
ExCuSe: Robust Pupil Detection in Real-World
Scenarios

Wolfgang Fuhl, Thomas Kübler, Katrin Sippel, Wolfgang Rosenstiel, and Enkelejda
Kasneci

Eberhard Karls Universität Tübingen, Tübingen 72076, Germany,
wolfgang.fuhl@uni-tuebingen.de,
http://www.ti.uni-tuebingen.de/

Abstract. The reliable estimation of the pupil position is one the most impor-
tant prerequisites in gaze-based HMI applications. Despite the rich landscape of
image-based methods for pupil extraction, tracking the pupil in real-world im-
ages is highly challenging due to variations in the environment (e.g. changing il-
lumination conditions, reflection, etc.), in the eye physiology or due to variations
related to further sources of noise (e.g., contact lenses or mascara). We present
a novel algorithm for robust pupil detection in real-world scenarios, which is
based on edge filtering and oriented histograms calculated via the Angular Inte-
gral Projection Function. The evaluation on over 38,000 new, hand-labeled eye
images from real-world tasks and 600 images from related work showed an out-
standing robustness of our algorithm in comparison to the state-of-the-art. Down-
load link (algorithm and data): https://www.ti.uni-tuebingen.de/
Pupil-detection.1827.0.html?&L=1.

1 Introduction

Eye-tracking technology has helped us getting a deeper understanding of human cog-
nition, answering questions from psychology, medicine, marketing research, and many
other disciplines. With the development of mobile, head-mounted eye trackers the num-
ber of studies conducted in real-world scenarios, such as in sports, while driving a car,
or shopping are increasing. Such eye trackers consist of two or more cameras, record-
ing the subject’s eyes from close-up and the scenery from the ego-perspective. The most
essential step of the analysis of data recorded by such devices is the accurate identifi-
cation of the center of the pupil in the camera image. In 2000, Schnipke and Todd [13]
reported several difficulties arising in eye-tracking applications, e.g., changing illumi-
nation conditions, intersection of eyelashes with the image of the pupil, glasses, etc.
Frequent illumination changes are often caused by the ego motion and rotation, espe-
cially when moving fast, e.g. while driving. Reflections are caused by a variety of light
sources on the subject’s eye itself or on glasses or contact lenses. Another factor that
may negatively affect the pupil detection rate is the position of the camera that records
the subject’s eye. For best pupil detection the camera should be positioned directly in
front of the subject’s eye. Since this would influence the natural viewing behavior, the
camera is usually positioned at the borders of the visual field and, consequently, the im-
ages recorded are highly off-axial. While in the meantime several of the above problems

Link to data:
https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%2Fdatasets-
head-mounted&mode=list



II

have been solved for pupil detection under laboratory conditions [3, 6–8, 10, 12, 15, 19,
21], studies employing eye tracking in real-world scenarios regularly report low pupil
detection rates [5, 9]. Thus, the data collected from such studies has to be processed
post-experimentally and the pupil has to be manually labeled in the recorded images. A
popular and robust algorithm is Starburst by Li et al. [7], which is based on the calcula-
tion of edges along rays from an initial guess of the pupil position in the image. Areas
of high intensity change along these rays are then used as possible pupil border features.
Finally, an ellipse is fitted to these features using RANSAC. In 2012, Swirski et al. [15]
proposed a robust pupil tracking algorithm for highly off-axis images. Their approach is
based on an initial approximation of the pupil position using Haar Wavelets and a refine-
ment step with RANSAC-based ellipse fitting. Another approach introduced by Goni
et al. [3] is based on the bright-pupil technique. In [6] and [8] the algorithm searches
for the corneal reflection on IR images. The pupil is expected close to the corneal re-
flection and extracted using histograms and thresholds-based techniques [6]. In Long
et al. [10] IR images are thresholded using a symmetric mass center algorithm. Image
thresholding and mass center calculation is also performed in [12], whereas Valenti et
al. [19] use isophotes curvature estimation and select the maximum isocenter as pupil
center. In [21] the image is thresholded and the curvature of the threshold border is
calculated. Despite the above approaches, most eye tracking vendors employ their own
pupil detection algorithms, which are specifically tailored for their devices and mostly
unpublished. To the best of our knowledge, the above approaches have been evaluated
on rather small data sets.

We propose a novel algorithm, Exclusive Curve Selector or ExCuSe for short that is
well suited for real-world eye-tracking applications, providing high detection rates and
robustness in images where other algorithms fail. Our algorithm is based on oriented
histograms calculated via the Angular Integral Projection Function [11]. The coarse
pupil center estimation is then refined by ellipse estimation similar to Starburst [7]. The
algorithm is evaluated on the Swirski data set [15] as well as nine other data sets that
were collected during an on-road driving experiment [5] and eight data sets that were
collected during a supermarket study [14]. The evaluation data set consists of overall
38,401 images, where the pupil position was labeled manually on each image. Thus,
despite our algorithmic contribution we provide an enormous evaluation data set that
may serve as ground truth data for further research.

2 Method

Input to our algorithm are 8-bit gray-scale images. The work-flow of the algorithm for
pupil detection is depicted in Figure 1. Each step is described in detail in the following
subsections. Furthermore, this paper is accompanied by a supplementary video, which
demonstrates the main idea behind each step of ExCuSe and the processing result on
real-world eye videos of different subjects.

2.1 Normalization and histogram analysis

The peripheral regions of the input image (i.e., 10% in our application) are excluded
from further processing in order to avoid the frame of eyeglasses. Furthermore, we as-



III

sume that on images with an overall bright intensity and similar gray values a reflection
on eyeglasses or a bright illumination spot is present. Using an intensity threshold ap-
proach to extract the pupil is hard in such cases, since the pupil can not be expected to
appear dark and is likely to contain a broad range of intensity values.

Fig. 1: The algorithmic work-flow in ExCuSe. Light gray boxes represent decisions,
dark gray boxes stand for termination points, and white boxes represent processing
steps.

Thus, in a first step, the input image is normalized (range 0 to 255) and a histogram
of the image is calculated. Then the algorithm checks whether the histogram contains
a peak in the bright area (Figure 2(d)) with a gray value above a threshold th1 (i.e.,
th1 = 200 chosen empirically). The peak is detected if a bin in the histogram is higher
than a multiple mu1 of the average image intensity (we chose mu1 = 10 empirically).
If such a peak was detected, the pupil can be found based on edge-filtering.

(a) (b) (c) (d)

Fig. 2: Figures 2 (a) and (b) show two images from a dataset introduced by Swirski et
al. [15] and their corresponding intensity histograms in (c) and (d). Figure 2 (b) shows
a pupil with a high range of gray values. Eyelashes cover parts of the pupil and reflect
the light.



IV

2.2 Pupil center detection on edge and gray value image

We assume that the pupil appears as a curved edge encapsulating the darkest intensity
values of the image. To find such an edge, four processing steps are performed on the
Canny-edge-filtered image, Figure 3.

(a) (b) (c) (d) (e) (f)

Fig. 3: (a) A Canny edge filter is applied to the image from Figure 2(b). (b) all edge pix-
els with less than two neighbors and angels between all neighbors ≤ 90◦ are removed.
(c) the remaining connected edge pixels represent lines. They are thinned and pixels
connecting two lines orthogonally are removed. (d) for each line the centroid (shown as
white point) is inspected and lines close to their centroid are removed (e). (f) the longest
line which contains the darkest pixels is assumed to encapsulate the pupil.

2.2.1 Filtering the edge image Figure 3(a) shows the edge-filtered image from Fig-
ure 2(b), which appears cluttered and contains many edges that are not relevant for pupil
detection. The pupil edges are difficult to detect since they are crossed by the eyelashes.
In a first filtering step, thin edge lines (i.e., 1 pixel thickness) and pixels of small rect-
angular surfaces (2 × 2 pixels) are removed. More specifically, the above criterion is
fulfilled by neighboring pixels which (considered as vectors) have angels greater than
90◦ between each other. The remaining edge pixels represent lines which are straight,
curved, or consist of both straight and curved parts. The separation step is here of par-
ticular interest, e.g., the edge of the eyelashes in the pupil are straight and connected
to the curved edge of the pupil. To distinguish between connected line parts that have
to be separated and those that do not, the connection point between such parts has to
be examined in detail. The assumption is that line parts that have to be separated are
orthogonal to each other at the connection point.

To separate lines consisting of curved and straight parts into the corresponding
curved and straight segments, the morphologic operations shown in Figure 4 are ap-
plied. If one of these patterns matches to the edge pixels (shown in gray), that pixel
is deleted. Pixels marked black in the Figure are added. After thinning, lines can be
separated into segments by deletion of just one pixel. However, there are still pixels
which prevent the patterns from Figure 4(d), (e), or (f) to match. Therefore, lines are
straightened using the patterns shown in Figure 4(b) and (c). Now the connection points
of line parts which are orthogonal to each other can be separated using the patterns in
Figure 4(d),(e), and (f). The result of this step is shown in Figure 3(c).

2.2.2 Remove straight lines The next step is to detect and remove straight lines.
Since the pupil is expected to be encapsulated in a curved line, straight lines are of



V

(a) (b) (c) (d) (e) (f)

Fig. 4: Morphologic pixel manipulation patterns. White and gray boxes represent pixels
that were detected as edges in the image. If the pattern matches an edge segment, gray
pixels are removed and black pixels are added to the edge image. Operand (a) thins
lines. Operands (b) and (c) are used to straighten lines. (d), (e) and (f) separate straight
parts of a line from curved parts.

no interest. Therefore, all remaining edge pixels are combined to lines based on their
connection to neighboring edge pixels. The steps that are performed to calculate lines
from the edge image are the following:

1. Find edge pixels that do not belong to any line yet
2. Create a new line with the edge pixel
3. Add all direct neighbor edge pixels to the line
4. Repeat Steps 3 + 4 for all added neighbor pixels

Calculate the line centroid for each line. If the pixel distance between the centroid
and at least one point of the line segment is smaller than a threshold di1, the line is
assumed to be straight (in our application we chose di1 = 3 empirically). Figure 3(d)
shows all lines with their centroid (white point) and Figure 3(e) shows the remaining,
curved lines after the removal of straight segments. We expect that one of the remaining
lines belongs to the pupil.

2.2.3 Choose curved line We assume the pupil to be a dark spot in the intensity
image. Therefore, the pupil candidate with the darkest area contained in it is most likely
to be the pupil. To calculate an intensity value for the contained area we choose the
pixel with a distance of di2 pixels for each line point which have the smallest euclidean
distance to the line’s centroid (i.e., di2 = 2 chosen empirically). For these pixels, the
mean gray value is calculated. It is possible that there is more than one curved line
belonging to the pupil. We choose the longest line found with the darkest inboard area.
To ensure that larger lines are not discarded, we choose a range ra1 in which the mean
gray value deemed to be equal (i.e., ra1 = 5). The chosen line is shown in Figure 3(f).
All points on this line are collected and the center is estimated using ellipse fitting.

2.2.4 Fit ellipse There are basically three ways of fitting an ellipse to a set of points.
First, the direct least squares method, which is highly affected by pixels not belonging
to the border of the ellipse [2]. The other two possibilities are vote- and search-based
(e.g., RANSAC [1]). These are more robust to in- and outliers, yet computationally
expensive [20]. We fit the ellipse based on the direct least squares method. It is fast to
calculate and also used as abort criterion on failure for the step (2.2) Figure 1.



VI

2.3 Thresholding and coarse positioning

(a) (b) (c)

(d)

(e)

(f)

(g)

Fig. 5: (a) An image from the Swirski et al. [15] data set and (b) its corresponding
thresholded image. In (c) the coarse positioning (white lines) of the four orientations
from the Angular Integral Projection Function (AIPF) [11] are shown. The results of
the AIPF calculated on the threshold image for the orientations 0◦, 45◦, 90◦ and 135◦

are shown in the histograms (d), (e), (f), and (g) in corresponding order. The chosen
positions are shown as red lines and correspond to the white lines in (c) with (d) defining
the vertical white line in (c), (e) the line from the right bottom to the top left corner, (f)
to the horizontal line and (g) to the line from the left bottom to the top right corner.

If the gray value histogram does not contain a peak (Figure 2(c)), we extract the
pupil based on a threshold th2. Each pixel with a gray value lower than th2 is set to 255
as shown in Figure 5(b). In highly scattered images the pupil may consist of a range
of different intensity values. The threshold th2 is chosen dependent on the scattering
in the image as half the standard deviation of the image intensity. In this step we aim
at determining a coarse pupil position. It is not necessary to extract the whole pupil.
Therefore a conservative threshold that reduces noise at the potential cost of cutting part
of the pupil is preferable. The coarse pupil position is estimated utilizing the Angular
Integral Projection Function (AIPF) [11] on the thresholded image. The AIPF allows
the calculation of the Integral Projection Function (IPF) for any specified angle.

IPFh(y) =

∫ x2

x1

I(x, y) dx (1)

IPFv(x) =

∫ y2

y1

I(x, y) dy (2)

With I(x, y) as the gray value at the location (x, y) equation (1) (as found in [11]) de-
fines the IPFh (Integral Projection Function horizontally) for the interval [x1, x2] and
equation (2) define the IPFv (Integral Projection Function vertically) for the interval
[y1, y2]. The IPF calculates the sum of the intensity values of an image in one direction.
For example, outgoing form the x-axes for each row (pixel line from the bottom of the
image to the top) the pixel values are summed up and represent one bin in the resulting
histogram. Those histograms do not rely on shape and our assumption is that the region
with the highest response is the pupil. We used the AIPF because it allows to calculate
IPFs for different orientations, it is known to be robust and is fast to calculate. Two well
known IPFs are the horizontal (IPFh) and the vertical (IPFv) IPF. The IPFv corresponds



VII

to the AIPF with angle 0◦ and the IPFh corresponds to the AIPF with angle 90◦ [11].
With I(x, y) as the gray value at location (x, y) equation (3) (as found in [11]) defines
the AIPF. Θ is the angle of the line to the x-axis from which the integration rotated
by 90◦ takes place, p is the position on the line or the bin of the corresponding his-
togram, h is the number of pixels to be integrated and (x0, y0) is the position of the
start point of the line along which the integration rotated by 90◦ takes place. We used
the orientations 0◦, 45◦, 90◦ and 135◦ for the AIPF to calculate the histograms shown
in Figure 5(d),(e),(f), and (g).

AIPF (Θ, p, h) =
1

h+ 1
∗
∫ h

2

j=−h
2

I

(
(x0 + p cosΘ)

+(j cos (Θ + 90◦)), (y0 + p sinΘ)

+(j sin (Θ + 90◦))

)
dj

(3)

In these four histograms the coarse pupil location is assumed at a wide and high
response area. The minimum length of the area is specified by ar1 and the number of
consecutive bins allowed to be low is specified by ar2 (in our application we chose
ar1 = 7 and ar2 = 5 empirically). This is done to eliminate single high responses
in the histogram. Areas of high response are defined by a threshold th3 which is a
percentage of the maximum of the histogram (in our application we chose th3 = 0.5
empirically). If there is more than one acceptable area in a histogram, our assumption
is that the pupil can be found at the center of the image. Therefore, the midpoint of
the area which is closest to the bin in the histogram corresponding to the center of
the image is chosen as the pupil position. The white lines in Figure 5(c) represent the
angle of the AIPF for each histogram rotated by 90◦ (angle of the integration) and
are the chosen positions. Therefore, these white lines correspond to the red lines from
Figures 5(d), (e), (f), and (g) drawn to the threshold image shown in Figure 5(b). The
pupil position is estimated based on the intersection of these lines. Our assumption is
that the intersection of those lines orthogonal to each other are close to or hit the pupil.
This way, up to two intersection points are considered. The pupil position is assumed as
the point between these intersections. In the case that no intersection was found, branch
2.2 of the algorithm will take over. If this branch fails to detect the pupil as well, a blink
is assumed.

2.4 Correct position using surrounding gray values

Once a coarse pupil center estimation has been established, it has to be improved be-
cause it is possible that the coarse position lays outside or on the boarder of the pupil. It
can be refined within a small area ar3 around the estimation without being dependent
on the shape or color of the pupil (in our application we chose ar3 = 0.1 empirically,
which represents 10% of the width and height of the image in each direction). The only
assumption made is that pixels belonging to the pupil are surrounded by brighter or
equally bright pixels. This step is important for images in which the pupil is especially



VIII

hard to detect.

PS(x, y) =

x2∑
xi=x1

y2∑
yi=y1

{
I(x, y)− I(xi, yi), I(xi, yi) < I(x, y)

0, I(xi, yi) >= I(x, y)
(4)

For each pixel the sum PS(x, y) of gray value differences to its neighbors is calculated.
Only gray values lower than the value of the pixel under consideration are taken into
account. For the neighborhood area the square root of the diagonal of the area specified
by ar3 is used. The mean of the pixel positions with the lowest sum value is the new
corrected position. In equation (4) PS(x, y) is the sum calculated for the pixel at posi-
tion (x, y), [x1, x2] is the interval on the x-axis of the neighborhood area, [y1, y2] is the
interval on the y-axis and I(x, y) is again the gray value at position (x, y).

2.5 Find pupil center with the edge and threshold image

This step does not require the corrected position to be the accurate pupil center, however
it is required to lie inside of the pupil. The concept of using a threshold image to improve
the edge image and refine finding the pupil edges with rays outgoing from this position
is described in the following chapter. Only the region ar4 around the corrected point
is of interest for finding the pupil (in our application we chose ar4 = 0.2 empirically,
which means 20% of the width and height of the image in each direction). We use only
eight rays because for too many rays it is more likely that rays hit edges not belonging
to the pupil if the edges belonging to the pupil are not consistently present. Therefore
rays missing the pupil edges can hit other edges that do not belong to the pupil thus
making the pupil center detection incorrect.

(a) (b) (c) (d) (e) (f)

Fig. 6: The edge-filtered eye image (a) of the region where the pupil is expected. A
threshold image (b) is calculated to determine the threshold border (c). Only edge pixels
close to this border are used for further calculations (d). After the edge refinement steps
explained in 2.2.1 and 2.2.2 the remaining edges are used for edge selection (e): rays
are sent out from the corrected point (white point in the middle of (f)) into all directions
with an angle step of 45◦. If a ray hits an edge (white points on the ellipse in (f)) the
line belonging to this edge is supposed to belong to the pupil.

2.5.1 Improve edge image with threshold image First, an edge-filter of the im-
age region is calculated, as shown in Figure 6(a). The calculated threshold image from
step 2.3 is not useful here because the threshold chosen was for coarse positioning and
there was no need to extract the whole pupil. In this step, the threshold th2 (chosen as



IX

half the standard deviation) is increased to the full standard deviation to calculate the
new threshold image (Figure 6(b)). In this step it is important that no part of the pupil
gets cut off by a too conservative threshold. Edges of the edge image are preselected by
overlay with the threshold image. Only edges close to the border of the threshold region
(Figure 6(c)) are considered relevant. This border is calculated by accepting only white
pixels in the threshold image which have black direct neighbors. Only edges close to
the border region are considered, see Figure 6(d). To calculate this the surrounding area
ar5 of each threshold border pixel is inspected (in our application we chose ar5 = 5
empirically which means 5 pixels in each direction outgoing from the threshold bor-
der pixel). If an edge pixel lies within the ar5 region of a threshold border pixel it is
accepted. Then the border refinement steps described in 2.2.1 and 2.2.2 are carried out
(the result is shown in Figure 6(e)).

2.5.2 Find edges that represent the pupil border In the resulting edge image, rays
from the corrected position (small white point in the middle of Figure 6(f)) are sent
in all directions with an angle step of 45◦ until they hit an edge (white points on the
elliptic line in Figure 6(f)), similar to the method used by the Starburst algorithm [7].
The intersection points between the rays and the edges are used to collect points. All
edge pixels connected to a hit edge pixel and iteratively all that are connected to those
pixels are used to fit an ellipse.

3 Experimental Evaluation

3.1 Data

We evaluated our approach on eighteen data sets. The first data set was published by
Swirski et al. [15]. Nine data sets were recorded during an on-road driving experi-
ment [5] using a head-mounted camera system (Dikablis Mobile Eye Tracker by Er-
goneers GmbH). The remaining eight data sets were recorded during a supermarket
search task [14]. These data sets are highly challenging, since illumination conditions
change often and rapidly. Furthermore reflections on eyeglasses and contact lenses oc-
cur. The data reflect the results of standard eye-tracking experiments out of the labora-
tory and was recorded for other studies that did not focus on pupil detection. Pupil po-
sition was hand labeled for all of the above data sets. The data is available for download
under https://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.
html?&L=1.

3.2 Results

The runtime of ExCuSe (C++ implementation) was 7ms per image (averaged over all
images (384 × 288 pixel and 620 × 460 pixel), no multithreading, CPU: i5-4570
3.2GHz). We compared the performance of our algorithm (without changing any pa-
rameter for all data sets) to two state-of-the-art approaches, namely Swirski et al. [15]
(Version June 1st, 2014 runtime:14ms) and to the Starburst algorithm [7] (Version 1.1.0
from OpenEyes website runtime not comparable because of matlab version). The per-
formance was measured in terms of detection rate for different pixel errors based on



X

Fig. 7: Average pupil detection rates for different pixel errors achieved by ExCuSe
(solid), the Swirksi et al. algorithm (dashed), and Starburst (double dashed) on all data
sets from Table 1.

the Euclidean distance between the hand-labeled ground-truth and the pupil center as
reported by each algorithm. Table 1 shows the results for each algorithm on each data
set with a pixel error up to 5.

Data Set Images Challenges Starburst Swirski et al. ExCuSe
Swirski 600 Highly off axis, eyelashes 21% 78% 86%
I 6.554 Reflections 5% 5% 70%
II 505 Reflections, bad illumination 2% 24% 34%
III 9.799 Reflections, recording errors, bad illumination 1% 6% 39%
IV 2.655 Contact lenses, bad illumination 4% 34% 81%
V 2.135 Shifted contact lenses 14% 77% 77%
VI 4.400 Bad illumination, Mascara 18% 19% 53%
VII 4.890 Bad illumination, mascara, eyeshadow 2% 39% 46%
VIII 630 Bad illumination, Eyelashes 8% 41% 56%
IX 2.831 Reflections, additional black dot 12% 23% 74%
X 840 Bad illumination, pupil at image boarder 53% 29% 79%
XI 655 Reflections, bad illumination, 26% 20% 56%

additional black dot
XII 524 Bad illumination 61% 70% 79%
XIII 491 Bad illumination, Eyelashes 43% 61% 70%
XIV 469 Bad illumination 21% 52% 57%
XV 363 Shifted contact lenses 8% 62% 52%
XVI 392 Mascara, eyelashes 8% 18% 49%
XVII 268 Bad illumination, eyelashes 0% 68% 78%
Table 1: Detection rate of Starburst, Swirski et al. and ExCuSe on each evaluation data
set. For each data set, the table shows the number of hand-labeled images and a descrip-
tion of the challenges faced by the image processing as seen by the authors. The last
three columns are the results up to an pixel error of 5.



XI

Note that the performance of the pupil tracking software provided by the eye-tracker
manufacturer (Ergoneers GmbH) was very poor on all the above data sets (without
Swirski data) with a detection rate of less than 0.027 % for 15 error pixels. Therefore,
the results of the manufacturer software will not be presented here. In addition, Figure 7
shows the average performance of all three algorithms over the entire evaluation data,
i.e., on about 39,000 hand-labeled images. As shown in the Figure, ExCuSe outperforms
the competitor algorithms with detection rates nearly twice as good as the Swirski et
al. algorithm and is therefore a suitable choice for pupil detection on such difficult data.

4 Conclusions

We presented a pupil detection algorithm, ExCuSe, for application in real-world eye-
tracking experiments. The focus was primarily on the robustness of the algorithm with
respect to frequently and rapidly changing illumination conditions, off-axial camera
position, and other sources of noise. We evaluated our algorithm on a total of 39,001
eye images in comparison with two state-of-the-art approaches. Our method showed
high robustness and clearly outperformed the competitor algorithms. Since robust pupil
position tracking under real-world illumination conditions is a crucial prerequisite to-
wards online analysis of eye-tracking data in different applications, e.g., driving, where
such information can be used to determine the visual attention focus of the driver [4,
16, 17], we encourage the application of ExCuSe in such tasks. In our future work, we
will integrate ExCuSe in visual search tools (e.g., Vishnoo [18]) to make it available for
pupil detection in search tasks under laboratory conditions.

References

[1] Fischler, M. A., and Bolles, R. C. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24, 6 (1981), 381–395.

[2] Fitzgibbon, A., Pilu, M., and Fisher, R. B. Direct least square fitting of ellipses.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 21, 5 (1999),
476–480.

[3] Goni, S., Echeto, J., Villanueva, A., and Cabeza, R. Robust algorithm for pupil-
glint vector detection in a video-oculography eyetracking system. In Pattern
Recognition, 2004. ICPR 2004., vol. 4, IEEE (2004), 941–944.

[4] Kasneci, E. Towards the Automated Recognition of Assistance Need for Drivers
with Impaired Visual Field. PhD thesis, University of Tübingen, Wilhelmstr. 32,
72074 Tübingen, 2013.

[5] Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U.,
and Papageorgiou, E. Driving with Binocular Visual Field Loss? A Study on a
Supervised On-road Parcours with Simultaneous Eye and Head Tracking. Plos
One (2014). doi: 10.1371/journal.pone.0087470.

[6] Keil, A., Albuquerque, G., Berger, K., and Magnor, M. A. Real-time gaze tracking
with a consumer-grade video camera.

[7] Li, D., Winfield, D., and Parkhurst, D. J. Starburst: A hybrid algorithm for video-
based eye tracking combining feature-based and model-based approaches. In



XII

Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops.
IEEE Computer Society Conference on, IEEE (2005), 79–79.

[8] Lin, L., Pan, L., Wei, L., and Yu, L. A robust and accurate detection of pupil im-
ages. In Biomedical Engineering and Informatics (BMEI), 2010 3rd International
Conference on, vol. 1, IEEE (2010), 70–74.

[9] Liu, X., Xu, F., and Fujimura, K. Real-time eye detection and tracking for driver
observation under various light conditions. In Intelligent Vehicle Symposium,
2002. IEEE, vol. 2, IEEE (2002), 344–351.

[10] Long, X., Tonguz, O. K., and Kiderman, A. A high speed eye tracking system
with robust pupil center estimation algorithm. In Engineering in Medicine and
Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the
IEEE, IEEE (2007), 3331–3334.

[11] Mohammed, G. J., Hong, B. R., and Jarjes, A. A. Accurate pupil features extrac-
tion based on new projection function. Computing and Informatics 29, 4 (2012),
663–680.

[12] Peréz, A., Cordoba, M., Garcia, A., Méndez, R., Munoz, M., Pedraza, J. L., and
Sanchez, F. A precise eye-gaze detection and tracking system.

[13] Schnipke, S. K., and Todd, M. W. Trials and tribulations of using an eye-tracking
system. In CHI’00 extended abstracts on Human factors in computing systems,
ACM (2000), 273–274.

[14] Sippel, K., Kasneci, E., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U., and
Papageorgiou, E. Binocular Glaucomatous Visual Field Loss and Its Impact on
Visual Exploration - A Supermarket Study. PLoS ONE 9, 8 (2014), e106089.

[15] Świrski, L., Bulling, A., and Dodgson, N. Robust real-time pupil tracking in
highly off-axis images. In Proceedings of the Symposium on Eye Tracking Re-
search and Applications, ACM (2012), 173–176.

[16] Tafaj, E., Kasneci, G., Rosenstiel, W., and Bogdan, M. Bayesian online cluster-
ing of eye movement data. In Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA ’12, ACM (2012), 285–288.

[17] Tafaj, E., Kübler, T., Kasneci, G., Rosenstiel, W., and Bogdan, M. Online classifi-
cation of eye tracking data for automated analysis of traffic hazard perception.
In Artificial Neural Networks and Machine Learning ICANN 2013, vol. 8131,
Springer Berlin Heidelberg (2013), 442–450.

[18] Tafaj, E., Kübler, T., Peter, J., Schiefer, U., Bogdan, M., and Rosenstiel, W. Vish-
noo - an open-source software for vision research. In Proceedings of the 24th

IEEE International Symposium on Computer-Based Medical Systems, CBMS’ 11,
IEEE (2011), 1–6.

[19] Valenti, R., and Gevers, T. Accurate eye center location through invariant isocen-
tric patterns. Transactions on pattern analysis and machine intelligence 34, 9
(2012), 1785–1798.

[20] Yuen, H., Illingworth, J., and Kittler, J. Ellipse detection using the hough trans-
form. In Alvey Vision Conference (1988), 1–8.

[21] Zhu, D., Moore, S. T., and Raphan, T. Robust pupil center detection using a cur-
vature algorithm. Computer methods and programs in biomedicine 59, 3 (1999),
145–157.


