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Abstract
Blinks are an indicator for fatigue or drowsiness and can as-
sist in the diagnose of mental disorders, such as schizophre-
nia. Additionally, a blink that obstructs the pupil impairs the
performance of other eye-tracking algorithms, such as pupil
detection, and often results in noise to the gaze estimation.
In this paper, we present a blink detection algorithm that is
tailored towards head-mounted eye trackers and is robust to
calibration-based variations like translation or rotation of the
eye. The proposed approach reached 96,35% accuracy for
a realistic and challenging data set and in real-time even on
low-end devices, rendering the proposed method suited for
pervasive eye tracking.

Author Keywords
Blink detection; Pervasive eye tracking, Real time; Image
processing

ACM Classification Keywords
I.5.4 [PATTERN RECOGNITION]: Applications; I.4.8 [IM-
AGE PROCESSING AND COMPUTER VISION]: Object
recognition,Shape; I.4.9 [IMAGE PROCESSING AND COM-
PUTER VISION]: Applications

Introduction
A blink is a rapid closing and opening of the eyelids that
falls within three classes: endogenous, reflex, and volun-



tary movements [21]. Endogenous (or spontaneous) blinks
serve to spread the tear film over the cornea and remove
irritants.

Figure 1: Eyelid movement during
an endogenous blink, which
typically lasts for 75 to 400 ms [4].
For a low-end eye tracker (≈ 25
frames per second), this results in
approximatelly 4 to 16 frames.

Reflex blinks originate from the startle reflex to protect the
eye from external stimuli. For these two classes, blinks
usually range from 75 to 400 ms [4]. In contrast, voluntary
blinks are performed consciously, can be used for interac-
tion – e.g., in human-computer interfaces (HCI) [10] – and
have no determined duration patterns. Apart from these bi-
ological functions, unusual blink patterns are also indicative
of a person’s state of vigilance, fatigue, and drowsiness [15,
25, 22]. Such states are specially important in situations
that require quick reactions, e.g., during driving [3]; in this
context, real-time blink detection combined with pervasive
eye tracking has the potential to prevent dangerous and
life-threatening circumstances. Furthermore, blinks are a
significant source of noise for eye-tracking algorithms. For
instance, there is a trade-off between detecting pupils in
realistic and challenging scenarios and false positives dur-
ing blink (when no pupil is visible). Moreover, mid-blink the
pupil becomes partially occluded causing pupil detection
algorithms to bias the pupil center towards the still visible
part; as a result, blinks must be taken into account during
the automatic classification of eye movements [19]. Thus,
a robust and accurate blink detection algorithm enables not
only the employment of blink-related data (e.g., frequency)
but also circumvents the noise introduced by blinks in other
eye-tracking algorithms.

Due to the many advantages that head-mounted eye track-
ers offer – e.g., mobility and unintrusivnes – they are promis-
ing candidates for pervasive eye tracking, and, thus, this
work focuses on these eye trackers. An algorithm for use
in head-mounted eye trackers has different requirements
than one for remote eye tracking. There is no need for head

or eye localization, but the exact location, alignment, and
angle of the eye in the video depends on the eye camera
position, which varies significantly from subject to subject.
This makes it uncertain, where to expect the pupil or eye-
lids and mostly prohibits the use of any priors in an algo-
rithm. Motion bluring and frame skips also pose problems.
The former renders blink detection based on edges almost
impossible, and the latter can significantly distort a blink
sequence. Further challenges are added by reflections, un-
common angles, and illumination changes.

In this work, we propose a brightness and motion based al-
gorithm that runs in real-time in systems equivalent to those
used in state-of-the-art eye tracking systems and does not
rely on prior information. The fact that a sequence is ana-
lyzed in contrast to a frame-by-frame approach makes our
algorithm robust to frame skips and the brightness-based
detection does not rely on edges of any kind. Furthermore,
we introduce a new labeled data set of realistic and chal-
lenging images from on-road driving experiments. To foster
further research in the field and effortless replication of our
result, we contribute the algorithm implementation and data
sets openly at:
www.ti.uni-tuebingen.de/perception

Related work
The great majority of video-based blink identification con-
cerns remote eye trackers or regular cameras. In a first
stage, a plethora of methods, such as Viola-Jones [24]
and KLT trackers [23], are used to identify and track the
subject’s face and eyes region. As previously mentioned,
in this work we focus on head-mounted eye trackers. On
one hand, these devices impose extra constraints on the
blink identification task. For instance, since near-infrared
images are employed, no color information is available. Fur-
thermore, the orientation of the eye image and eye corner
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positions are not known a priori. On the other hand, head-
mounted devices do not require the aforementioned stage;
thus, henceforth we discuss related work assuming this ini-
tial stage is performed appropriately and eye boxes have
been identified correctly.

Smith et al. [20] first identify the eye-white color as the
brightest pixel in the eye region on an initial frame; fur-
ther frames are classified on whether eye-white pixels exist
in the eye region (non-blinks) or not (blinks). Grauman et
al. [7] employ an open eye template and correlation scores
to determine whether a frame contains an open or closed
eye (based on a predetermined threshold). Ito et al. [9] di-
vide the input image into vertical sections and, for each sec-
tion, find the pair of maximal and minimal intensity deriva-
tives most distant from the darkest point in the section. The
candidates from five sections are grouped, and two groups
are estimated to represent the upper and lower eyelid; the
average distance between the upper and lower eyelid points
is used to measure the degree of closure. A threshold then
discriminates between blinks and open eyes. Moriyama et
al. [16] rely on the average illumination intensity for the up-
per and lower halves of the eye region. Crossings between
these values are employed to determine when the eyelid
crosses the line separating these regions and, thus, blinks.
Morris et al. [17] use a mean image and variance map to
detect blinks; these are updated with each new frame, and
the resulting variance maps is thresholded. If the number of
pixels remaining is larger in relation to the eye box, a blink
is assumed. Lalonde et al. [13] employ scale-invariant fea-
ture transform to identify tracking points. The optical-flow of
the points inside the eye region is then employed to iden-
tify when the eyelid descends and ascends. Bavivarov et
al. [1] models the eyes through an active appearance model
and define a blink criteria based on the ratio between the
resulting eye width and aperture. Lee et al. [14] first nor-

malize the eye region illumination to account for illumination
variations. The cumulative difference of black pixels in a
binarized version of the normalized eye region and the ra-
tio between the eye height/width are used as features for
a support vector machine classifier that discriminates be-
tween open and closed eyes. Drutarovsky and Fogelton [5]
employ a flock of KLT trackers within the eye region, which
are used to evaluate the average motion of nine equally
sized cells in the region. The variance of the superior six
cells drive a finite state machine that identifies downward
and upward eyelid movements. Jiang et al. [11] consider
images provided by head-mounted eye trackers. Their ap-
proach consists with thresholding the difference between
two subsequent frames. The resulting image is then mor-
phologically opened, and pupil and eyelids identified. Blink
onset is determined based on eyelid position changes be-
tween the two consecutive frames, whereas blink offset is
identified based on pupil size changes during an ongoing
blink.

Method
The nature of our data leads to an approach that does not
rely on edge detection or prior knowledge about the loca-
tion of the pupil or shape of the eye. It is based on two sim-
ple assumptions: the pupil is dark and gets at least partly
obstructed by the eyelid during a blink. Those two facts
can be exploited if we look at the brightness of consecu-
tive frames. During the blink onset, the frame brightness
steadily increases, reaching its maximum at the blink apex.
Afterwards, frame brightness decreases during the blink
offset until it approaches a level similar to the one prior the
blink (see Figure 2).

Percentile values serve as a measure of brightness in our
algorithm. In addition, differences between consecutive
frames are used to determine if there is enough change to



Figure 2: The brightness development for a typical blink.

classify a sequence as a blink or not. For this, the frames fi
and fi−1 were blurred to reduce noise, and the absolute dif-
ference between them are calculated and summed up. Both
together form the features of a single frame. In the following
formula, c and r denote column number and row number
respectively, and b(fi) is the blurred version of frame fi.

diffi,i−1 =
∑
r,c

|b(fi)(r, c)− b(fi−1)(r, c)| (1)

featurei = (Ppercentile(fi), diffi,i−1) (2)

These features are calculated for k consecutive frames,
which together make up the feature vector for a window of
size k. Figure 3 illustrates the feature extraction procedure.

featurei−k,i = (featurei−k, . . . , featurei) (3)

Figure 3: Feature extraction process

Even though blinks may vary in length, their basic structure
remains similar. For a small amount of frames the eyelid
descends, whereas ascension takes a larger amount of
frames since eyelid velocity is higher during blink onset.
Thus, it is reasonable to assume a fixed window size that
appropriately models this behavior exists. Different choices
for the chosen percentile and the window size k are dis-
cussed in the evaluation section.



Figure 4: Challenging examples due to bad angle, incomplete blink, make-up, motion blurring and reflections

Based on these features, a Random Forest Classifier [8]
with 100 trees is trained. If more computational power is
available, the amount of trees can be increased to increase
accuracy. In contrast, the number of trees can be scaled
down to allow a faster evaluation. Random Forests are
the method of choice, because they are quick to train and
very fast to evaluate in addition to being able to handle
non-linearity. The possibility to parallelize both processes
increases the speed further. In addition to the already men-
tioned advantages, Random Forests do not need scaling for
their input and, thus, effectively handle the combined fea-
ture vector of summed differences and brightness changes.
Furthermore, these classifiers are resilient to outliers, so
eccentric blinks do not influence its ability to generalize.

Evaluation

Duration Blinks

<5 5
5 69
6 316
7 699
8 683
9 349

10 156
11 65
12 33
13 19

>13 16

Table 1: Duration distribution in
terms of frames for all recorded
blinks. Each frame encompasses
≈ 40 ms.

The proposed algorithm was evaluated using a data set
of 20 video sequences of 5 minutes each extracted from

a on-road driving experiment [12]; thus, the data contains
endogenous and, possibly, reflex blinks. Each video cor-
responds to a different subject. The videos were recorded
using a Dikablis Essential eye tracker at a sampling rate
of 25Hz and a resolution of 384 x 288 pixels. All blink se-
quences were annotated, amounting to a total of 2410
blinks; their duration distribution is shown in 1. Every blink
sequence starts with a completely open eye, is followed by
the blink apex, and continues until roughly the same degree
of openness that the eye had before the blink is reached.
It is worth noticing that this data set provides realistic and
challenging eye images, including quick changing illumina-
tion, blurring, reflections, and makeup. In contrast, related
work usually employs data from indoor scenarios, which dif-
fer little from laboratory settings and are not realistic in the
context of pervasive eye tracking. This data set is available
for download at:
www.ti.uni-tuebingen.de/perception
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We investigate the algorithm behaviour for window sizes
that encompass expected durations of endogenous and
reflexive blinks, ranging from ≈ 80 ms (i.e., k = 2) to ≈
600 ms (i.e., k = 15). Blinks durations vary inside this
range. However, in order to train a classifier, we need a
fixed amount of features; thus, it is necessary to clip or ex-
tend blink sequences in order to fit the selected window
size. In the case that our blink sequence was too short to
fit the window, subsequent frames were added to the blink
sequence until it was the same length as the window. Since
mostly the start of a blink is needed for classification, ex-
tending the sequence at the end only influences the clas-
sification negatively if there are blinks in extremely rapid
succession – i.e., the sequence covers two or more blinks.
If a blink sequence was to long, we trimmed it at the end.
The second parameter under investigation is the percentile
used as brightness indicator. For this, we investigate a wide
range, from 5 up to 90-percentile. The method was evalu-
ated through leave-one-out cross-validation. In other words,
results were obtained by training on the other 19 subjects
and evaluating on the remaining one; this procedure was
performed for each subject. Negative training samples were
chosen at random from periods not encompassing blinks,
and the amount of negative sequences was chosen as to
equal the amount of positive (blink) sequences for each
subject.

Figure 5: Subject 17 showed only
little occlusion of the pupil during
most blinks. This leads to a
relativly high false negative rate.

Figure 8 reports the average positive and negative predic-
tive value as the window size and brightness percentile
change. This figure clearly shows that the detection rate
of a blink increases with the window size. This is to be ex-
pected because by clipping blink sequence information is
lost. Nonetheless, since blinks usually do not last longer
than 400ms, there is a point where increasing the window
size further does not further improve detection. Moreover,
larger windows enables a more clear distinction between

Subject Accuracy (%)

5 Percentile 50 Percentile

Blink Non-Blink Blink Non-Blink

1 96.0 97.0 97.0 95.0
2 100.0 53.1 96.9 89.0
3 100.0 98.5 98.5 100.0
4 95.0 95.0 95.6 95.6
5 97.0 99.0 96.0 99.0
6 96.6 97.8 97.8 97.8
7 100.0 92.3 100.0 89.3
8 97.8 98.9 96.6 97.8
9 92.0 96.6 92.5 94.3
10 100.0 100.0 100.0 100.0
11 92.1 99.5 91.6 98.0
12 96.7 97.5 96.7 95.0
13 91.1 97.8 91.7 97.8
14 100.0 91.3 100.0 95.7
15 96.0 98.0 97.0 93.9
16 97.6 99.2 96.8 100.0
17 90.0 100.0 83.8 100.0
18 93.3 98.7 88.7 100.0
19 91.0 99.6 91.9 97.9
20 96.5 100.0 94.8 99.1

Table 2: Individual results for the subjects obtained with a window
size of 12



Figure 6: Difficult cases in terms of false positives: subjects 2, 7 and 14.

Figure 7: Difficult cases in terms of false negatives: subjects 9, 11 and 13

blinks and non-blinks, because the features of a non-blink
sequence are less likely to match those of blink sequences
by chance. However, problems arise when there are sev-
eral blinks in rapid succession that are to short to fill the
window. Oftentimes, this leads to misclassification as non-
blink. The brightness percentile affects both accuracies
of blinks and non-blinks. The smaller the percentile, the
better in terms of blink accuracy. With the choice of the 5-
percentile only changes from very dark pixels to brighter
ones are measured, and, thus, mainly changes in pupil pix-
els occur. This increases the accuracy of blink detection.
However, if a subject has distinctly dark eyelashes, these
have roughly the same pixel intensity as the pupil; as a re-
sult, the algorithm responds to every sequence, classifying
it as a blink. This is especially true for small narrow eyes.

Per subject results are reported in Table 2 for a window size
of 12 frames. Averaged over all evaluated percentile, a win-
dow size of 12 yielded the best F1-score. As can be seem
in this table, only one subject (subject 2) presented such
distinctly dark eyelashes. Remaining subjects were classi-
fied properly with the 5-percentile or equally well with both
percentiles. With 96,3795% the overall best F1-score was
achieved using the 50th percentile and a window size of 11.

Figure 6 illustrates the problems with subject 2 as well as
subject 7, who too had a small pupil and wore make-up. In
addition to that, subject 7 had a partly occluded pupil even
when not blinking. Subject 14 suffered from an iris defect
that can be misinterpreted as a pupil and in the process of
looking downwards it gets obscured, mimicking a blink.



Figure 8: Average predictive value across subjects for blink (left) and non-blink (right) sequences as the window size k and brightness
percentile change.

Figure 7 shows three subjects that had a false negative
rate above average. This can stem from a bad angle or il-
lumination. Both can lead to a low visibility of the pupil and
lessen the brightness change, which ultimately results in a
lower detection rate. In the case of subject 17 the lower de-
tection rate arises from the fact that the pupil does not get
occluded significantly during a blink (see figure 5). Double
blinks only occurred in the video of subject 19. The rapid
sequence of blinks lead to some misclassification and a
lower detection rate.

The algorithm was implemented in Python using the OpenCV [2]
and Scikit-learn [18] libraries. Testing was done with an In-
tel® Core™ i7-4790 at 3.60GHz and with 12GB of RAM.
This system is consistent with those used by state-of-the-
art eye trackers (e.g., Dikablis [6]). The mean runtime of the
feature extraction process was 0.6630ms and predicting the

class of all 4820 training samples took 0.0264ms on aver-
age. This amounts to a processing rate of 1450.54 frames
per second once the images are loaded.

Conclusion
We presented an approach that is fast and has very high
detection rate for blinks. For further elaboration of the pro-
posed algorithm, we plan to broaden the spectrum of sub-
jects to have a representative data base to train, which will
significantly decrease false positives. A greater data base
would also allow us to train different classifiers for differ-
ent window sizes and would enable us to narrow down the
time span of a blink. This way the blink duration can be es-
timated. Additionally a calibration phase can be integrated
at the start of an experiment where the subject is asked to
open and close its eyes to have samples to construct blink



sequences of different lengths and estimate the expected
brightness change during a blink, which allows for normal-
ization. To foster further research in the field and effortless
replication of our result, we contribute the algorithm imple-
mentation and data sets openly at:
www.ti.uni-tuebingen.de/perception
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