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ABSTRACT

Real-time, accurate, and robust pupil detection is an essential prerequisite to enable pervasive eye-

-tracking and its applications – e.g., gaze-based human computer interaction, health monitoring,

foveated rendering, and advanced driver assistance. However, automated pupil detection has proved

to be an intricate task in real-world scenarios due to a large mixture of challenges such as quickly

changing illumination and occlusions. In this paper, we introduce the Pupil Reconstructor (PuRe), a

method for pupil detection in pervasive scenarios based on a novel edge segment selection and condi-

tional segment combination schemes; the method also includes a confidence measure for the detected

pupil. The proposed method was evaluated on over 316,000 images acquired with four distinct head–

mounted eye tracking devices. Results show a pupil detection rate improvement of over 10 percentage

points w.r.t. state-of-the-art algorithms in the two most challenging data sets (6.46 for all data sets),

further pushing the envelope for pupil detection. Moreover, we advance the evaluation protocol of

pupil detection algorithms by also considering eye images in which pupils are not present and con-

tributing a new data set of mostly closed eyes images. In this aspect, PuRe improved precision and

specificity w.r.t. state-of-the-art algorithms by 25.05 and 10.94 percentage points, respectively, demon-

strating the meaningfulness of PuRe’s confidence measure. PuRe operates in real-time for modern eye

trackers (at 120 fps) and is fully integrated into EyeRecToo – an open-source state-of-the-art soft-

ware for pervasive head-mounted eye tracking. The proposed method and data set are available at

www.ti.uni-tuebingen.de/perception.

c� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Head-mounted video-based eye trackers are becoming in-

creasingly more accessible and prevalent. For instance, such

eye trackers are now available as low-cost devices (e.g., Pupil

Labs (2017)) or integrated into wearables such as Google

Glasses, Microsoft Hololens, and the Oculus Rift (Raffle and

Wang, 2015; Microsoft, 2017; Oculus, 2017). As a conse-

quence, eye trackers are no longer constrained to their origins

as research instruments but are developing into fully fledged

pervasive devices. Therefore, guaranteeing that these devices

are able to seamlessly operate in out-of-the-lab scenarios is

not only pertinent to the research of human perception, but

also to enable further applications such as pervasive gaze-

based human-computer interaction (Bulling and Gellersen,
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2010), health monitoring (Vidal et al., 2012), foveated render-

ing (Guenter et al., 2012), and conditionally automated driv-

ing (Braunagel et al., 2017).

Pupil detection is the fundamental layer in the eye-tracking

stack since most other layers rely on the signal generated by

this layer – e.g., for gaze estimation (Morimoto and Mimica,

2005), and automatic identification of eye movements (Santini

et al., 2016). Thus, errors in the pupil detection layer propa-

gate to other layers, systematically degrading eye-tracking per-

formance. Unfortunately, robust real-time pupil detection in

natural environments has remained an elusive challenge. This

elusiveness is evidenced by several reports of difficulties and

low pupil detection rates in natural environments such as driv-

ing (Schmidt et al., 2017; Wood et al., 2017; Kübler et al., 2015;

Trösterer et al., 2014; Kasneci, 2013; Chu et al., 2010; Liu

et al., 2002), shopping (Kasneci et al., 2014), walking (Sug-

ano and Bulling, 2015; Foulsham et al., 2011), in an operat-

ing room (Tien et al., 2015), and during human-robot interac-
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tion (Aronson et al., 2018). These difficulties in pupil detection

stems from multiple factors; for instance, reflections (Fig. 1a),

occlusions (Fig. 1b), complex illuminations (Fig. 1c), and phys-

iological irregularities (Fig. 1d) (Fuhl et al., 2016d; Hansen and

Hammoud, 2007; Hansen and Pece, 2005; Zhu and Ji, 2005).

(a) (b) (c) (d)

Fig. 1: Representative images of pupil detection challenges in real-world sce-

narios: (a) reflections, (b) occlusions, (c) complex illuminations, and (d) phys-

iological irregularities.

In this paper, we introduce the Pupil Reconstructor (PuRe),

a method for pupil detection in pervasive scenarios based on a

novel edge segment selection and conditional segment combi-

nation schemes; the proposed method also includes a meaning-

ful confidence measure for the detected pupil. Previous work

in the field of pupil detection is presented in Section 2, and

the proposed method is described in Section 3. Previous work

usually focuses on evaluating pupil detection algorithms based

solely on the detection rate. Similarly, we contrast the proposed

method to previous work in Section 4.1. In addition, we in-

troduce novel metrics to evaluate these algorithms in terms of

incorrect pupil detection rates (Section 4.2) as well as dynamic

signal properties (Section 4.3). Run time considerations are dis-

cussed in Section 4.4, and Section 6 presents final remarks and

future work.

2. Related Work

While there is a plethora of previous work for pupil detection,

most methods are not suitable for out-of-the-lab scenarios. For

an extensive appraisal of state-of-the-art pupil detection meth-

ods, we refer the reader to the works by Fuhl et al. (2016d) and

Tonsen et al. (2016) for head-mounted eye trackers as well as

Fuhl et al. (2016a) for remote eye trackers. In this work, we fo-

cus solely on methods that have been shown to be robust enough

for deployment in pervasive scenarios, namely ElSe (Fuhl et al.,

2016c), ExCuSe (Fuhl et al., 2015), and Świrski (Świrski et al.,

2012).

ElSe consists of two approaches. First, a Canny edge detec-

tor is applied, and the resulting edges are filtered through

morphological operations3. Afterwards, ellipses are fit to

the remaining edges, edges are removed based on empiri-

cally defined heuristics, and one ellipse is selected as pupil

based on its roundness and enclosed intensity value. If

this method fails to produce a pupil, a second approach

3Fuhl et al. (2016c) also describe an algorithmic approach to edge filter-

ing producing similar results; however the morphological approach is preferred

because it requires less computing power.

that combines a mean and a center surround filter to find

a coarse pupil estimate is employed; an area around this

coarse estimate is then thresholded with an adaptive pa-

rameter, and the center of mass of pixels below the thresh-

old is returned as pupil center estimate (Fuhl et al., 2016c).

ExCuSe first analyzes the input images w.r.t. reflections based

on peaks in the intensity histogram. If the image is deter-

mined to be reflection free, the image is thresholded with

an adaptive parameter, and a coarse pupil position is esti-

mated through an angular integral projection function Mo-

hammed et al. (2012); this position is then refined based

on surrounding intensity values. If a reflection is detected,

a Canny edge detector is applied, and the resulting edges

are filtered with morphological operations; ellipses are fit

to the remaining edges, and the pupil is then selected as

the ellipse with the darkest enclosed intensity (Fuhl et al.,

2015).

Świrski starts with a coarse positioning using Haar-like fea-

tures. The intensity histogram of an area around the coarse

position is clustered using k-means clustering, followed by

a modified RANSAC-based ellipse fit (Świrski et al., 2012).

From these algorithms, ElSe has shown a significantly better

performance over multiple data sets (Fuhl et al., 2016d). More-

over, it is worth noticing that these algorithms employ multiple

parameters that were empirically defined, albeit there is usually

no need to tune these parameters.

It is worth dedicating part of this section to discuss machine-

learning approaches in contrast to the algorithmic ones, partic-

ularly convolutional neural networks (CNN). Similarly to other

computer vision problems, from a solely pupil detection stand

point, deep CNNs will likely outperform human-crafted pupil

detection approaches given enough training data – with incre-

mental improvements appearing as more data becomes avail-

able and finer network tuning. Besides labeled data availability,

which might be alleviated with developments of unsupervised

learning methods, there are other impediments to the use of

CNNs in pervasive scenarios since these scenarios typically re-

quire the use of embedded systems. For instance, computation

time and power consumption. While these impediments might

be lessened with specialized hardware – e.g., cuDNN (Chetlur

et al., 2014), Tensilica Vision DSP (Efland et al., 2016), such

hardware might not always be available or may incur pro-

hibitive additional production costs. Finally, CNN-based ap-

proaches might be an interesting solution from an engineering

point of view, but remain a black box from the scientific one. To

date, we are aware of two previous works that employ CNNs for

pupil detections: 1) PupilNet (Fuhl et al., 2016b), which aims at

a computationally inexpensive solution in the absence of hard-

ware support, and 2) Vera-Olmos (Vera-Olmos and Malpica,

2017), which consists of two very deep CNNs – a coarse es-

timation stage (with 35 convolution plus 7 max-pooling layers

for encoding and 10 convolution plus 7 deconvolution layers

for decoding), and a fine estimation stage (with 14 convolution

plus 5 max-pooling layers for encoding and 7 convolution plus

5 deconvolution layers).
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3. PuRe: The Pupil Reconstructor

Similarly to related work, the proposed method was designed

for near-infrared4 eye images acquired by head-mounted eye

trackers. Our method only makes two uncomplicated assump-

tions to constrain the valid pupil dimension space without re-

quiring empirically defined values: 1) the eye canthi lie within

the image, and 2) the eye canthi cover at least two-thirds of

the image diagonal. It is worth noticing that these are soft as-

sumptions – i.e., the proposed method still operates satisfac-

torily if the assumptions are not significantly violated. Fig. 2

illustrates these concepts. Furthermore, these assumptions are

in accordance to eye tracker placement typically suggested by

eye tracker vendor’s guidelines to capture the full range of eye

movements.

(a) (b) (c) (d) (e)

Fig. 2: PuRe assumptions visualized. (a) illustrates the maximal intercanthal

distance, yielding the maximal pupil diameter (pdmax), whereas (b) illustrates

the lower bound – i.e., minimal pupil diameter (pdmin). (c) shows realistic data

that respects both assumptions. In contrast, the maximal intercanthal distance

assumption is violated in (d) and (e). In the former, the pupil does not approach

maximal dilation, and PuRe is still able to detect the pupil. In the latter, the

pupil is significantly dilated, and the resulting diameter exceeds pdmax; PuRe

does not detect such pupils.

PuRe works purely based on edges, selecting curved edge

segments that are likely to be significant parts of the pupil

outline. These selected segments are then conditionally com-

bined to construct further candidates that may represent a re-

constructed pupil outline. An ellipse is fit to each candidate,

and the candidate is evaluated based on its ellipse aspect ratio,

the angular spread of its edges relative to the ellipse, and the

ratio of ellipse outline points that support the hypothesis of it

being a pupil. This evaluation yields a confidence measure for

each candidate to be the pupil, and the candidate with the high-

est confidence measure is then selected as pupil. The remainder

of this section describes the proposed method in detail.

3.1. Preprocessing

Prior to processing, if required, the input image is down-

scaled to the working size S w = (Ww × Hw) through bilinear

interpolation, where Ww and Hw are the working width and

height, respectively. The original aspect ratio is respected dur-

ing downscaling. Afterwards, the resulting image is linearly

normalized using a Min-Max approach.

3.2. Edge Detection and Morphological Manipulation

PuRe’s first step is to perform edge detection using a Canny

edge operator (Canny, 1986). The resulting edge image is

4This is the standard image format for head-mounted eye trackers and can

be compactly represented as a grayscale image.

then manipulated with a morphological approach to thin and

straighten edges as well as to break up orthogonal connections

following the procedure described by Fuhl et al. (2016c). The

result of this step is an image with unconnected and thinned

edge segments, as illustrated in Fig. 3.

Fig. 3: Input image (left), resulting Canny edge detection (middle), and edges

after morphological manipulation. Notice how the edges are thinned and or-

thogonal connections are broken.

3.3. Edge Segment Selection

Each edge segment is first approximated by a set of dominant

points D following the k-cosine chain approximation method

described by Teh and Chin (1989). This approximation reduces

the computational requirements for our approach and typically

results in a better ellipse fit in cases where a pupil segment

has not been properly separated from surrounding edges. After

approximation, multiple heuristics are applied to discard edge

segments that are not likely to be part of the pupil outline:

1. Given the general conic equation ax2 + by2 + cxy + dx +

ey + f = 0, at least five points are required to fit an ellipse

in a least-squares sense. Therefore, we exclude segments

in which D’s cardinality is smaller than five. This heuristic

discards plain shapes such as small segments and substan-

tially straight lines.

2. Based on the assumptions highlighted in the beginning

of this section, it is possible to establish the maximal

and minimal distance between the lateral and medial eye

canthus in pixels when frontally imaged as

ecmax =

�

Ww
2 + Hw

2 and ecmin =
2

3
∗ ecmax. (1)

These estimates can then be used to infer rough values

for the maximal (Fig. 2a) and minimal (Fig. 2b) pupil

diameter bounds (pdmax and pdmin) based on the hu-

man physiology. We approximate the eye canthi distance

through the palpebral fissure width as 27.6 mm (Kunjur

et al., 2006); similarly, the maximal and minimal pupil

diameter are approximated as 8 mm and 2 mm, respec-

tively (Spector, 1990). Therefore,

pdmax ≈ 0.29 ∗ ecmax and pdmin ≈ 0.07 ∗ ecmin. (2)

Note that whereas maximal values hold independent of

camera rotation and translation w.r.t. the eye, minimal val-

ues might not hold due to perspective projection distor-

tions and corneal refractions. Nonetheless, pdmin already
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represents a minute part (≈ 4.8%) of the image diagonal,

and we opted to retain this lower bound – for reference, see

Fig. 2b. For each candidate, we approximate the segment’s

diameter by the largest gap between two of its points. Can-

didates with a diameter outside of the range [pdmin, pdmax]

violate bounds and are thus discarded.

3. To estimate a segment’s curvature, first the minimum rect-

angle containing D is calculated using the rotating calipers

method (Toussaint, 1983). The curvature is then estimated

based on the ratio between this rectangle’s smallest and

largest sides. The straighter the candidate is, the smaller

the ratio. The cut-off threshold for this ratio is based on

the ratio between the minor and major axes of an ellipsis

with axes extremities inscribed in 45◦ of a circle, which

evaluates to Rth = (1 − cos(22.5◦))/sin(22.5◦) ≈ 0.2. This

heuristic servers to discard relatively linear candidates.

4. At this stage, an ellipse E is fit to the points in D follow-

ing the least-squares method described in Fitzgibbon and

Fisher (1995). A segment is discarded if: I) E’s center lies

outside of the image boundaries, which violates PuRe’s

assumptions, or II) the ratio between E’s minor and major

axes is smaller than Rth, which assumes that the camera

pose relative to the eye can only distort the pupil round

shape to a certain extend.

5. Seldom, the ellipse fitting procedure will not produce a

proper fit. We identify and discard most such cases inex-

pensively if the mean point from D does not lie within the

polygon defined by the extremities of E’s axes.

As a result from this elimination process, the edge segment

search space is significantly reduce, as illustrated by Fig. 4.

Fig. 4: Edges after morphological processing (left) and the resulting selected

segments that are candidates for the pupil outline (right). Each segment is repre-

sented by its k-cosine chain approximation and illustrated with a distinct color.

3.4. Confidence Measure

For each remaining candidate, PuRe takes into account three

distinct metrics to determine a confidence measure ψ that the

candidate is a pupil:

Ellipse Aspect Ratio (ρ): measures the roundness of E. This

metric favors rounder ellipses (that typically result due to

the eye camera placement w.r.t. the eye) and is evaluated

as the ratio between E’s minor and major axis.

Angular Edge Spread (θ): measures the angular spread of the

points in D relative to E, assuming that the better dis-

tributed the edges are, the more likely it is that the edges

originated from a clearly defined elliptical shape (i.e., a

pupil’s shape). This metric is roughly approximated as the

ratio of E centered quadrants that contain a point from D.

Ellipse Outline Contrast (γ): measures the ratio of the E’s

outline that supports the hypothesis of a darker region sur-

rounded by a brighter region (i.e., a pupil’s appearance).

This metric is approximated by selecting E’s outline points

with a stride of ten degrees. For each point, the linear

equation passing through the point and the E’s center is

calculated, which is used to define a line segment with

length proportional to E’s minor axis and centered at the

outline point. If the mean intensity of the inner segment is

lower than the mean intensity of the outer one, the point

supports the pupil-appearance hypothesis5.

If the candidate’s ellipse outline is invalid – i.e., violates

PuRe’s size assumptions or less than half of the outline con-

trast γ supports the candidate – the confidence metric is set to

zero. Otherwise, the aforementioned metrics are averaged when

determining the resulting confidence. In other words,

ψ =















0 if the outline is invalid;
ρ+θ+γ

3
otherwise.

(3)

It is worth noticing that the range of all three metrics (and con-

sequently ψ) is [0,1].

3.5. Conditional Segment Combination

The segments that remain as candidates are combined pair-

wise to generate additional candidates. This procedure attempts

to reconstruct the pupil outline based on nearby segment pairs

since the pupil outline is often broken up due to occlusions

from, for example, reflections or eye lashes. Let D1 and D2 be

the set of dominant points for two segments and S 1 and S 2 the

set of points contained by the up-right squares bounding D1 and

D2, respectively. The segments are combined if these bounding

squares intersect but are not fully contained within one another

– i.e., S 1 ∩ S 2 � ∅ � S 1 � S 2. For instance, see Fig. 5.

The resulting merged segment is then validated according to

Section 3.3, and its confidence measure evaluated according to

Section 3.4. Since this procedure is likely to produce candi-

dates with high aspect ratio ρ and angular spread θ values, the

new candidate is only added to the candidate list if its outline

contrast γ improves on the γ from the original segments. After

conditional combination, the candidate with highest confidence

ψ is selected as the initial pupil, as shown in Fig. 6.

Note that the inner intensities relative to other candidates do

not contribute to the pupil selection. Thus, the iris might be

selected since it exhibits properties similar to the pupil – e.g.,

roundness, inner-outer contrast, and size range. For this reason,

5If a bright pupil eye tracker is used, the inverse holds
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Fig. 5: Illustration of the conditional segment combination. The highlighted

blue and cyan segments meet the intersection requirements and are combined to

generate and additional pupil outline segment. The other pairs do not intersect

and, therefore, generate no additional candidates.

Fig. 6: Illustration for the confidence measure evaluation using the segments

from Fig. 5. Segments with confidence smaller than 0.5 are omitted. The first

row shows the segment points and resulting ellipse. Second row shows the

lines contributing to the ellipse outline contrast (γ); green lines support the

pupil-appearance hypothesis, whereas red lines do not. Notice how the cyan

segment results in an incorrect outline estimation due to the ellipse fit even

though the segment is part of the pupil outline. The blue segment results in an

acceptable outline estimate even though the left side of the outline is slightly

shifted. In contrast, the combined segment reconstructs the whole range of the

pupil outline and yields a higher confidence (ψ), thus being selected as pupil

estimate.

the inside of the initial pupil is searched for a roughly cocen-

tered candidate with adequate size and strong inner-outer out-

line contrast. This is done by searching a circular area centered

at the center of the initial pupil with radius equal to the initial

semi-major axis – i.e., representing a circular iris. Candidates

1) lying inside this area, 2) with major axis smaller than the

search radius, and 3) with at least three thirds of the outline

contrast (γ) valid are collected. The collected candidate with

highest confidence is then chosen as new the pupil estimate. If

no candidate is collected in this procedure, the initial pupil re-

mains as the pupil estimate. As output, PuRe returns not only a

pupil center, but also its outline and a confidence metric.

4. Experimental Evaluation

As previously mentioned, we evaluate PuRe only against ro-

bust state-of-the-art pupil detection methods, namely ElSe6, Ex-

6With morphological split and validity threshold.

CuSe, and Świrski. All algorithms were evaluated using their

open-source C++ implementations; default parameters were

employed unless specified otherwise. For ExCuSe, the input

images were downscaled to 240p (i.e., 320 × 240 px) as there

is evidence that this is a favorable input size detection-rate-

wise (Tonsen et al., 2016). Similarly, the working size for PuRe

(S w, Section 3.1) was set to 240p as well to keep run time

compatible with state-of-the-art head-mounted eye trackers (see

Section 4.4). ElSe provides an embedded downscaling and bor-

der cropping mechanism, effectively operating with a resolution

of 346 × 260 px. Notice that whenever the input images are

downscaled, the results must be upscaled to be compared with

the ground truth. No preprocessing downscaling was performed

for Świrski since evidence suggests it degrades performance for

this method (Tonsen et al., 2016). Additionally, we juxtapose

our results with the ones from PupilNet (Fuhl et al., 2016b) and

Vera-Olmos (Vera-Olmos and Malpica, 2017) whenever possi-

ble.

In this work, we use the term use case to refer to each in-

dividual eye video. For instance, the LPW data set contains

22 subjects with three recordings per subject in distinct condi-

tions (e.g., indoors, outdoors), resulting in 66 distinct use cases.

Furthermore, we often compare PuRe with the rival, meaning

the best performant from the other algorithms for the metric in

question. For instance, for the aggregated detection rate, ElSe

performs better than ExCuSe and Świrski and is, therefore, the

rival.

4.1. Pupil Detection Rate

A pupil is considered detected if the algorithm’s pupil center

estimate lies within a radius of n pixels from the ground-truth

pupil center. Similar to previous work, we focus on an error up

to five pixels to account for small deviations in the ground-truth

labeling process – e.g., human inaccuracy (Fuhl et al., 2015,

2016c; Tonsen et al., 2016; Vera-Olmos and Malpica, 2017).

This error magnitude is illustrated in Fig. 7. For this evaluation,

we employed five data sets totaling 266,786 realistic and chal-

lenging images acquired with three distinct head-mounted eye

tracking devices, namely, the Świrski (Świrski et al., 2012), Ex-

CuSe (Fuhl et al., 2015), ElSe (Fuhl et al., 2016c), LPW (Ton-

sen et al., 2016), and PupilNet (Fuhl et al., 2016b) data sets.

In total, these data sets encompass 99 distinct use cases. It is

worth noticing that we corrected7 a disparity of one frame in

the ground truth for five use cases of the ElSe data set and for

the whole PupilNet data set, which increased the detection rate

of all algorithms (by ≈ 3.5% on average).

Fig. 8 shows the cumulative detection rate per pixel error of

the evaluated algorithms for the aggregated 266,786 images as

well as the detection rate distribution per use case at five pixels.

As can be seen, PuRe outperforms all algorithmic competitors

for all pixel errors. In particular, PuRe achieved a detection rate

of 72.02% at the five pixel error mark, further advancing the

state-of-the-art detection rate by a significant margin of 6.46

percentage points when compared to the rival. Moreover, the

7All ground truth data employed in this work are available at www.ti.

uni-tuebingen.de/perception
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Fig. 7: Five pixels validity range (in yellow) around the ground-truth pupil

center for the pupil estimate to be considered correct and, thus, the pupil

detected. Reference range relative to the data from the Świrski (left), Ex-

CuSe/ElSe/PupilNet (center), and LPW (right) data sets.

proposed method estimated the pupil center correctly 80% of

the time for the majority of use cases, attesting for PuRe’s com-

prehensive applicability in realistic scenarios.
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Fig. 8: On the left, the cumulative detection rate for the aggregated 266,786

images from all data sets. On the right, the distribution of the detection rate per

use case as a Tukey boxplot (Frigge et al., 1989).

It is worth noticing that the aggregated detection rate does not

account for differences in data set sizes. As a consequence, this

metric is dominated by the ExCuSe and LPW datasets, which

together represent 63.44% of the data. Since these two data

sets are not the most challenging ones8, the algorithms tend to

perform better on them, and differences between the algorithms

are less pronounced. Inspecting the detection rates per data set

in Fig. 9 gives a better overview of the real differences between

the algorithms and data sets, revealing that PuRe improves the

detection rate by more than 10 percentage points w.r.t. the ri-

val for the most challenging data sets (i.e., ElSe and PupilNet).

To allow for a more fine-grained appreciation of the method’s

performance relative to the other algorithms, Fig. 10 presents

PuRe’s detection rate at five pixels relative to the rival for each

use case. In 71.72% of all use cases, PuRe outperformed

all contenders. In particular, for the two most challenging

data sets, PuRe surpassed the competition in 100% of the use

cases. In contrast, the rivals noticeably outperformed PuRe in

five use cases: Swirski/p1-right, ExCuSe/data-set-II,

LPW/4/12, LPW/9/17, and LPW/10/11, from which repre-

sentative frames are shown in Fig. 11. These five use cases

also highlight some of PuRe’s imperfections. For instance,

Swirski/p1-right and ExCuSe/data-set-II have weak

and broken pupil edges due to inferior illumination and occlu-

sions due to eye lashes/corneal reflections; ElSe compensates

8As evidenced by higher detection rates for all algorithms in Fig. 9

this lack of edges with its second step. LPW/4/12 contains

large pupils that violate PuRe’s assumptions; in fact, relaxing

the maximum pupil size by only ten percent increases PuRe’s

detection rate from 44.2% to 65.5% (or +6.55% w.r.t. the rival).

LPW/9/17 often has parts of the pupil outline occluded by eye

lashes and reflections, whereas LPW/10/11 contains pupils in

extremely off-axial positions combined with occlusions caused

by reflections. However, visually inspecting the latter two use

cases, we did not find any particular reason for Świrski to out-

perform the other algorithms.
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Regarding CNN-based approaches9: 1) For PupilNet, Fuhl

et al. (2016b) report a detection rate of 65.88% at the five

pixel error range when trained in half of the data from the Ex-

CuSe and PupilNet data sets and evaluated on the remaining

data. In contrast, PuRe reached 71.11% on all images from

these data sets – i.e., +5.23%. 2) For Vera-Olmos, Vera-Olmos

and Malpica (2017) report an unweighted10 detection rate of

82.17% at the five pixel error range averaged over a leave-one-

out cross validation in the ExCuSe and ElSe data sets. In con-

trast, PuRe reached 76.71% on all images from these data sets

– i.e., −5.46%. Nevertheless, these results indicate that PuRe

is able to compete with state-of-the-art CNN-based approaches

while requiring only a small fraction of CNN computational re-

quirements. In fact, PuRe outperformed Vera-Olmos for 37.5%

of use cases. Furthermore, it is worth noticing that the train-

ing data is relatively similar to the evaluation data (same eye

tracker, similar conditions and positioning) in both cases, which

might bias the results in favor of the CNN approaches.

4.2. Beyond Pupil Detection Rate: Improving Precision, and

Specificity Through the Confidence Measure

One aspect that is often overlooked when developing pupil

detection algorithms is the rate of incorrect pupil estimates

9These approaches used the uncorrected ElSe and PupilNet data sets, which

might slightly affect the detection rate.
10Averaged over the use cases.
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Fig. 10: PuRe’s performance relative to the rival for each use case. PuRe is

the best algorithm in 71.72% of cases, ElSe in 14.14%, Świrski in 12.12%, and

ExCuSe in 1.01%.

Fig. 11: Representative frames for use cases in which the rival outperforms

PuRe. Each column contains frames from one use case. From left to

right: Swirski/p1-right, ExCuSe/data-set-II, LPW/4/12, LPW/9/17,

and LPW/10/11.

returned by the algorithm. For instance, the aforementioned

CNN-based approaches always return a pupil estimate, regard-

less of one actually existing in the image. Intuitively, one

can relax pupil appearance constraints in order to increase the

detection rate, leading to an increase in the amount of in-

correct pupils returned. However, these incorrect pupil esti-

mates later appear as noise and can significantly degrade gaze-

estimation calibration (Santini et al., 2017b), automatic eye

movement detection (Pedrotti et al., 2011), glanced-area ratio

estimations (Vrzakova and Bednarik, 2012), eye model con-

struction (Świrski and Dodgson, 2013), or even lead to wrong

medical diagnosis (Jansen et al., 2009). Therefore, it is imper-

ative to also analyse algorithms in terms of incorrect detected

pupils. The pupil detection task can be formulated as a classifi-

cation problem – similar to the approach by Bashir and Porikli

(2006) for frame-based tracking metrics – such that:

True Positive (TP) represents cases in which the algorithm

and ground truth agree on the presence of a pupil. We fur-

ther specialize this class into Correct True Positive (CTP)

and Incorrect True Positive (ITP) following the detection

definition from Section 4.1.

False Positive (FP) represents cases in which the algorithm

finds a pupil although no pupil is annotated in the ground

truth.

True Negative (TN) represents cases in which the algorithm

and ground truth agree on the absence of a pupil.

False Negative (FN) represents cases in which the algorithm

fails to find the pupil annotated in the ground truth.

Note that this is not a proper binary classification problem, and

the relevant class is given only by CTP. Therefore, we redefine

sensitivity and precision in terms of this class as

sensitivity =
CTP

TP + FN
(4)

and

precision =
CTP

TP + FP
(5)

respectively, such that sensitivity reflects the (correct) pupil de-

tection rate and precision the rate of pupils that the algorithm

found that are correct. Thus, these metrics allows us to evalu-

ate 1) the trade-off between detection of correct and incorrect

pupils, and 2) the meaningfulness of PuRe’s confidence mea-

sure.

Unfortunately, the eye image corpus employed to evaluate

pupil detection rates (in Section 4.1) do not include negative

samples – i.e., eye images in which a pupil is not visible, such

as during a blink. Therefore, the capability of the algorithm

to identify frames without a pupil as such cannot be evalu-

ated since specificity
� T N

T N+FP

�

remains undefined without neg-

ative samples. To evaluate this aspect of the algorithms, we

have recorded a new data set (henceforth referred to as Closed-

Eyes) containing in its majority (99.49%) negative samples.

This data set consists of 83 use cases and contains 49,790 im-

ages with a resolution of 384 × 288 px. These images were
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collected from eleven subjects using a Dikablis Professional

eye tracker (Ergoneers, 2017) with varying illumination condi-

tions and camera positions. A larger appearance variation was

achieved by asking the subjects to perform certain eye move-

ment patterns11 while their palpebrae remained shut in two con-

ditions: 1) with the palpebrae softly shut, and 2) with the palpe-

brae strongly shut as to create additional skin folds. In ≈ 56%

of use cases, participants wore glasses. Challenges in the im-

ages include reflections, black eyewear frames, prominent eye

lashes, makeup, and skin folds, all of which can generate edge

responses that the algorithms might identify as parts of the pupil

outline. Fig. 12 shows representative images from the data set.

This new data set with manually annotated ground truth (in-

cluding pupil center whenever visible) is openly available at:

www.ti.uni-tuebingen.de/perception

Fig. 12: Samples from the Closed-Eyes data set. First row shows samples from

softly shut palpebrae, and the second one shows samples from strongly shut

palpebrae.

We evaluated the four aforementioned algorithms using all

images from the data sets from Section 4.1 and the Closed-Eyes

data set, totaling 316,576 images. We assessed PuRe’s confi-

dence measure using a threshold within [0:0.99] with strides of

0.01 units. A pupil estimate was considered correct only if its

confidence measure was above the threshold. Similarly, ElSe

offers a validity threshold (default=10) to diminish incorrect

pupil rates, which we evaluated within the range [0:110] with

strides of 10 units. ExCuSe and Świrski do not offer any incor-

rect pupil prevention mechanisms and, therefore, result only in

a single evaluation point. The results from this evaluation are

presented in Fig. 13. As can be seen in this figure, PuRe domi-

nates over the other algorithms, and PuRe’s confidence metric is

remarkably meaningful, allowing to significantly reduce incor-

rect pupil detections while preserving the correct pupil detec-

tion rate and increasing identification of frames without pupils.

In fact, when compared to threshold 0, the threshold that maxi-

mizes the F2 score (0.66) increased precision and specificity by

20.78% and 89.47%, respectively, whereas sensitivity was de-

creased by a negligible 0.49%. In contrast, ElSe exhibited negli-

gible (< 1%) changes for sensitivity and precision when varying

the threshold from 0 to 10, with a small gain of 2.69% in speci-

ficity; subsequent increases in the threshold increase specificity

at the cost of significantly deteriorating ElSe’s performance for

the other two metrics. Compared to the rival for each metric,

PuReth=0.66 improved sensitivity, precision, and specificity by

5.96, 25.05, and 10.94 percentage points, respectively.

11Although the eye is hidden underneath the palpebrae, eye globe movement

results in changes in the folds and light reflections in the skin.
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Fig. 13: Trade-off between sensitivity and precision (top) as well as sensitivity

and specificity (bottom) for different pupil validation thresholds for PuRe and

ElSe. Algorithms were evaluated over all images from the Świrski, ExCuSe,

ElSe, LPW, PupilNet, and Closed-Eyes data sets. For the sake of visibility,

points are only plotted when there’s a significant (> 0.05) change in one of the

metrics. The Z2 score is maximized at thresholds 0.66 (for PuRe) and 10 (for

ElSe).

4.3. Pupil Signal Quality

From the point of view of the image processing layer in the

eye-tracking stack, the (correct/incorrect) detection rates stand

as a meaningful metric to measure the quality of pupil detection

algorithms. However, the remaining layers (e.g., gaze estima-

tion, eye movement identification) often see the output of this

layer as a discrete pupil signal (as a single-object tracking-by-

detection), which these detection rates do not fully describe.

For example, consider two pupil detection algorithms: A1,

which detects the pupil correctly every two frames, and A2,

which detects the pupil correctly only through the first half of

the data. Based solely on the pupil detection rate (50% in both

cases), these algorithms are identical. Nonetheless, the former

algorithm enables noisy12 eye tracking throughout the whole

data, whereas the latter enables noiseless eye tracking during

only the first half of the data. Which algorithm is preferable is

then application dependent, but a method to assess these prop-

erties is required nonetheless.

12Note that the values are not necessarily missing but might be incorrect

pupil detections; thus interpolation/smoothing might actually degrade the pupil

signal even further.
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Recent analyses of widely-used object tracking performance

metrics have shown that most existing metrics are strongly

correlated and propose the use of only two weakly-correlated

metrics to measure tracker performance: accuracy and robust-

ness (Čehovin et al., 2016; Kristan et al., 2016). Whereas in

those works accuracy was measured by average region over-

laps, for pupil detection data sets, only the pupil center is usu-

ally available. Thus, we employ the center-error-based detec-

tion rate as accuracy measure. As an indicator of robustness,

Čehovin et al. (2016) proposes the failure rate considering the

tracking from a reliability engineering point of view as a su-

pervised system in which an operator reinitializes the tracker

whenever it fails. For the pupil signal, our formulation differs

slightly since there is no operator reinitialization. Instead, we

evaluate the robustness as the reliability

r = e−λt, (6)

where λ = 1
MTBF

is the failure rate estimated through the Mean

Time Between Failures (MTBF) not accounting for repair time

– i.e., periods of no/incorrect pupil detection are considered as

latent faults. In this manner, the reliability is a measure of the

likelihood of the algorithm correctly detecting the pupil for t

successive frames. Furthermore, by measuring the Mean Time

To Repair (MTTR) – i.e., the mean duration of periods in which

the correct pupil signal is not available – we can achieve a sim-

ilar metric in terms of the likelihood for the algorithm to not

detect the pupil correctly for t successive frames. Henceforth,

we will define this metric as the insufficiency (i), evaluated as

i = e−κt, (7)

where κ = 1
MTTR

. The smaller an algorithm’s insufficiency,

the more sufficient it is. It is worth noticing, that r and i are

not true probabilities since the events they measure are not

likely to be independent nor uniformly distributed. Conse-

quently, these metrics only offer a qualitative and relative mea-

sure between algorithms. Thus, we simplify their evaluation

by fixing t = 1. As an illustration, let us return to our ini-

tial example considering a sequence of L frames: A1 yields

rA1
= iA1

= e−1/1, whereas A2 yields rA2
= iA2

= e−1/(0.5L).

Since ∀ L > 2 =⇒ rA1
< rA2

∧ iA1
< iA2

, we can con-

clude that A2 is more reliable but less sufficient w.r.t. A1 for

sequences longer than two frames. A quantitative conclusion

is, however, not possible. For the sake of understandability, we

further define sufficiency (s) as the complement of insufficiency

such that

s = 1 − i. (8)

In this manner, higher values are better for all metrics in this

section.

We evaluated the four aforementioned algorithms in terms

of reliability and sufficiency using only the data sets from Sec-

tion 4.1. The Closed-Eyes data set was excluded since it is not

realistic from the temporal aspect – i.e., users are not likely to

have their eyes closed for extended periods of time. Furher-

more, it is worth noticing that each use case from the Ex-

CuSe, ElSe, and PupilNet data sets consists of images sam-

pled throughout a video based on the pupil detection failure

of a commercial eye tracker; these use cases can be seen as

videos with a low and inconstant sampling rate. Results aggre-

gated for all images are shown in Fig. 14 and indicate PuRe as

the most reliable and sufficient algorithm. Curiously, the sec-

ond most reliable algorithm was Świrski, indicating that during

use cases in which it was able to detect the pupil, it produced

a more stable signal than ElSe and ExCuSe – although its de-

tection rate is much lower relative to the other algorithms for

challenging scenarios. This lower detection rate reflects on the

sufficiency, in which Świrski is the worst performer; ElSe places

second, followed by ExCuSe. Furthermore, Fig. 15 details these

results per use case. In this scenario, PuRe was the most reli-

able algorithm in 66.67% of the use cases, followed by Świrski

(23.23%), ElSe (7.07%), and ExCuSe (3.03%). These results

demonstrate that PuRe is more reliable not only when taking

into account all images but also for the majority of use cases.

This higher reliability also reflects on PuRe’s longest period

of consecutive correct pupil detections, which contained 859

frames (in LPW/21/12). In contrast, the longest sequence for

the rival was only 578 frames (ExCuSe, also in LPW/21/12).

ElSe’s longest period was of 386 frames in LPW/10/8, for

which PuRe managed 411 frames. In terms of sufficiency, ElSe

had a small lead with 41.41% of use cases, closely followed by

PuRe (40.40%); ExCuSe and Świrski were far behind, winning

14.14% and 4.04% of use cases, respectively. The advantage of

ElSe here is likely due to its second pupil detection step, which

might return the correct pupil during periods of mostly incorrect

detections, fragmenting these periods into smaller ones.
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Fig. 14: Reliability and sufficiency for all algorithms based on the sequence of

all aggregated images from the Świrski, ExCuSe, ElSe, LPW, and PupilNet data

sets – higher is better.

4.4. Run Time

The run time of pupil detection algorithms is of particular

importance for real-time usage – e.g., for human-computer in-

teraction. In this section, we evaluate the temporal performance

of the algorithms across all images from the Świrski, ExCuSe,

ElSe, LPW, PupilNet, and Closed-Eyes data sets. Evaluation

was performed on a Intel R� CoreTM i5-4590 CPU @ 3.30GHz

with 16GB RAM under Windows 8.1, which is similar to sys-

tems employed by eye tracker vendors. Results are shown in

Fig. 16. All algorithms exhibited competitive performance in
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Fig. 15: PuRe’s reliability (left) and sufficiency (right) relative to the rival for

each use case.

terms of run time, conforming with the slack required for op-

eration with state-of-the-art head-mounted eye trackers. For in-

stance, the Pupil Labs (2017) eye tracker, which provides im-

ages at 120 Hz – i.e., a slack of ≈ 8.33 ms. Henceforth, we

will use the notation µ for the mean value and σ for the stan-

dard deviation. Run time wise, ExCuSe was the best performer

(µ = 2.51, σ = 1.11), followed by Świrski (µ = 3.77, σ = 1.77),

PuRe (µ = 5.56, σ = 0.6), and ElSe (µ = 6.59, σ = 0.79).

It is worth noticing that ElSe operates on slightly larger im-

ages (346 × 260 px) w.r.t. PuRe and ExCuSe (320 × 240 px).

Furthermore, Świrski operates on the original image sizes, but

its implementation is parallelized using Intel Thread Building

Blocks (Pheatt, 2008), whereas the other algorithms were not

parallelized. In contrast to the algorithmic approaches, Vera-

Olmos and Malpica (2017) report run times for their CNN-

based approach of ≈ 36 ms and ≈ 40 ms running on a NVidia

Tesla K40 GPU and a NVidia GTX 1060 GPU, respectively. It

is worth noticing that these run times are still more than four

times larger than the slack required by modern eye trackers and

almost one order of magnitude larger than the algorithmic ap-

proaches running on a CPU.

5. Discussion

Evaluation results show that our single-method edge-based

approach outperformed even two-method approaches (e.g.,

ElSe and ExCuSe). However, there are clear (but uncommon)

cases when an edge-based approach will not suffice due to

lack of edge-information in the image. For instance, extremely

blurred images, or if a significant part of the pupil outline is oc-

cluded. These challenges might lead PuRe to 1) detect only a

small part of the pupil outline, which results in a shifted pupil

center and an underestimated pupil size, or 2) to fail. In general,

PuRe has three failure modes, which are depicted in Fig. 17:
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Fig. 16: For PuRe, ElSe, ExCuSe, and Świrski: Run time distribution across

all images in the Świrski, ExCuSe, ElSe, LPW, PupilNet, and Closed-Eyes data

sets. Note that these algorithms were evaluated on a CPU and only Świrski was

parallelized. For Vera-Olmos: Run time as reported in Vera-Olmos and Malpica

(2017), which were obtained with parallelized implementations using GPUs.

1. Lack of edges: when the pupil outline does not have a con-

trast strong enough to be detected by the Canny edge de-

tector or is occluded by eyelids / eyelashes / reflections.

2. Broken edges: when the pupil outline is broken into

smaller parts by eyelids / eyelashes / reflections, which end

up removed by the edge segment selection stage.

3. Deceptive candidate: when another element in the image

resembles a pupil more than the pupil itself (according to

the definitions of the confidence metric ψ).

It is worth noticing that PuRe offers a meaningful confidence

measure for the detected pupil, which can be used to identify

the great majority of cases in which PuRe fails. Following from

our analysis in Section 4.2, we recommend a threshold of 0.66

for this confidence measure. Thus, whenever PuRe can not find

a pupil, an alternative pupil detection method can be employed

– e.g., ElSe’s fast second step. Nonetheless, care has to be taken

not to compromise specificity through this second step.

Moreover, there are extreme cases in which pupil detection

might not be feasible at all, such as when the bulk of the pupil

is occluded due to inadequate eye tracker placement relative to

the eye. For instance, use cases LPW/5/6 and LPW/4/1, for

which the best detection rates were measly 3.45% (by ExCuSe)

and 14.15% (by Świrski), respectively. Sample images through-

out these use cases are shown in Fig. 18. As can be seen in

this figure, in the former not only the eye is out of focus, but

there are lenses obstructing most of the pupil, whereas in the

latter, the pupil is mostly occluded by the eyelid and eye lashes.

In such cases, PuRe’s confidence measure provides a quantita-

tive measure of the extend to which it can detect the pupil in

current conditions: By observing the ratio of confidence mea-

sures above the required threshold during a period13. If this

ratio is too small, it can be inferred that either the pupil is not

visible or PuRe can not cope with current conditions. In the

13The period should be significantly larger than expected blink durations

since the confidence measure is also expected to drop during blinks; in this

section we report the ratio for the whole use case.
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Lack of edges

Broken edges

Deceptive candidate

Fig. 17: Illustrative failure cases for PuRe. First column displays the input im-

age, whereas the second column unveils the resulting edges. The third column

shows segments remaining after edge segment selection (Section 3.3) using dis-

tinct colors per segment. The last column presents the pupil returned by PuRe,

encoding the confidence measure linearly in the overlay color such that red rep-

resents the lowest confidence (ψ = 0) and green the highest (ψ = 1). Notice

that, except for the deceptive candidates, the confidence for failures cases is

usually low.

former case, the user can be prompted to readjust the position

of the eye tracker in real time – this is the case for LPW/5/6

(ratioth=0.66 = 0.15) and LPW/4/1 (ratioth=0.66 = 0.54). In both

cases, the confidence measure ratio is useful for researchers to

be aware that the data is not reliable and requires further pro-

cessing, such as manual annotation. An example of the cases in

which adjusting the eye tracker is not likely to improve detec-

tion rates is use case LPW/3/16 (ratioth=0.66 = 0.65), for which

reflections cover most of the image as seen in Fig. 18. The best

detection rate for this use case was 31.95% (by PuRe). To fur-

ther support this claim, we measured the correlation between

this confidence-measure (ratioth=0.66) and the pupil detection

rate, which resulted in a correlation coefficient of 0.88.

Fig. 18: Extreme cases for pupil detection. For LPW/5/6 (top row) and

LPW/4/1 (middle row), the eye tracker can be readjusted to improve detection

rates. For LPW/3/16 (bottom row), readjusting the eye tracker is not likely to

improve the conditions for pupil detection. In all cases, researchers should be

aware that the automatic pupil detection is not reliable. PuRe’s confidence mea-

sure allows for users to be prompted in real time for adjustments and provides

researchers with a quantitative metric for the quality of the pupil detection.

6. Final Remarks

In this paper, we have proposed and evaluated PuRe, a novel

edge-based algorithm for pupil detection, which significantly

improves on the state-of-the-art in terms of sensitivity, pre-

cision, and specificity by 5.96, 25.05, and 10.94 percentage

points, respectively. For the most challenging data sets, de-

tection rate was improved by more than ten percentage points.

PuRe operates in real-time for modern eye trackers (at 120 fps)

and is fully integrated into EyeRecToo (Santini et al., 2017a)

– an open-source state-of-the-art software for pervasive head-

mounted eye tracking. An additional contribution was made

in the form of new metrics to evaluate pupil detection algo-

rithms and a data set containing negative samples in its ma-

jority. The proposed method and new data set are available at

www.ti.uni-tuebingen.de/perception.

Envisioned future work includes investigating suitable non-

edge-based second steps, and developing a feedback system to

prompt users to readjust the eye tracker – to be integrated into

EyeRecToo (Santini et al., 2017a). Moreover, the focus of this

work is on pupil detection – even though we formulated the re-

sulting signal as tracking-by-detection in Section 4.3. Tracking

methods face many challenges in eye tracking due to the fast

paced changes in illumination, frequent pupil occlusion due to

blinks, and substantial amplitude and velocity of saccadic eye

movements – as fast as 700 ◦/s (Baloh et al., 1975). Therefore,

a comprehensive evaluation of tracking methods is out of the

scope of this paper and better left for future work. Nonetheless,

using temporal information (i.e., inter-frame) can greatly bene-

fit detection rates – albeit care has to be taken to track the right

element in the image. In this regard, PuRe’s confidence metric

provides a foundation that may be used in the future to build

more robust pupil trackers.
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