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a b s t r a c t

Today's driving assistance systems build on numerous sensors to provide assistance for specific tasks. In
order to not patronize the driver, intensity and timing of critical responses by such systems is determined
based on parameters derived from vehicle dynamics and scene recognition. However, to date, infor-
mation on object perception by the driver is not considered by such systems. With advances in eye-
tracking technology, a powerful tool to assess the driver's visual perception has become available,
which, in many studies, has been integrated with physiological signals, i.e., galvanic skin response and
EEG, for reliable prediction of object perception.

We address the problem of aggregating binary signals from physiological sensors and eye tracking to
predict a driver's visual perception of scene hazards. In the absence of ground truth, it is crucial to use an
aggregation scheme that estimates the reliability of each signal source and thus reliably aggregates
signals to predict whether an object has been perceived. To this end, we apply state-of-the-art methods
for response aggregation on data obtained from simulated driving sessions with 30 subjects. Our results
show that a probabilistic aggregation scheme on top of an Expectation-Maximization-based estimation
of source reliabilities can predict hazard perception at a recall and precision of 96% in real-time.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Eye movements and physiological signals such as heart rate and
galvanic skin conductance are measured in a variety of use-cases to
derive information about a subject. More specifically, since the
latter two signals are considered as strong indicators of cognitive
load and stress, they have been analyzed in several applications to
understand user behavior in complex tasks, and in particular dur-
ing driving. In fact, sudden stress in safety-critical situations, as
they may occur during driving, arouses the sympathetic nervous
system. The subject transpires and skin conductance and heart rate
change as a result (Backs, Lenneman, Wetzel, & Green, 2003;
Helander, 1978; Lenneman & Backs, 2009; Lewis & Phillips, 2012;
Mehler, Reimer, & Coughlin, 2012; Reimer, Mehler, Coughlin,
Godfrey, & Tan, 2009; Son et al., 2011; Taylor, 1964). With ad-
vances in eye-tracking technology and analytical approaches,
additional means have become available to assess performance and
stress level during driving. More specifically, since changes in pupil
de (E. Kasneci).
diameter have been considered as a measure of emotional arousal
and autonomic activation, pupil analysis has been employed in
several studies (Benedetto et al., 2011; Bradley, Miccoli, Escrig, &
Lang, 2008; Potamitis et al., 2000). The general assumption dur-
ing driving is that visual perception of scene features such as signs,
pedestrians, and obstacles requires foveated vision, i.e., an object of
interest in the scene is considered as perceived if it has been fixated
by the driver (Fletcher & Zelinsky, 2009). Although peripheral
vision is considered as sufficient for some subtasks, such as keeping
the vehicle centered in the lane (Summala, Nieminen, & Punto,
1996), it has been reported that peripheral vision is insufficient
for the detection of traffic hazards (Maltz & Shinar, 2004).

Recent studies investigating the correlation between hazard
fixation and its perception have however reported that the direc-
tion of a driver's gaze towards an upcoming hazard does not a priori
imply its perception (Kasneci, Kasneci, Kübler, & Rosenstiel, 2015,
pp. 411e434; Tafaj, Kübler, Kasneci, Rosenstiel, & Bogdan, 2013).
Moreover, several studies have reported that subjects have shown
adequate hazard detection although the target object has not been
fixated (Kasneci et al., 2014; Kübler et al, 2015a, b). Thus, in some
cases, peripheral vision may be sufficient for hazard perception
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(Tafaj et al., 2013).
In driving scenarios, determining whether a hazard was

perceived by the driver early on can lead to significant support of
automatic accident avoidance systems. To approach this challenge,
signals from different sensors need to be processed in an online
fashion and aggregated according to their reliability. The reliability
of a sensor, however, depends not only on the type of the sensor but
also on the subject. For example, eye-tracking signal is sensitive to
make-up and changing illumination, while skin conductance and
heart rate are vulnerable to loosened or detached electrodes.
Deriving a binary decision about hazard perception from raw
sensor data is a challenging problem of its own and requires device
specific filtering, synchronization and processing. We will threat
this necessary preprocessing step as abstract throughout the
manuscript and work only on the readily preprocessed binary de-
cision label in order to demonstrate the proposed concepts in a
more general, device independent way. For details on how the data
used throughout the manuscript was preprocessed, please refer to
(Kübler et al., 2014).

In this paper we address the problem of how to combine mul-
tiple physiological (i.e., heart rate and galvanic skin response) sig-
nals with eye-tracking measurements for an automated detection
of target perception. Especially in the absence of ground truth, a
viable aggregation method has to jointly infer the reliability of the
source delivering the signal and the true event taking place (e.g.,
whether the target was perceived) (Fig. 1).

From a theoretical viewpoint the problem can be formalized as
follows. Given binary signals or responses Xi1;…;Xin2f0;1g from n
sources (e.g., sensors), 1 meaning that the event ei;0 � i � t; has
taken place and 0 that ei has not occurred, how can we aggregate
the responses in a way that we can learn the latent truth (i.e.,
whether the event occurred or not).

In the data mining literature, there is a vast body of work
addressing the aggregation of responses in order to find the latent
ground truth. Some of these approaches can be adapted to the
aggregation of sensor signals. However, only a few are applicable in
real-time. In this paper we analyze the most popular algorithms in
Fig. 1. This manuscript discusses the aggregation of physiological sensor data (eye-
tracking, heart rate, skin conductance) that has already been preprocessed to a binary
perception indicator (displayed as a thunderbolt). Aggregation and reliability estima-
tion of the individual perception indicators is performed (bottom box). For information
on recording and preprocessing of the data (top box) see, for example (Kübler et al.,
2014).
this realm and provide a practical guidance for their real-time
application in driving scenarios.

In the following we will use the terms signal, response, answer
and claimed value interchangeably.

The rest of the paper is organized as follows: Section 2 gives an
overview of related work in the area of latent truth discovery and
reliable response aggregation. Section 3 provides a practical
framework for the real-time application of popular truth discovery
and aggregation algorithms. An extensive analysis and evaluation
of the algorithms on real-world data collected from driving ex-
periments with human subjects is presented in Section 5. The data
was carefully labeled by experienced annotators as described in
Section 4.

2. Related work

From an abstract viewpoint, there are 3 categories of latent truth
discovery methods:

Bayesian Inference algorithms use prior distributions for the
truth and reliability parameters and jointly estimate truth and
source reliability by fitting the parameters to the available data
based on the assumed prior distributions.
Fix-point and Expectation Maximization algorithms start
with an initial guess on the truth and reliability parameters and
simplifying assumptions are used to iteratively fit the parame-
ters to the available data.
Semi-Supervised Learning algorithms start with a set of
known ground truth labels. This initial ground truth and other
assumptions are exploited to learn the reliability of sources. In
turn, the reliability estimations can be used to estimate the
latent truth.

In the following paragraphs, we give an overview of the above
three groups by highlighting representative approaches.

2.1. Bayesian Inference

TruthFinder (Yin, Han, & Philip, 2008) models the influence
between claimed values and applies Bayesian analysis to iteratively
estimate source reliabilities and the latent truth. AccuSim (Dong,
Berti-Equille, & Srivastava, 2009; Li, Dong, Lyons, Meng, & Srivas-
tava, 2012) integrates the similarity between claimed values into
the Bayesian inference approach and proposes an extension of the
algorithm AccuCopy in which also source similarities e in terms of
which source might have copied from which other source e are
considered. The more a source has copied from other sources, the
more its weight is reduced.

A Bayesian approach to knowledge corroboration is proposed by
Kasneci, Van Gael, Herbrich, & Graepel (2010); Kasneci, Van Gael,
Stern, Graepel (2011), where a latent truth discovery model in-
tegrates the logical dependencies between facts in a knowledge
base and crowd opinions to derive the underlying correctness of
the facts in the knowledge base.

Latent Truth Model (LTM) (Zhao, Rubinstein, Gemmell, & Han,
2012) is a probabilistic graphical model that applies collapsed
Gibbs sampling to estimate the false positive and the false negative
rate of sources by optimizing for the most probable answers.

Another Bayesian inference approach for continuous responses
is presented in Zhao & Han, 2012.

2.2. Fix-point algorithms and expectation maximization

In 2-Estimates (Galland, Abiteboul, Marian, & Senellart, 2010)
the assumption that there is one and only one true value for each
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object is integrated in a voting-based fix-point algorithm. The au-
thors also propose an extension, 3-Estimates, inwhich the difficulty
of deriving the true value of an object is considered.

In Pasternack & Roth (2010), a source uniformly ”invests” its
reliability among the values it has claimed for the objects. The
confidence of a value grows according to a non-linear function
defined on the sum of invested reliabilities from the sources that
claimed it. In turn, the sources collect credits back from the confi-
dence of their claimed values.

A Maximum Likelihood formulation of latent truth discovery for
crowd/social sensing applications is provided by Wang, Kaplan, Le,
& Abdelzaher (2012). The Expectation Maximization (EM) algo-
rithm is proposed to derive the most probable answers as well as
the true positive and true negative rates of sources (human agents
in this case).

2.3. Semi-supervised learning

In Yin & Tan (2011) a semi-supervised truth discovery approach
is proposed. An initial set of known ground truth labels is used to
estimate the reliability of sources. The formalization of mutual
exclusivity and mutual support between claimed values are
exploited to capture the relations between values and to guide the
algorithm towards reliability and truth estimations.

3. Methods

In this section, we present the approaches that we have evalu-
ated in the driving context for the aggregation of physiological and
eye tracking signals. Alongside a majority voting aggregation
scheme, we have selected Latent Truth Model (LTM) (Zhao et al.,
2012) as a representative of Bayesian Inference approaches and
the approach of (Wang et al., 2012) as a representative of fix-point
and Expectation Maximization algorithms. Additionally, we pro-
vide an optimal aggregation scheme that can be applied in real-
time when true positive rates and true negative rates are available.

3.1. Majority voting (MV)

In the absence of ground truth, majority voting is the simplest
way to aggregate the responses of independent expert sources.
Given the responses X1;…;Xn2f1;…;Kg of n independent expert
sources (e.g., well-calibrated sensors) for an event e, the truth is
derived as maxk2f1;…;Kg

��fj : Xj ¼ kg��. Note that we omit the event-
index i for the sake of readability. Despite its simplicity, this method
produces satisfactory results in many practical cases. Because of its
simplicity, themethod is highly efficient and applicable to real-time
scenarios.

3.2. Expectation maximization (EM)

A formulation of the truth discovery task as maximum likeli-
hood estimation problem is proposed by the authors of Wang et al
(2012). The solution to the problem is given by a regular expecta-
tion maximization algorithm which iteratively estimates the reli-
ability of information sources (in terms of their true positive and
true negative rates) and the truth of facts until convergence.

3.3. Latent Truth Model (LTM)

LTM (Zhao et al., 2012) is a probabilistic graphical model which
estimates two types of errors for each source, under the assumption
of multiple truths, in a Bayesian manor: the false positive rate and
the false negative rate. These rates are in turn used to estimate the
truth of facts for which the information sources may provide
conflicting claims (i.e., fact is true or fact is false).
Unfortunately, both EM and LTM are computationally intensive,

which makes their real-time application in the driving context
difficult. However, both methods can be used in the background to
estimate source reliability parameters such as true positive and
true negative rates. The better these rates are estimated, the more
accurate are the results obtained by the following real-time ag-
gregation scheme on top of the estimated true positive and true
negative rates.

3.4. An optimal aggregation scheme (OAS)

If we would know the true reliability of each signal source e in
terms of its true positive rate and true negative rate e we could
aggregate the source responses in a probabilistically optimal way as
follows:

Assume each signal source sj provides a response Xj2f1;…;Kg.
Given the responses of n sources on the occurrence of a discrete
event e2f1;…; kg, themost probable event to have occurredwould
be

argmax
k

pðe ¼ kjX1;…:;XnÞ

¼ argmax
k

pðX1;…;Xnje ¼ kÞpðe ¼ kÞ
pðX1;…;XnÞ

Assuming independence between the signals given the event,
we have

argmax
k

pðe ¼ kjX1;…:;XnÞ ¼ argmax
k
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Note that since pðX1;…;XnÞ is independent of k it does not in-
fluence the choice of the most probable k. 0 Following the above
derivation, in the case of binary events and responses from {0,1}, we
have
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and analogously
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The above aggregation follows the Naive Bayes principle, and, if
the sensors’ responses are indeed independent given the event, it is
optimal for the choice of the most probable event in a probabilistic
sense. In practice, in the presence of multiple sensors, a sum of
logarithms would be used to avoid computational arithmetic
underflow.
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The presented aggregation scheme can be used on top of com-
plex and computationally intensive algorithms, such as the
Expectation Maximization approach ewhich, in turn, can be run in
the background to produce estimations of the true positive and true
negative rates from sampled data. The real-time aggregation of
responses is provided by the above scheme.

4. Experimental data

4.1. Experimental setting

Thirty subjects were enrolled in a driving simulator study that
was conducted in the moving base driving simulator at the
Mercedes-Benz Technology Center in Sindelfingen, Germany
(Fig. 2(a)). The cabin contained a real car body (Mercedes S class
with automatic transmission) amidst a 360+ projected virtual re-
ality. Acceleration, sound effects and car environment contributed
to a near-to-reality driving experience.

Each subject completed a 40 min drive (37.5 km length) in the
simulator. The driving route contained rural as well as urban areas
with different speed limits up to 100 km/h. Nine hazardous traffic
situations, e.g., pedestrians suddenly appearing behind parking
vehicles and trying to cross the road or risky overtakingmaneuvers,
were placed along the driving course. Fig. 2(b) shows an example of
such a hazardous situation that arises as a pedestrian tries to cross
the road from the left. In this case, if the driver does not react to the
appearance of the pedestrian, the simulation avoids the crash, e.g.,
by having the pedestrian quickly leap backwards. Similar crash
avoidance strategies are simulated for all other hazards; hence,
(additional) psychological stress of the driver can be mitigated. A
detailed description of this study was previously published (Kübler
et al., 2014). Eye movements were recorded by means of a mobile,
head-mounted Dikablis eye tracker (Ergoneers GmbH) at 25 frames
per second simultaneously to the physiological parameters galvanic
skin conductance (GSC) and heart rate (ECG). Skin conductancewas
recorded via electrodes at the fingertips using a Biotraceþ system.
ECG was recorded by a mobile 3-channel device of type custo med
EKG.

4.2. Physiological data

For each hazardous situation, the driver's reaction to a traffic
hazard was rated as passed or failed by a driving instructor. If the
driver did not show an adequate reaction to the approaching haz-
ard (e.g., by braking, or by taking an appropriate collision avoidance
action), the specific situation was rated as failed, otherwise as
passed. The analysis of the physiological and eye-tracking signal
Fig. 2. Moving base driving simulator (Zeeb, 2010, pp. 157e165). (a) the entire cabin is mo
reality scene as seen from inside the cabin. A pedestrian intends to cross the road from the
will be described briefly in the following. A detailed description of
the methods employed for this analysis can be found in (Kübler
et al., 2014). Aim of this work is to find an optimal aggregation
method for the sensor responses according to their reliability to
infer whether a hazard was perceived by the driver.

4.2.1. ECG analysis
In order to detect stress-related increases in heart rate, large and

fast increments in heart rate were extracted. For subjects with a
higher overall variation in heart rate, a higher threshold is required
in order to classify an increase as unusually large. The threshold
was set to three standard deviations of the individual's heart rate
(for an assumption of normal distribution, over 99% of the data
should be contained within this interval). Thus, an increase of more
than three standard deviations was considered as a stress response
to a hazardous situation.

4.2.2. GSC analysis
GSC data was first smoothed by a Butterworth low-pass filter. A

threshold was then applied to the change in conductance, similar to
the procedure introduced by Healey, Seger, & Picard (1999). By
investigating only the change between small time intervals, effects
such as a steady increase in absolute value over the whole exper-
iment are equally distributed over thewhole recording and become
negligible. Similar to the extraction of heart rate increments, the
threshold was set to three standard deviations of GSC change.

4.2.3. Alignment of the driving scene with the sensor data
The spatial extent and the position of the traffic hazards in

the scene was manually annotated using bounding boxes, i.e., a
rectangular border enclosing the hazardous object in the scene
image. For this purpose, the hazardous situations were analyzed
starting from the moment when they entered the driving scene
up to when the hazardous situation was resolved (e.g., the
driver reacted to the approaching hazard or the simulation
resolved the hazardous situation). The annotation was per-
formed manually and frame-wise on the video recordings of the
driving scene.

The fixations of the driver were extracted from the raw eye-
tracking data in an online fashion based on an Bayesian mixture
model (Kasneci, Kasneci, Kübler & Rosenstiel, 2014; Tafaj, Kasneci,
Rosenstiel, & Bogdan, 2012). The spatial extent of a driver's fixa-
tion was then approximated by an ellipse, thus marking the object
of interest viewed by the driver. Finally, the resulting bounding
boxes (around hazardous objects) were matched with the fixation
ellipses (that describe the focus of the driver). As in Kasneci et al.
(2015), pp. 411e434, whenever a fixation of the driver intersected
unted on a hexapod, moving along a 12m rail (up to 1g acceleration force). (b) Virtual
left side (Kübler et al., 2014). Figures provided by Daimler AG.



Table 2
Source reliabilities as computed by the different algorithms.

Majority
Voting [%]

LTM [%] EM [%]

tpr fpr tpr fpr tpr fpr

GSC Change 86.07 13.93 96.5 25.05 93.5 18.96
ECG Change 78.6 21.4 75.4 63.99 74.8 63.29
Hazard fixated 87.32 12.68 99.58 20.31 96.72 12.17
Pupil dilation 84.09 15.91 89.81 39.13 87.8 34.34

Fig. 3. Hazardous situation (pedestrian crossing the road between cars) and fixation
data indicated as a sequence of white circles. Once the bounding box around the
pedestrian was hit by a fixation, the hazard was registered as seen.
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a bounding box, a traffic hazard was considered as seen by the
driver, see Fig. 3
4.2.4. Pupil data
To extract pupil dilation due to stress from the pupil signal, we

employed a Wavelet-based analysis. Relative energies of the Dau-
bechies wavelet transformed signal were used in a machine
learning step in order to distinguish between pupil size changes
caused by the ambient illumination and due to stressful events.
This SVM classification step results in a binary response of whether
a stress peak was detected or not.
5. Results

In total, there were 270 hazardous situations, i.e., nine for each
of the 30 subjects. Six subjects aborted the driving session early due
to motion sickness or technical problems. In some cases, skin
conductance, ECG, or pupil signal could not be analyzed due to
missing data.

Table 1 presents a detailed description of the signal responses.
The drivers showed an adequate driving response in 227 out of 237
hazardous situations. A failure to react to the approaching hazard
occurred in only 10 situations.

As summarized in Table 1, the galvanic skin response was pre-
sent (i.e., a change was detected in the sensor signal, encoded as a
1) in 193 out of 227 situations where the driver reacted adequately
(passed). With regard to the class passed, these responses represent
the true positives (TP). In 16 passed situations, no change in GSC
was detected. These cases represent false negatives (FN). In the
remaining 18 passed situations, a GSC signal was not available. For
the situations that were rated as failed, no change in the GSC signal
was detected in 6 out 10 hazardous situations (true negatives, TN).
In the remaining 4 cases, a response of the GSC signal was regis-
tered, although the driver did not react (false positives, FP). The
Table 1
Sensor responses in 227 passed and 10 failed situations.

Passed (n ¼ 227) Failed (n ¼ 10)

TP FN Non-available TN FP Non-available

GSC change 193 16 18 6 4 0
ECG change 164 55 8 7 3 0
Hazard fixated 211 9 7 3 7 0
Pupil dilation 190 21 16 1 8 1
responses of the ECG signal, pupil dilation, and hazard fixation are
given in Table 1 analogously.

To compute the reliability of the sensor signals and to predict
hazard perception based on the data summarized in Table 1, we
employed the algorithms Majority Voting, LTM, and EM as in-
troduces previously.

Table 2 presents the source reliabilities as computed by the
different algorithms. The results are given in terms of the true
positive rate (tpr) and false positive rate (fpr). According to these
results, the most reliable physiological signal is the fixation-based
analysis (Hazard fixated), with true positive rates varying be-
tween 87.32% (Majority voting) and 99.58% (LTM).

Table 3 presents the predictability of hazard perception for each
of the three employed techniques. All of them learn not only the
reliability of each source, but also deal with non-availability of the
sources. Among the applied aggregation techniques, LTM and EM
show similar precision and recall values with regard to hazard
perception. The last two approaches in Table 3 OAS_LTM and
OAS_EM correspond to Optimal Aggregation Scheme (Section 3.4)
that were applied on top of the LTM and EM method, respectively.
6. Discussion

In case of fully reliable sensor signals, we would expect a
response from each source upon hazard perception (i.e., in the case
of passed situations). More specifically, since we assume that haz-
ard perception induces stress, we would expect to measure a
change in GSC, ECG, and a dilation of the pupil. Furthermore,
following the assumption of foveated vision, we would assume an
intersection of the fixation location with the hazardous object.
Analogously, in case of no driver reaction, we would expect no
response in any of the signals. However, Table 1 shows that the
signal sources are not reliable. Furthermore, te availability of signals
is not always guaranteed. Hazard fixation, the most predictive in-
dicator, is available in 230 of 237 situations. But for GSC change and
pupil dilation the availability is much worse.

Despite the very high true positive rate, LTM might not be the
best choice among this three techniques, since it has higher false
positive rates than the other two approaches.

In difference to the EM algorithm, our aggregation scheme es-
timates the prevalence of 1 (or 0) simply by the relative count of
responses equal to 1 (or 0). In addition, our aggregation scheme can
be applied also to cases where none of the sources is available. By
Table 3
Predictability. *If signal available.

Method Precision [%] Recall [%]

Hazard fixated* 95.47 95.90
Majority Voting 91.36 96.52
LTM 94.78 94.78
EM 94.78 94.78
OAS_LTM 96.84 94.71
OAS_EM 96.05 96.47
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applying such an aggregation scheme, the result can be improved
by a margin of 2% in comparison to LTM and EM. In summary,
OAS_EM represents the best aggregation approach for the problem
and data at hand.

The pupil dilation did not predict hazard perception reliably. As
it is influenced by a variety of other factors, such as illumination and
cognitive load, natural environments make it very difficult to
extract the pupil dilation component caused by stress.

According to our results, the fixation-based analysis (Hazard
fixated) represents the most reliable signal source among the
available physiological signals. In fact, for the situations in which
this signal is available, it can predict hazard perception with a
precision of 95.47% and recall of 95.9%, Table 3.

In contrast to the eye-tracking signal which has a negligibly
small delay in the order of few ms, the detection of changes in the
vital parameters ECG and GSR is only possible with a relatively long
delay (approximately 1� 4 seconds). Thus, these signals can be
used as input and predictors for triggering driver assistance sys-
tems only to a limited extent.

7. Conclusion

Automated, real-time aggregation of sensor measurements is
important for the task of event recognition in many dynamic sce-
narios. For the recognition of hazard perception in the driving
context, this paper provides a strong first basis for the real-time
aggregation of physiological and eye-tracking signals e the latter
delivering reliable indicators of hazard perception.

Beyond today's driving assistance, our findings can be beneficial
in the context of autonomous driving to determine the situation
awareness and attentiveness of the driver.
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