(a) (b)

Figure 4: Common stimuli at the beginning of each dataset. In this
figure, the color of the targets was changed from red to yellow to
facilitate visualization.

Targets were red dots (with a width of 1◦ of visual angle) on a dark
gray background displayed using MATLAB (r2013a) and the Psy-
chtoolbox (3.0.12) [Kleiner et al. 2007] on a Windows 64-bit ma-
chine. Subjects’ heads were supported by a chin rest at a distance of
300 mm from a Samsung SyncMaster 2443BW2 color display unit.
Ocular dominance was determined using the Miles test, and data
was collected only from the dominant eye using a Dikablis Pro eye
tracker (eye images of 384x288 pixels with a 30 Hz sampling rate)
and EyeRec [Santini et al. 2016] (1.2.2) running the ExCuSe [Fuhl
et al. 2015] pupil detection algorithm on a distinct Windows 64-bit
machine. To avoid gaze estimation noise and calibration require-
ments, we use the pupil position signal as input; as such, no cal-
ibration step was performed. An unjittering function was applied
to this input prior to processing to remove obvious jitter artifacts
(e.g., one sample spikes [Stampe 1993]). Six adult subjects (age:
µ = 31.50, σ = 2.59 years; 4 males, 2 females) took part in the
experiment. Eye location relative to the eye tracker varied greatly
between subjects to exacerbate differences in the input signal and
stress the algorithm (see Figure 5). Two of the subjects wore cor-
rective glasses for myopia (-13 dpt and 1.5 dpt).

Figure 5: Example of eye location relative to the eye tracker during
experiments. Note the distinct proximities, positions, and rotations.

4.2 Baseline and Metrics

The collected data was manually classified by one domain expert
in order to identify data that is not coherent with the stimulus in-
formation, e.g., because the subject did not follow the stimulus as
instructed. This manual classification was used as the ground truth.

Nonetheless, it is worth noticing that the manual classification is a
subjective task, especially for data with a temporal resolution where

2Width: 520mm. Height: 320mm. Resolution: 1920x1200 pixels.
Screen refresh rate: 60Hz. Luminance: 0.08 cd/m2.



a measurement period may contain a mixture of the end of a sac-
cade and the beginning of a fixation. For this reason, we provide
our annotated dataset openly to allow for review and potential im-
provements. Initial corrective saccades during pursuit onset were
classified as saccades, whereas catch-up saccades during pursuit
were classified as smooth pursuits. Fixation classifications encom-
pass small eye tracker noise, drift and microsaccades. Blinks, par-
tial pupil occlusions, and pupil detection failures were marked as
noise and are ignored for performance evaluation; these represent
≈ 1.76% of samples.

Overall, 18,682 fixations, 1,296 saccades, and 4,143 smooth
pursuits were classified. Performance is measured through
four metrics per movement class, namely: recall

(
TP

TP+FN

)
,

precision
(

TP
TP+FP

)
, specificity

(
TN

TN+FP

)
, and accu-

racy
(

TP+TN
TP+FP+TN+FN

)
, where TP , FP , TN , and FN

stand for True Positive, False Positive, True Negative, and False
Negative, respectively. Moreover, we compare the performance
of the proposed algorithm to that of the I-VDT algorithm as
implemented by [Komogortsev and Karpov 2013; Komogortsev
et al. 2010]; I-VDT was chosen as it can be easily adapted to
perform online classification on low-resolution eye trackers, and
because it has been shown to exhibit a competitive performance
with smaller variability relative to other algorithms [Gyllensten
2014; Komogortsev and Karpov 2013]. Additionally, we also
provide Cohen’s Kappa [Galar et al. 2011] values for the overall
classification agreement between the algorithms and the domain
expert to account for agreement merely due to chance.

4.3 Algorithm’s Parameters

I-BDT: We have chosen a window size to fit 1.5 times the maxi-
mum saccade duration (80 ms [Holmqvist et al. 2011]). This value
was chosen to fill the minimum size requirement while keeping the
window size to a minimum, thus minimizing the duration of the
pursuit detection onset. For each subject-dataset pair, the Gaus-
sian distributions parameters are derived from an approximately
15 s of data to demonstrate an online training procedure. Initially,
the Expectation-Maximization algorithm was used to derive a mix-
ture of two Gaussian distributions based on speed samples from this
period (with the smallest positive scalar supported by the platform
added to the estimated covariance matrices to ensure they were pos-
itive definite). The parameters of the Gaussian distribution with the
highest mean are used as parameters for saccades in Equation (7).
However, due to the low resolution of the eye tracker, the Gaus-
sian distribution with the smaller mean is heavily biased towards
zero and does not describe fixations adequately; we chose instead
to derive the parameters for Equation (6) based on the inherent eye
tracker resolution: the minimum dispersion between two samples
larger than zero divided by the inter-sample period was taken as
Vfix, and σfix was set to 2

3
Vfix such that≈ 99.7% of the distribu-

tion values lie within the interval [0, 2Vfix]. Furthermore, this low
resolution also leads to speed samples with null value during slow
smooth pursuits; thus, we have redefined Equation (2) as

ri =
1

Nw

∑
(smooth([ 0 < Wi < Vsac ])) (9)

where the smooth function applies the following logical substitu-
tions over the entire temporal window{

1x1 → 111 always

1xx1→ 1111 if sample i− 1 was classified as a smooth pursuit
,

with x representing a don’t care term. In other words, ri tolerates
a single isolated null speed sample if not currently in a smooth pur-
suit; otherwise, it is more lenient and tolerates up to two isolated

null speed samples. This redefinition implies the temporal window
must include at least four samples.

I-VDT: In order to get I-VDT’s optimal performance, we give it
an advantage by defining pareto-optimal thresholds that maximize
Z1 scores based on the ground truth. First, the Z1 score for sac-
cade classification is evaluated for all the inter-sample velocities
that can be derived from the eye-tracker protocol; the velocity that
maximizes this score is chosen as the velocity threshold. Second,
the minimum fixation duration is derived from the ground truth and
is used as the temporal window size threshold (generally around
100 ms). Lastly, fixing the previously defined thresholds, the Z1
score for pursuit classification is evaluated for all the inter-sample
dispersions that can be derived from the eye-tracker protocol; the
dispersion that maximizes this score is chosen as the dispersion
threshold. If the ground truth contains no pursuits, the Z1 score
for fixation classification is used instead.

5 Experimental Results

First we look at an overview that encompasses all datasets and eye
movements to show the overall performance of the proposed algo-
rithm. Afterwards, we analyze our results for separate movements
and datasets to provide a comprehensive understanding on the I-
BDT behavior. Results are reported using boxplots (a box is drawn
between the first and third quartiles, a horizontal line represents the
median value, and whiskers extend to the minimum and maximum
values). Ideally, the value for all metrics should be as close to one
as possible. The method introduces no delays, and the average time
required to classify a new sample was 0.44 ms, thus attesting for
the real-time capabilities of the proposed approach.

5.1 Overall Results

Table 3 and Figure 6 indicate the high performance of the I-BDT
algorithm. It is clear that not only I-BDT presents better scores
throughout all metrics relative to I-VDT, it also exhibits less vari-
ability. Moreover, the high Cohen’s kappa score indicates that the
inter-rater agreement between expert and algorithm was not due to
chance. Note that, in its current form, the algorithm seems to favor
precision instead of recall; this is true for smooth pursuits (which
can sometimes be misclassified as fixations, specially during onset)
and saccades (which are rarely misclassified as smooth pursuits);
however, fixations are very seldom misclassified but tend to encom-
pass other movements in its class more often.

I-BDT I-VDT

Recall µ = 91.42%, σ = 9.52% µ = 87.67%, σ = 14.73%

Precision µ = 95.60%, σ = 5.29% µ = 89.57%, σ = 8.05%

Specificity µ = 95.41%, σ = 7.02% µ = 92.10%, σ = 11.21%

Accuracy µ = 96.95%, σ = 2.54% µ = 94.65%, σ = 4.50%

Table 3: Average algorithm performance per dataset per subject
per movement class (n = 3× 6× 3 + 1× 6× 2 = 66).

5.2 In-depth Analysis

We start our in-depth analysis by looking at the algorithms perfor-
mance per dataset for fixations. Figure 7 shows that the algorithm
scores highly for the recall and precision metrics for this class, con-
sistently above 90%, and generally above 95%. However, since
fixations are the prevalent class in all datasets, false positives are
drowned in the larger number of true positives; as a result, it is
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Figure 6: Overall algorithm performance. Recall, precision, speci-
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subject (n = 4× 6 = 24).
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Figure 7: Performance metrics per dataset for fixations.

of great importance to look at the specificity when evaluating fix-
ation classification performance. In this case, I-BDT scored above
80% reliably. It is plain that the specificity for dataset II is well
above the others, which suggests that the false positives are mostly
misclassified smooth pursuits. This is supported by evidence that
slow smooth pursuits are the ones being misclassified; specificity
for dataset I is almost consistently lower than for dataset III and IV,
presumably due to dataset I always including the slowest smooth
pursuits. Likewise, specificity for dataset IV is only sometimes
lower than that of dataset III because dataset IV only randomly in-
cludes the slowest smooth pursuits.

As can be seen in Figure 8 and Figure 9, specificity for both sac-
cades and smooth pursuits classification is persistently high (>
95%). However, similarly to how precision can be misleading for
the performance evaluation of fixation classification, specificity can
be deceptive for saccades and smooth pursuits classification as false
positives get masked by the larger amount of true negatives. Thus,
we analyze saccade and smooth pursuit classification through the
recall and precision metrics.

Figure 8 shows that saccade classification is very precise (> 90%)
in the majority of cases. While the proposed algorithm also dis-
played a good recall (mostly above 80%), it is clear that some
saccades are being misclassified; these are usually saccades sur-
rounded by noise, which the algorithm ends up interpreting as a
high movement ratio and, thus, classifying as smooth pursuits. This
effect also leads to the I-VDT algorithm outperforming I-BDT for
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Figure 8: Performance metrics per dataset for saccades.

saccade recall for dataset II. Since this dataset contains no smooth
pursuits, there is a clear velocity threshold separating the remain-
ing movements, and, thus, I-VDT can clearly distinguish between
them. I-BDT, however, is still affected by saccades surrounded by
noise, on average classifying 2.18% of the samples as smooth pur-
suits. In contrast, dataset III exposes one of the I-VDT weaknesses
as it contains smooth pursuits with higher speeds (i.e., 44 ◦/s); as a
result, smooth pursuit and saccade speeds overlap, yielding the mis-
classification of some high-speed pursuits and decreasing saccade
classification precision.

Regarding smooth pursuit classification performance, Figure 7
highlights the consistent good precision (> 80%) through all
datasets, scoring above 90% in the great majority of cases. I-BDT
exhibits good recall (> 85%) for datasets III and IV. As mentioned
previously, for dataset I there is a struggle to classify slow smooth
pursuits, resulting in the smaller recall for this dataset. Further-
more, it is worth noticing that I-BDT cannot reach maximum re-
call by design; since the algorithm relies on a temporal window to
consider smooth pursuits, there is an onset period after the smooth
pursuit has started until I-BDT starts classifying samples as such.
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Figure 9: Performance metrics per dataset for smooth pursuits.
Dataset II contains no smooth pursuits in the ground truth; thus,
the resulting performance metrics are irrelevant and not reported.

Figure 10 illustrates I-BDT’s smooth pursuit classification relative
to that of a domain expert. Notice how the algorithm detects a false
short smooth pursuit sequence at the beginning due to a saccade
surrounded by noise. In an offline version, such misclassifications
could be eliminated, for example, by using a minimum duration
threshold for smooth pursuits; the one in question, has a duration



of approximately only 100 ms. Moreover, it is possible to perceive
the onset period for the smooth pursuit detection at the beginning
of each smooth pursuit; this onset period could also be dealt with
in an offline version by employing a similar detection technique
but reversing the order of the samples. Furthermore, notice that
during the second smooth pursuit the eye speed quickly switches
between zero and close to zero values, misleading the algorithm,
which does not detect the whole slow pursuit successfully. Thus,
we do not advise the usage of I-BDT as is for very slow smooth
pursuits when using low-resolution eye trackers; higher resolutions
should alleviated this problem, but further investigation is required.
It is worth noticing that, despite this weakness, low-resolution eye
trackers are more appealing for embedded use in dynamic scenarios
because these systems are cheaper, less computationally intensive,
and consume less power than their high-resolution counterparts.
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Figure 10: I-BDT smooth pursuit classification compared to that of
a domain expert, accompanied by the eye-speed signal. A wrongly
detected smooth pursuit and a partially detected slow smooth pur-
suit are highlighted. Moreover, notice the onset period required by
the algorithm to classify the smooth pursuits.

Comparing our results to those of related work is relatively compli-
cated, mainly due to the lack of openness regarding algorithms and
datasets, and due to differences in eye-tracking systems and met-
rics used for evaluation. Regarding dataset, eye-tracking system,
and online constraints, our work is most similar to [Vidal et al.
2012]. Our dataset design was heavily influenced by the dataset
used in [Vidal et al. 2011] and [Larsson et al. 2013]; the main dif-
ferences are 1) smooth pursuits in this work are not restricted to
horizontal and vertical directions, and 2) we chose not to include
short smooth pursuits (e.g., amplitude of 2◦ and velocity of 30 ◦/s)
as their durations are smaller than an acceptable latency for the sub-
ject to start tracking the target.

In their work, [Vidal et al. 2012] report an accuracy for smooth
pursuit detection up to 92% whereas, in this work, I-BDT reached
an average accuracy of 94.98%, ranging from 90.57% to 98.19%.
It is worth noticing that accuracy alone does not allow us to com-
pletely evaluate algorithm performance [Ben-David 2007]. Unfor-
tunately, the machine learning-based classifier presented in [Vidal
et al. 2012] is not available for evaluation on our dataset, nor is
their dataset available for evaluation with other algorithms. Thus, a
direct comparison of both methods could not be performed.

[Larsson et al. 2015] use a subset of the dataset from [Larsson et al.
2013]; however, their algorithm is designed for offline analysis of
high-resolution eye-tracking data. Thus, it cannot be applied to
low-resolution eye trackers such as the one used in this work –
mainly due to the preliminary segmentation stage relying on hy-
pothesis testing, which would require a long time interval from

the low-resolution eye tracker to be statistically significant (363 ms
compared to the 22 ms used in their work). Nonetheless, their static
image dataset can to some extent be compared to dataset II (in the
sense that both do not contain smooth pursuits inducing elements).
Similarly, their video and moving dot datasets can be compared to
datasets I, III, and IV. Since their algorithm uses the same mech-
anism as I-VDT to separate saccades from other eye movements,
their algorithm performance in this regard is clear. Thus, we briefly
draw a parallel between their results for smooth pursuit and fixation
classification and our results. Table 4 reports recall and specificity
values from I-BDT mean results from this work, as well as best case
results from [Larsson et al. 2015] – to pick a best case scenario, we
utilize the maximum value independent from which expert (1 or 2)
was used as ground truth. Although I-BDT seems to provide better
performance despite working under harder constraints, a fair and
valid conclusion could only be drawn from similar experiments.
Nonetheless, it is worth noticing that such an experiment is possi-
ble as I-BDT could be applied to the datasets from [Larsson et al.
2015] (e.g., by coalizing the data into a lower resolution or applying
I-BDT with adapted parameters). Unfortunately, neither dataset nor
algorithm implementation from [Larsson et al. 2015] are available.

Recall Specificity
I-BDT Larsson I-BDT Larsson

Static
Fixation 0.985 ≈0.93 0.977 ≈0.98
Pursuit N/A ≈0.75 N/A ≈0.97

Dynamic
Fixation 0.986 ≈0.90 0.859 ≈0.85
Pursuit 0.822 ≈0.80 0.984 ≈0.95

Table 4: Performance comparison between I-BDT and [Lars-
son et al. 2015]. Static represents the average performance
for dataset II compared to the best performance for the im-
ages dataset. Dynamic represents the average performance for
datasets I, III, and IV compared to the best performance for the
videos/moving dot datasets.

6 Final Remarks

In this paper, we have proposed and evaluated a novel algorithm
for the real-time identification of fixations, saccades, and smooth
pursuits. Since the algorithm operates directly on the eye-position
signal, it requires no calibration step. The proposed algorithm dis-
played higher and more consistent performance than a state-of-the-
art algorithm, demonstrating the capability of I-BDT to provide
meaningful ternary classification. Moreover, an open-source MAT-
LAB implementation of the algorithm is provided.

One of the main difficulties during evaluation, was the lack of open
annotated datasets. The manual coding of eye movements is a sub-
jective, laborious, and time-consuming task; thus, having to create
one from scratch is far from ideal. In an effort to allow for review
and to kick-start an open-access benchmark for the evaluation of
eye movement identification algorithms, we provide our annotated
datasets openly at www.perception.uni-tuebingen.de.

For future work, we are interested in analyzing additional features
for I-BDT to further improve its performance as well as evaluating
the algorithm with higher-resolution eye trackers. Moreover, an im-
portant step to enable the fully automation of eye movements clas-
sification is a reliable detection of blinks, which the proposed algo-
rithm does not take into account at the moment. Furthermore, we
are intent on developing solutions to account for head movements in
order to reliably distinguish smooth pursuits from vestibulo-ocular
reflexes.

www.perception.uni-tuebingen.de
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