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Abstract

Eye tracking is increasingly influencing scientific areas
such as psychology, cognitive science, and human-computer
interaction. Many eye trackers output the gaze location and
the pupil center. However, other valuable information can
also be extracted from the eyelids, such as the fatigue of
a person. We evaluated Generative Adversarial Networks
(GAN) for eyelid and pupil area segmentation, data gener-
ation, and image refinement. While the segmentation GAN
performs the desired task, the others serve as supportive
Networks. The trained data generation GAN does not re-
quire simulated data to increase the dataset, it simply uses
existing data and creates subsets. The purpose of the re-
finement GAN, in contrast, is to simplify manual annota-
tion by removing noise and occlusion in an image without
changing the eye structure and pupil position. In addition
100,000 pupil and eyelid segmentations are made publicly
available for images from the labeled pupils in the wild data
set (DOWNLOAD). These will support further research in
this area.

1. Introduction

The commonly used pupil recognition algorithms are
based on rule-based methods [12, 16, 40] using extracted
edges or specially designed filters. The reason for this is
the resource saving computations required to apply them.
Disadvantages of these methods are a non-constant run-
time as well as weaknesses in certain challenges. For edge
based methods these are blurred images, only partially vis-
ible pupils, poor light conditions, strong reflections as well
as low resolution images.

Since eye tracking is constantly moving into new areas
such as driver observation [30, 3], virtual reality [19, 34, 5],
augmented reality [22, 35], microscopy [33, 6] and many
more, the requirements for image processing are also be-
coming ever higher. Newer methods for pupil recogni-
tion use machine learning methods to be usable in a vari-
ety of applications as well as to be adapted to new chal-
lenges. A good example from industry is the Pupil Invisi-
ble [25, 51, 47] eye tracker. It uses modern convolutional
neuronal networks and offers the possibility to store data on
a server to further improve the detection. This allows the
eye tracker to adapt to new scenarios without the need of
new algorithm development.

In this work, we propose a framework to train Gener-
ative Adversarial Networks (GANs) [18] using the cyclic
loss function. The reason for this is that GANs can be used
for a wide range of applications in the field of image-based
eye tracking. The first purpose is the image segmentation
for usage in data post-processing and dataset generation.
The segmented data allows to improve the accuracy of eye
tracking experiments offline and can also be used to train
resource saving and realtime applicable machine learning
algorithms, e.g. random forests for online usage [36]. Since
there is a plethora of possible camera configurations, per-
spectives, and light conditions (RGB, NIR), we expect that
trained network are not always applicable to all eye track-
ing data. Therefore, the second GAN is trained to refine
images. This includes removing occlusions, noise, and ad-
justing the image contrast without changing the eye shape
or the pupil position. This will help detection algorithms
and also support annotation of ground truth data. The third
GAN is used to generate additional training data with anno-
tations based on provided data. This data can be generated
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using rendering [48].

2. Related works
The main focus of the eye tracking community in the

past years was a robust and reliable pupil signal. There-
fore, a plethora of approaches have been proposed and sum-
marized in [17, 42] for head-mounted eye trackers. Since
the resolution, and the light and contrast conditions for sta-
tionary cameras (remote eye trackers) differ strongly from
those of head-mounted eye trackers, both types were con-
sidered separately for a very long time. A summariza-
tion for their respective pupil detection algorithms can be
found in [11]. The major advances in the field of pupil
extraction where achieved by edge detection [40]. This
approach was further improved by edge filtering [12, 16]
and edge combination [16, 37]. Since edge detection fails
for blurred images, other approaches using adaptive thresh-
olds [20] and segment selection [23] where proposed. Then,
machine learning also lead to CNN based pupil detection
methods [15, 43], where multi-stage approaches are applied
to achieve high accuracies. Other approaches, like random
ferns [10] and oriented edge boosting [9], where also ap-
plied for pupil center detection, but only the latter was ex-
tended by an ellipse fit to segment the pupil.

The field of the eyelid and eye-opening extraction has
received only a small amount of attention. In [46], the
first attempt based on edge detection and approximation
with parabolas was made. For iris recognition, an improved
approach was proposed in [4]; based on the iris location,
the eyelids are searched as curvilinear edges. Afterward,
a spline was fitted to these edges. Another approach used
the largest edges in the image [1] after anisotropic diffu-
sion. Since the eyelid edges can be covered by eyelashes
or blurred through motion, a pure intensity-based approach
partitioning the image in regions was proposed [39]. This
approach was further refined by computing a likelihood
map based on texture patches for the eye corners and the
central point of the upper and lower eyelid [49]. Since the
likelihood map had proven to be robust, another approach
used image patch statistics for the computation in combi-
nation with edge detection [13].VASIR [29] an open source
tool developed by the National Institute of Standards and
Technology, uses the linear Hough transform for iris seg-
mentation followed by a third order polynomial fitting for
eyelid extraction. An optimization that searches for four
eyelid points based on the optimal oriented edge value was
proposed in [14]. Modern machine learning algorithms for
landmark detection [36] where also applied for eyelid ex-
traction [8] together with histograms of oriented gradients
and support vector machines.

In recent years, CNNs achieved a considerable break-
through for image segmentation. The transposed convolu-
tion filters where proposed in [31], which allowed to scale

the output information of a network and remove the fully
connected layers. An alternative to this approach is en-
coder and decoder networks [2], which up-sample based on
pooling indices from the encoder. Both use a softmax loss
function to predict the labels. For further improvement of
segment borders, a region loss function was proposed [21].
They used aligned region of interests for loss computation,
which eliminates inter-class competitions. With the upris-
ing of image generation using a generator and discrimina-
tor [18] and the cycle loss function [52]. CNNs attained the
ability to transfer styles between images, which was already
used to perform a semantic segmentation [52] and can be
used for data generation using simulated data [38]. In this
work, we use GANs with the cyclic loss function for image
segmentation, data generation, and image refinement.

3. Method
Generative Adversarial Network (GAN) consists of two

competing networks. The generator (Figure 1) attempts to
create the most authentic representation of the output distri-
bution. Therefore, it learns to transform the input distribu-
tion into the output distribution (G(A)→ B), which is also
known as style transfer [18]. The discriminator, tries to find
out whether it is a generated image or a true picture of the
output distribution (D(G(A)) ∈ B) [18].

Therefore, the discriminator, it has to minimize
its classification accuracy on the data distribution B
(log(D(B))) [18]. In contrast, the generator has to max-
imize the error of the discriminator based on the gener-
ated data (log(1 − D(G(A)))) [18]. Since this approach
is difficult to train because the discriminator tends to over-
fit and thereby rejects everything, the cyclic loss was pro-
posed [52]. The difference to the GAN is that both di-
rections are considered (G1(A) → B and G2(B) → A),
which allows an additional loss formulations between the
two generators and is called the cyclic loss function (A −
G2(G1(A)) and B − G1(G2(B))). It has to be mentioned
that for the cyclic loss, two generators and two discrimi-
nators are used. One pair of generator and discriminator
generates a new image and the other pair reconstructs the
input.

Figure 1 shows the used architecture for our evaluation.
It consists of three convolution blocks with batch normal-
ization and the rectifier liner unit (ReLU). Instead of pool-
ing, our network uses the stride parameter for downscal-
ing. These layers are responsible for feature extraction. The
style transfer or distribution transformation is performed by
consecutive residual blocks with equal block depth. Each
residual block consists of three convolution layers with
batch normalization and the rectifier linear unit. Afterward,
the new image is generated using transposed convolution
layers.

For our discriminator, we used four convolution layers
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Figure 1. General architecture of the used generator and discriminator for all CNNs.

Figure 2. Results after one (first row) and ten epochs (second row)
for data segmentation (first four columns) and data generation (last
four columns).

with batch normalization and the stride parameter for down-
scaling. The last layer is a convolution to produce a one-
dimensional output. These architectures follow the original
structure proposed in [52]. The parameter L specifies the
block depth of convolution layers in the network. With the
parameter N , the amount of residual block in the central
part of the generator are specified. For our models we used
N = 5 and L = 64. In addition, the input size of the
network can be adjusted. For the runtime and memory con-
sumption evaluation we used the input resolutions 32× 32,
64 × 64, 96 × 96, 128 × 128 and 256 × 256 (Table 4). In
the segmentation task (Table 1) we used 64×64 and for the
pupil center detection evaluation (Table 2) we used a resolu-
tion of 128×128. The refinement GAN uses the highest res-
olution (256×256) to reduce the impact of the upscaling op-
eration to the original size of the image. We used Caffe [24]
for training and execution of our models. The least square

loss function was used as it stabilizes the training for GANs
in comparison to the negative log likelihood [32]. In ad-
dition we used a buffer of 100 generated images to reduce
oscillation during training as proposed in [38]. The used
optimizer was Adam [28] with momentum set to 0.5 and a
fixed learning rate of 0.0001.

For the data augmentation image flips in horizontal and
vertical direction were used as well as gaussian blur with a
factor of 1 − 1.2. Additionally the image was shifted and
the resulting margin was filled with random noise. Further
data augmentations were random noise up to 20%, squares
and ellipses inserted at random positions and reflections.
The squares and ellipses were also filled with random val-
ues. For the reflections, images from the ImageNet im-
agenetcvpr09 dataset were randomly selected and placed
over the original image wan2017benchmarking.

Translated with www.DeepL.com/Translator

3.1. Image segmentation task

Figure 3. Input and output pairs of the finally trained cycle GAN.

For the training of the image segmentation, we used
paired images. While it is also possible to use unpaired
training, our results improved ≈ 10% using paired image
examples (Table 1). The input to the network is a grayscale
image inserted into all three channels with a resolution of
64 × 64 pixels. As output, we used the grayscale image in
the red, the visible part of the eye in the blue and the pupil
in the green channel. It makes it easier to evaluate the seg-
mentation based on the output and also allows the network
to learn the reconstruction of the input image similar to a
deep autoencoder. Row one and two in Figure 2 show some
examples for the first and tenth epoch. While these are early
stages in training, it can be seen that the segmentation of the
tenth epoch significantly improved, whereas the reconstruc-
tion is still incomplete. Figure 3 shows the segmentation
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results of our cycle GAN after ≈200 epochs. As can be
seen, the image was reconstructed and segmented.

3.2. Image generation task

For data generation, we separated the input dataset into
two sets. Each image was constructed equally to the output
image of the segmentation. It means that in the red channel
we inserted the grayscale image, in the blue channel the
eyelid and in the green channel the pupil area. Therefore,
input and output contained the image and the segmentation.
The training itself was done with unpaired image examples;
Figure 4 shows some generated images. More interesting
is that the GAN learned to add a bright pupil (third image
in the top row) as well as eyelashes (last image top row)
or glass frames with reflections. Therefore, our approach
we used the same data distribution we can use the results of
both generators as new training data.

3.3. Image refinement task

The data generator cycle GAN can increase the amount
of training data for human related challenges like eyelashes,
eye shape, pupil size, moles in the eye area, and many more.
Challenges related to the image acquisition such as noise,
reflections, and illumination are not covered if they are not
frequently available in the training data. In addition, new
images with challenges that have to manually annotated are
usually difficult to segment by hand. Therefore, we propose
to use the cycle GAN for image refinement, which gives us a
generator for image augmentation too. Our data augmenta-
tion includes random noise, image patch covering, blurring,
contrast variations, and reflections. For adding reflections,
we used the approach from [45], where the reflection is as-
sumed to be a blurred additive of a second image. Examples
of our data augmentation and the results of the refiner are
shown in Figure 5. In the first column of the figure, the input
images are shown. The second column shows when changes
in the image contrast, blur, and noise is added. For the third
column, we added a cat image a reflection. The fourth col-
umn shows the input image with reflections, noise, blur, and
contrast change. For training, we used paired images, where
the images from the dataset were used multiple times with
different challenges.

4. Evaluation
For the training of our cycle GANs, we used the dataset

proposed in [8] which consists of 16, 200 hand-labeled im-
ages with a resolution of 1280 × 752 pixels from six sub-
jects. For the pupil center detection evaluation we used ad-
ditionaly ≈ 25, 000 images from nine subjects which are
not publicly available. The recording system was a near-
infrared remote camera in a driving simulator setting. Fig-
ure 6 shows images from the dataset. In the first row, the
recordings are shown. In the second row, the eye regions

are shown with annotations. As can be seen, the dataset
contains images with reflections as well as open and closed
eyes together with head rotations.

For the comparison to the state-of-the-art, we made a
cross-subject evaluation. Therefore, we trained our network
on all but one subject and used this left out subject for eval-
uation. We repeated this procedure until each subject was
evaluated once. The same was done for the landmark detec-
tion algorithm [26] implemented in DLIB [27]. For [14], we
only need to evaluate all subjects since it does not have to
be trained. As metric, we used the Jaccard index (GT∩DT

GT∪DT ),
which is the cut between the detected area (DT ) and the
ground truth area (GT ) divided by their union. This met-
ric is a common metric for segmentation quality analysis,
where 0.5 can be seen as a good result.

Table 1. Average Jaccard index per algorithm cross validated on
the dataset from [8]. Best result in bold.

Class: Eyelid Pupil
[26] 0.52 -
[14] 0.52 -

ElSe remote [11] - 0.33
BORE ellipse [9] - 0.65
DeepVOG [50] - 0.22

real data unpaired 0.7 0.62
real data paired 0.79 0.72

gen. data unpaired 0.71 0.63
gen. data paired 0.78 0.72

paired with gen. and real data 0.84 0.78

Table 1 shows the results of our segmentation GAN with-
out data generation and with additional data from the gen-
erator GAN. As can be seen, our approach outperforms the
state-of-the-art by a large margin. The main error stems
from the lower resolution (64 × 64) in comparison to the
original (100 × 74). For the pupil segmentation, the accu-
racy of our approach drops, which is due to one pixel having
a higher impact on the error. While the first four algorithms
run on a single CPU core in real time, our approach requires
≈ 18ms on an NVIDIA GTX 1050Ti with a resolution of
64 × 64. For the DeepVOG [50] and our model we used a
threshold parameter of 0.9 for the heat map output.

In Table 2, the results for pupil center detection in com-
parison to the state-of-the-art on puplicly available datasets
are shown. The evaluation metric is the euclidean distance
to the ground truth annotation. If the distance is below or
equal to 5px the position is seen as accurate which was
proposed in [12] to compensate for annotation inaccura-
cies. The values in Table 2 represent the percentage of im-
ages where the detected position was equal or below the
5px. Our approach requires ≈ 33ms on an NVIDIA GTX
1050Ti with a resolution of 128×128. The other approaches
exception of DeepEye [44], [7], and DeepVOG [50] run in
real time on a CPU. For DeepVOG [50] and our model we
used the same threshold parameter (0.9) as in the segmenta-
tion evaluation. The extraction of the pupil center position
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Figure 4. Generated images using our trained cycle GAN for data generation.

Figure 5. Augmented images for refinement and augmentation
training.

Table 2. Average detection result over all subjects from the datasets
provided with ElSe [12], ExCuSe [16], PNET [15], Świrski [40],
and labeled pupils in the wild [42]. The five pixel euclidean dis-
tance was used to compensate for inaccurate annotations as pro-
posed in [12, 16]. Best result in bold.

Datasets: [12, 16, 15] [40] [42]
ElSe [12] 0.67 0.81 0.54
ExCuSe [16] 0.54 0.86 0.50
Świrski [40] 0.30 0.77 0.49
PURE [37] 0.72 0.78 0.73
CBF [10] 0.91 - -
PNET [15] 0.76 - -
DeepEye [44] 0.83 0.54 0.50
[7] 0.79 0.74 0.84
DeepVOG [50] 0.43 0.52 0.62
Prop. (128× 128), paired,

real data 0.87 0.89 0.85
gen.&real data 0.91 0.93 0.89

out of the segmentation we used the center of mass from the
segmented area.

As can be seen in Table 2 and Table 1 the trained GANs
are applicable to the segmentation and pupil center detec-
tion task. In addition, the generated data using the generator
GAN improves the results for both experiments.

In Table 3, the improvement using refined images for
pupil center detection on publicly available datasets is
shown. As can be seen the results of all algorithms was

Table 3. Average detection result over all subjects from the datasets
provided with ElSe [12], ExCuSe [16], PNET [15], Świrski [40],
and labeled pupils in the wild [42]. The five pixel euclidean dis-
tance was used to compensate for inaccurate annotations as pro-
posed in [12, 16].

Datasets: [12, 16, 15] [40] [42]
Original

ElSe [12] 0.67 0.81 0.54
Świrski [40] 0.30 0.77 0.49
PURE [37] 0.72 0.78 0.73

Down & upscaling of the image
ElSe [12] 0.58 0.79 0.69
Świrski [40] 0.14 0.78 0.48
PURE [37] 0.65 0.77 0.72

Refined images
ElSe [12] 0.74 0.81 0.73
Świrski [40] 0.69 0.79 0.71
PURE [37] 0.74 0.79 0.74

improved on the refined images. This improvement does
not rise from the down and upscaling as can be seen in the
central part of the table. It is even the case that scaling down
and up worsens the results. An exception to this is the la-
beled pupils in the wild data set in which ElSe has improved
by 15%. Another very interesting result is the Swirski data
set in which only a minimal or no improvement (ElSe) was
achieved. This is due to the fact that part of the data set con-
tains occluded pupils through the eyelid. The second step of
ElSe is effective for such images but does not benefit from
the refinement. All evaluated algorithms use edges as a fea-
ture for pupil detection, which shows that the refinement
GAN also improves the fine structure of an image.

Table 4 shows the runtime and memory usage for dif-
ferent input resolutions. For our architecture, we set the
parameters N = 5 and L = 64 as shown in Figure 1. The
input resolution of 256×256 exceeded the memory capacity
of our GPU, which forced our framework to only partially
load the models on the GPU. This is the reason of the in-
creased runtime for the training of this model.
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Figure 6. Dataset for training of our GANs [8].

Table 4. Average runtime (10000 samples) on a NVIDIA GTX
1050ti (4GB Ram) for training and execution using different in-
put and output resolutions with a batch size of one and the same
architecture.

Resolution Execution(Memory) Training(Memory)
32× 32 16.7ms (800MB) 341ms (1.5GB)
64× 64 17.4ms (850MB) 418ms (1.7GB)
96× 96 24ms (900MB) 515ms (2.0GB)
128× 128 33ms (1GB) 657ms (2.3GB)
256× 256 91.4ms (1.5GB) 1715ms (5GB)

5. Labeled pupils in the wild segmentations

For further research in the field of pupil and eyelid detec-
tion we have segmented 100,000 images of the well-known
”Pupils in the wild” data set. These segmentations are made
publicly available. In the selection of images, we have
focused on challenges that often overtax the current state
of the art algorithms. In addition, some images are also
from simple data sets, so that the basic task is covered by
the annotations without additional image-based challenges.
The original dataset contains 130,856 images separated into
66 videos from 22 participants. We have always selected
whole videos so that tracking algorithms can be evaluated
and trained on them. For the selection of the particularly
challenging videos we have used the results of the state-of-
the-art algorithms (Table 5).

As can be seen, the videos 3, 4, 5, 9, 10, 11, 13, 15, 18,
19 and 22 are especially challenging. These videos con-
tain different challenges. Figure 7 shows pictures of these
videos and others with segmentations. These challenges in-
clude reflections, pupil occlusion, poor lighting conditions
and motion blur. Especially those challenges make it diffi-
cult to extract clean edges which is the reason for the poor
detection rate of the state-of-the-art algorithms. While this
evaluation shows how accurate the pupil center can be de-
tected, it does not show how accurately the pupil area and
shape was extracted.

The selected videos for our segmentation are 2, 3, 4, 5,
7, 9, 10, 11, 13, 15, 18, 19 and 22 as well as 1, 6, 8 and
12 which represent the images without image-based chal-
lenge. Therefore, our annotations are exactly for 101,125

Table 5. Detection rates for the state-of-the-art algorithms per
video on the labeled pupils in the wild dataset [42]. The five pixel
euclidean distance was used to compensate for inaccurate annota-
tions as proposed in [12, 16]. Each video [1, 3] per subject [1, 22]
is evaluated separately for each algorithm. Best result in bold.

ElSe Świrski PURE
1 2 3 1 2 3 1 2 3

1 0.88 0.95 0.81 0.92 0.9 0.7 0.93 0.98 0.83
2 0.41 0.82 0.86 0 0.37 0.89 0.56 0.86 0.93
3 0.21 0.58 0.94 0 0.03 0.91 0.3 0.59 0.96
4 0.09 0.53 0.51 0.13 0.03 0.32 0.09 0.38 0.81
5 0.31 0.35 0.02 0.22 0.02 0.01 0.25 0.43 0.01
6 0.83 0.8 0.89 0.67 0.33 0.88 0.84 0.87 0.93
7 0.67 0.94 0.6 0.79 0.97 0.23 0.79 0.94 0.72
8 0.88 0.87 0.69 0.94 0.68 0.75 0.93 0.9 0.76
9 0.41 0.5 0.94 0.17 0.56 0.95 0.4 0.49 0.95
10 0.91 0.37 0.9 0.95 0.59 0.58 0.94 0.47 0.96
11 0.51 0.84 0.79 0.13 0.38 0.43 0.54 0.89 0.83
12 0.96 0.92 0.81 0.6 0.94 0.61 0.97 0.97 0.88
13 0.34 0.69 0.51 0.16 0.27 0.44 0.32 0.68 0.54
14 0.83 0.49 0.79 0.95 0.41 0.92 0.87 0.59 0.83
15 0.5 0.58 0.53 0.23 0.31 0.6 0.55 0.63 0.59
16 0.97 0.59 0.88 0.96 0.53 0.71 0.94 0.62 0.89
17 0.5 0.84 0.85 0.49 0.77 0.77 0.5 0.81 0.85
18 0.54 0.87 0.95 0.46 0.8 0.58 0.64 0.92 0.94
19 0.83 0.79 0 0.29 0.44 0 0.93 0.84 0
20 0.78 0.78 0.94 0.69 0 0.55 0.86 0.97 0.96
21 0.88 0.96 0.82 0.19 0.96 0.54 0.92 0.98 0.84
22 0.63 0.63 0.85 0 0 0.18 0.66 0.71 0.92

images from the pupils in the wild dataset. Figure 7 shows
some examples of the segmentations as well as the images
from the dataset. For the annotation process, we used all
three GANs. The generator GAN for the extension of our
training data as well as our segmentation GAN for the ini-
tial annotation. In some images it was difficult to check and
correct the annotation without improving the image quality.
For this purpose the refinement GAN was used.

These annotated videos now also offer the possibility to
use other metrics such as segmentation quality in addition
to the detection rate. In the case of the pupil this is espe-
cially important for 3D eyeball creation [41] and therefore,
to estimate a 3D gaze position as well as to compensate eye
tracker drifts in case of head mounted eye trackers. The seg-
mentation results can be seen in Table6. As metric we used
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Figure 7. Segmented images from the pupils in the wild dataset [42].
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the Jaccard index averaged over all images per video.

Table 6. Segmentation results using the average Jaccard index for
the state-of-the-art algorithms per video on the labeled pupils in
the wild dataset [42]. Each video [1, 3] per subject is evaluated
separately for each algorithm. Best result in bold.

ElSe Świrski PURE
1 2 3 1 2 3 1 2 3

1 0.92 0.93 0.92 0.91 0.91 0.83 0.9 0.91 0.9
2 0.32 0.83 0.89 0.01 0.51 0.78 0.56 0.85 0.89
3 0.21 0.92 0.9 0 0.11 0.82 0.31 0.92 0.88
4 0.29 0.9 0.73 0.33 0.5 0.54 0.31 0.61 0.85
5 0.49 0.22 0.36 0.17 0.06 0.02 0.5 0.36 0.08
6 0.87 0.91 0.92 0.76 0.61 0.91 0.84 0.91 0.91
7 0.55 0.89 0.5 0.75 0.9 0.25 0.69 0.87 0.62
8 0.91 0.94 0.65 0.93 0.79 0.7 0.91 0.93 0.7
9 0.82 0.81 0.94 0.46 0.76 0.93 0.83 0.82 0.92
10 0.86 0.37 0.9 0.85 0.56 0.79 0.84 0.44 0.92
11 0.55 0.88 0.91 0.12 0.64 0.58 0.64 0.89 0.91
12 0.95 0.91 0.87 0.72 0.92 0.79 0.93 0.91 0.88
13 0.67 0.91 0.64 0.44 0.43 0.55 0.74 0.9 0.72
15 0.79 0.82 0.73 0.55 0.6 0.77 0.79 0.83 0.74
18 0.61 0.89 0.96 0.59 0.82 0.74 0.65 0.86 0.94
19 0.9 0.88 0.19 0.6 0.65 0.15 0.91 0.9 0.21
22 0.76 0.69 0.88 0 0 0.18 0.78 0.76 0.91

An interesting result is provided by subject 1. By com-
paring the detection rate of ElSe in Table 5 to the results of
PuRe, it can be seen that PuRe has always a higher detec-
tion rate. In the case of segmentation accuracy (Table 6),
this is not true. Here ElSe is more accurate in comparison
to PuRe on all three videos. This is due to the used convo-
lution filters for edge detection. ElSe uses the differential
of Gaussian whereas PuRe uses large Sobel filters. The So-
bel filters are more robust to noise especially since they are
used as 2D convolutions. This effects the edge pixel accu-
racy and therefore, the resulting ellipse of the fitting proce-
dure. As can be seen in Table 6 from the best results (bold),
that they are distributed equally across all algorithms.

In order to highlight this effect more clearly, we have
conducted another experiment (Table 7). Here the average
segmentation accuracy is shown for all pupil with a pupil
center detection with less or equal to 5 pixels euclidean dis-
tance. As segmentation metric we used again the Jaccard
index. All remaining pupils were ignored. This shows how
well a correctly detected pupil based on the center estima-
tion is segmented.

In Table 7 it can be seen that the results have changed
entirely which supports our argument that the differential of
Gaussian is a more accurate edge filter while less robust as
separated 1D filters (Table 5). This is especially true since
one of the main difference between ElSe and PuRe is the
used filter for edge extraction. The inaccurate segmentation
results from ElSe steam from iris edges which are selected
as best ellipses. A disadvantage of this evaluation for PuRe
could be the higher detection rate. However, in most cases
where all algorithms are similarly good, ElSe still performs

Table 7. Segmentation results using the average Jaccard index for
images where the pupil center was detected with less or equal 5
pixels euclidean distance. The images are from the labeled pupils
in the wild dataset [42] with the provided segmentations. Each
video [1, 3] per subject is evaluated separately for each algorithm.
Best result in bold.

ElSe Świrski PURE
1 2 3 1 2 3 1 2 3

1 0.95 0.94 0.94 0.94 0.93 0.93 0.93 0.92 0.91
2 0.62 0.91 0.93 0 0.85 0.92 0.82 0.88 0.92
3 0.75 0.96 0.93 0 0.29 0.91 0.8 0.94 0.9
4 0.85 0.97 0.93 0.74 0.88 0.88 0.84 0.96 0.92
5 0.9 0.83 0.58 0.41 0.34 0.14 0.88 0.78 0.3
6 0.92 0.95 0.95 0.85 0.91 0.92 0.89 0.93 0.93
7 0.8 0.93 0.85 0.85 0.91 0.82 0.83 0.9 0.83
8 0.94 0.97 0.85 0.94 0.95 0.86 0.92 0.95 0.83
9 0.96 0.92 0.95 0.93 0.91 0.95 0.95 0.9 0.93
10 0.92 0.79 0.95 0.87 0.78 0.9 0.9 0.81 0.94
11 0.87 0.93 0.97 0.87 0.9 0.93 0.84 0.92 0.95
12 0.96 0.93 0.92 0.93 0.92 0.89 0.95 0.91 0.89
13 0.93 0.97 0.87 0.93 0.93 0.88 0.9 0.95 0.86
15 0.93 0.93 0.93 0.89 0.93 0.9 0.92 0.93 0.91
18 0.88 0.92 0.97 0.86 0.91 0.94 0.85 0.89 0.95
19 0.95 0.93 0.57 0.89 0.9 0.81 0.93 0.92 0.84
22 0.93 0.91 0.96 0 0 0.92 0.91 0.9 0.95

best in segmentation. This evaluation is only one of many
possibilities and should show how it can help the algorithm
developer to evaluate algorithms in different ways.

6. Conclusion
We have demonstrated the applicability of GANs for

pupil and eyelid segmentation, data generation and data re-
finement. In all our experiments we were able to achieve
state-of-the-art results as well as improving the results of
state-of-the-art algorithms with data refinement. The run-
time of our models is significantly higher compared to state-
of-the-art algorithms and requires a modern GPU. However,
our models can be used for off-line data preparation, which
can be used for training smaller models or other machine
learning methods such as random forest. In addition, the
off-line data processing can improve the data quality of sci-
entific experiments and eye tracking user studies for market
research. Future work will go into the direction of dataset
generation for eye tracking in the area of augmented and vir-
tual reality. This will allow evaluations especially for these
areas and support training of machine learning approaches.
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berg, and J. E. Jääskeläinen. Embedding an eye tracker into
a surgical microscope: requirements, design, and implemen-
tation. IEEE Sensors Journal, 16(7):2070–2078, 2016.

[7] S. Eivazi, T. Santini, A. Keshavarzi, T. Kübler, and
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