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Figure 1: Estimation of the eyeball parameters (red and blue) and the optical axis (turquoise) using neuronal networks on the
pupil ellipse (green).

ABSTRACT
In this work we evaluate neural networks, support vector machines
and decision trees for the regression of the center of the eyeball
and the optical vector based on the pupil ellipse. In the evaluation
we analyze single ellipses as well as window-based approaches as
input. Comparisons are made regarding accuracy and runtime. The
evaluation gives an overview of the general expected accuracy with
different models and amounts of input ellipses. A simulator was
implemented for the generation of the training and evaluation data.
For a visual evaluation and to push the state of the art in optical
vector estimation, the best model was applied to real data. This
real data came from public data sets in which the ellipse is already
annotated by an algorithm. The optical vectors on real data and the
generator are made publicly available. Link to the generator and
models.

CCS CONCEPTS
•Computingmethodologies→ Supervised learning;Machine
learning approaches; Simulation tools; •Human-centered com-
puting → Pointing;
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1 INTRODUCTION
3D gaze estimation is an essential part of eye tracking research.
This 3D gaze information provides more information about the cog-
nitive processes of a person [Bulling and Zander 2014] and allows
to correct errors on a 2D plane via the additional information of
depth [Wibirama et al. 2017]. The estimation of a person’s 3D gaze
position is a constantly growing application field and important
in many research areas [Zhang et al. 2019]. The gaze position has
a variety of applications like virtual reality where it is needed for
foveated rendering [Patney et al. 2016] as well as input signal [Ktena
et al. 2015]. Another field of application is gaze-based control as
used in surgical microscopes [Eivazi et al. 2015; Fuhl et al. 2017b,
2016b], public displays [Zhang et al. 2014] or for controlling indus-
trial robots [Roncone et al. 2016]. Also, the eye signal of a human
being can be used for identification [Fookes et al. 2010] as well as
for the teaching of novices [Castner et al. 2018]. This multitude of
applications and research areas, however, requires a gaze signal
that is as accurate and reliable as possible under the most diverse
challenges and as minimally invasive as possible.

Figure 2 shows some of these image based challenges such as
reflections, poor lighting conditions but also partially obscured
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Figure 2: Different challenges for image-based extraction of
the pupil ellipse.

pupils [Fuhl et al. 2015, 2017a]. Further challenges come from the
use itself. If eye trackers are worn, there may be shifts which require
compensation [Sugano and Bulling 2015]. In the case of remote eye
tracking, the low resolution of the eye area is a challenge on the
one hand [Klingner et al. 2008], and on the other hand to ensure an
accurate gaze estimation without fixing the test person [Villanueva
et al. 2009]. While the purely image-based problems as well as the
low resolution of the eye area are not considered in this work, it
deals with the determination of the optical axis (Figure 1) using the
pupil ellipse since the optical axis is independent of an eye tracker
shift or freely moving subjects thus making it robust against those
challenges. In general, linear equation systems are solved to get
from several pupil ellipses, which deform on the eyeball, to the
parameters of the eyeball. This is possible because, depending on
the viewing position and the stationary assumed camera, the pupil
deforms according to the rotation on the eyeball. If one has several
such deformations, the eyeball can be determined and the eye vector
can be computed.

To get from the optical axis to the gaze vector only a personal
calibration is necessary and has to be performed only once for a
person [Kohlbecher et al. 2008]. The pure use of the pupil ellipse
itself has the additional advantage that no further features like
glints have to be projected onto the retina, which restrict the user
in his movement [Villanueva et al. 2009]. Those two advantages
make the pure use of the pupil ellipse highly interesting for research
and industry. Since the unique calibration is also possible for the
mass market and a reliable procedure can be used in remote as well
as head mounted eye tracking even global corporations do research
in this area.

This work deals with the determination of the eyeball parameters
and the optical axis based on the pupil ellipse. Therefore, we wrote
a simple pupil ellipse generator which ignores cornea refraction
and used it for training data generation. Different neural network
architectures are evaluated. In the evaluation window-based ap-
proaches, which process several pupil ellipses, as well as accuracy
using a single ellipse are considered. This work can be seen as
a kind of guideline for the selection of a neural network for the
online determination of the optical axis using pupil ellipses. The
trained models were also applied to real data from public data sets.
The results on these more than 900.000 images together with a
generator for pupil ellipses as well as eyeball parameters are made
available to the public.

The summed contribution of this work are:

1 A generator for pupil ellipses based on a sphere (our eye ball
approximation) and optical axis.

2 Evaluation of different neural network models for online
application to determine the eyeball and the optical axis.

3 Evaluations for single pupil ellipses as well as window based
approaches in which several pupil ellipses are processed in
parallel.

4 Application to real data from public data sets.
5 Provision of the optical axis as well as the eyeball parameters

for more than 900.000 images from public data sets.

2 RELATEDWORK
In video based eye tracking there are a variety of approaches for
gaze estimation. There exist mainly three categories. The first and
still most commonly used technique for head mounted eye trackers
is regression. This involves determining a function that projects the
center of the pupil or other eye features onto the scene. Different
methods have been used like least squares fitting of polynomi-
als [Wang et al. 2005], Gaussian processes [Sesma-Sanchez et al.
2016] and also machine learning methods like support vector ma-
chine [Zhu et al. 2006] and neural networks [Jian-nan et al. 2009].

The second main category are the appearance based approaches.
Here machine learning approaches are used to learn a direct map-
ping between eye images and scene. Since these approaches require
a large amount of training data, a generator together with a Near-
est Neighbor Regression has already been presented [Wood et al.
2016]. Also combinatorial methods were presented, which extract
features in a first step and then determine the eye position with
decision trees [Wang et al. 2016] or support vector machines [Xu
et al. 2015]. More modern methods use convolutional neural net-
works which are able to learn the feature extraction as well as the
mapping function [Fischer et al. 2018; Krafka et al. 2016; Zhang
et al. 2015, 2017]. Since most approaches rely on pre-processing
steps such as face and eye detection [Krafka et al. 2016; Zhang et al.
2015], a new data set as well as a model based on long short term
memory cells has already been presented [Kellnhofer et al. 2019].
The main disadvantage of appearance based approaches are the
high computing costs and the associated energy consumption.

The third category of gaze estimation approaches are model
based. Here it is about estimating the eye ball and the optical
axis [Hansen and Ji 2009]. Many approaches use near infrared or
other light sources, which are projected onto the eye and produce
reflections (glints) [Chen et al. 2008; Guestrin and Eizenman 2006;
Hennessey et al. 2006; Shih and Liu 2004]. The pattern of the light
sources is known in advance and the displacement of them on the
eye ball is used for the parameter approximation. Together with the
pupil center, the optical axis can be calculated. Afterwards, only
a transformation of this vector is necessary to get the gaze vector
(see Figure 1). An alternative to using glints uses the pupil ellipse
and other eye features to compute the eye ball [Chen and Ji 2008;
Hansen and Ji 2009]. Approaches based purely on the ellipses of
the pupil [Li et al. 2018; Swirski and Dodgson 2013] or the iris [Li
and Li 2016] are generally better suited, since, for example, the cor-
ners of the eye may not always be present in the image. However,
approaches based on the ellipses have other disadvantages which
result from incorrect extraction of the ellipses. Iterative methods
with different cost functions were presented to compensate for this.
An extension of the model-based approach is the consideration of
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the refraction on the cornea. In [Lai et al. 2014] two cameras were
used to fit a model by the ellipses considering the refraction. In the
case of glint based systems algorithms have already been presented
for remote [Barsingerhorn et al. 2017; Villanueva et al. 2008] and
head mounted [Dierkes et al. 2018] eye trackers. However, they are
still based on iterative optimization. In [Dierkes et al. 2019] a direct
method was introduced which works with only one camera.

Our work belongs to the model-based approaches, as we apply
different machine learning algorithms to the pupil ellipses to cal-
culate the eye model parameters. All methods used are applied
directly to a single pupil ellipse or to several pupil ellipses in a time
window and are therefore not iterative.

3 METHOD
The general approach of our method, can be seen in Figure 1. We
use the parameters of the ellipse (green) to determine the eye ball
radius (red), the eye ball center (dark blue), and the optical vec-
tor (turquoise). Since our method consists ellipse generation and
the evaluation of different machine learning methods, this section
was divided into two sub-sections. The first sub-section describes
the generator and the second sub-section describes the training
parameters used for the different machine learning methods.

3.1 Generator
Our generator works on the simple principle of an intersection
between a cone (Pupil) and a sphere (Eye ball) with the sphere at
the origin. This means we ignore the refraction and the cornea
in our model. A grid is laid over the entire model and for each
point in this grid it is checked whether it lies in the intersection
surface or not. All points at the edge of the intersection surface
(at least one neighbour which is not in the surface) are selected
and a least squares ellipse fit is calculated. Afterwards, all points
are shifted in relation to the sphere coordinates (away from the
origin). This simple calculation method allows to calculate 5.000
ellipses on a single i5 CPU core per second in Matlab. In order to
calculate different ellipses, iteration is performed over given ranges
of values for the parameters sphere coordinates (X Y Z), aperture
angle (pupil opening angle) and the two angles used to calculate
the optical vector.

3.2 Machine Learning Algorithms and Training
For a simple reproduce ability we did not use any data preprocessing
like mean subtraction and division by the standard deviation. The
only change made to the input ellipse (Center cx , center cy , rotation
phi , Axis a, and axisb) is that cx and cy are percentages of the image
resolution in the respective direction and the axis a and axis b are
divided by the pupil area.

In the following the parameters of all used machine learning
algorithms are given to ensure reproduce ability. The training pa-
rameters for all neuronal network models using the Levenberg
Marquart backpropagation [Hagan and Menhaj 1994] are maxi-
mum number of epochs 10.00, minimum of gradient 10−7, initial
scalarmu = 0.001, scalar reduction factor 0.1, scalar increase factor
10, and maximum scalar of 1010. For the useage of Baysian Regular-
ization [Foresee and Hagan 1997] only the initial scalar is changed

tomu = 0.005 since it also uses the Leveberg Marquart Backpropa-
gation internally. For the decision tree ensembles we changed only
the number of tree depth 1, 5, and 10. As split criterion we used
Gini’s diversity index with a minimum observations per leaf of 5
and a minimum observations per parent of 10. For the creation of
the ensemble we used bagging and least squares gradient boosting
separately. For the support vector machine we used two different
kernels, the linear and Gaussian. As parameters for training us-
ing the Gaussian kernel we set the box constraint (C) to one and
Lambda (λ) to 1/(Cn) where n is the number of training samples.

4 EVALUATION

Table 1: Naming convention for the evaluation.

Name Parameters
NN10LM 10 Neurons, Levenberg Marguart for training
NN20LM 20 Neurons, Levenberg Marguart for training
NN30LM 30 Neurons, Levenberg Marguart for training
NN40LM 40 Neurons, Levenberg Marguart for training
NN50LM 50 Neurons, Levenberg Marguart for training
NN10BR 10 Neurons, Baysian Regularization for training
NN20BR 20 Neurons, Baysian Regularization for training
NN30BR 30 Neurons, Baysian Regularization for training
NN40BR 40 Neurons, Baysian Regularization for training
NN50BR 50 Neurons, Baysian Regularization for training
T1LS Decision tree, Least Squares gradient boosting
T5LS 5 decision trees, Least Squares gradient boosting
T10LS 10 decision trees, Least Squares gradient boosting
T1Bag Decision tree, Bagging
T5Bag 5 decision trees, Bagging
T10Bag 10 decision trees, Bagging
SVMLIN Support vector machine with Linear kernel
SVMGAU Support vector machine with Gaussian kernel

Since our data for the evaluation as well as for the training comes
from our simulator, we have decided on a 10% to 90% split. Here
10% is for the training and 90% for the evaluation. The training
data was sampled uniformly over the entire data set which contains
9.000.000 samples. So every tenth sample was added to the training
data. For the neural networks, we divided the 10% training data ad-
ditionally into 5% training and 5% validation, whereby this division
was carried out uniformly again. For the decision trees, the Support
Vector Machines and the Gaussian Process Regression, the further
division is not necessary. Table 1 describes all naming conventions
for the evaluated algorithms. In the following, the evaluations are
now discussed in terms of accuracy as well as runtime.

Table 2(T1), Table 2(T2), and Table 2(T3), show the errors made
in 3D position, eyeball radius, and optical vector estimation. As
can be seen, the neural networks outperform all other methods for
a window size of 20 ellipses. In addition, the Baysian Regulariza-
tion nearly always gives better results compared to the Levenberg
Marquart backpropagation. The decision trees with least squares
gradient boosting can be seen as the second best method. Up to
a window size of 5 they even outperform the neural networks. If
we also look at the runtimes in Table 2(T4), we can clearly see that
the neural networks are much more efficient to compute than all
other methods except the linear SVM. Since all runtimes refer to
1.000 input data and are specified in milliseconds, all methods can
be considered real-time capable.
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Table 2: Mean absolute error in pixel of the 3D eye ball position computed using the euclidean distance, mean absolute error
in pixel of the eye ball radius, mean absolute error in degree between the 3D optical vector and the ground truth, and average
runtime on one CPU core for 1.000 examples inmilliseconds.W is the data window size (Amount of input ellipses). Bold values
are the best result per widow size and sub table.

T1:3D eye ball position (px) T2:Eye ball radius (px) T3:Mean optical vector error (◦) T4:Runtime for 1.000 ex. (ms)
Method W1 W5 W10 W20 W1 W5 W10 W20 W1 W5 W10 W20 W1 W5 W10 W20
NN10LM 10.84 8.72 6.44 5.69 10.84 8.72 6.44 5.69 13.11 10.56 4.18 3.40 5.00 2.56 1.03 1.18
NN20LM 8.80 5.69 4.62 3.10 8.80 5.69 4.62 3.10 12.76 6.70 2.81 2.24 5.00 2.35 0.73 0.60
NN30LM 7.78 4.52 3.18 2.35 7.78 4.52 3.18 2.35 12.57 6.00 2.58 1.82 5.00 2.26 0.50 0.47
NN40LM 7.57 4.09 2.25 1.99 7.57 4.09 2.25 1.99 12.47 5.90 2.03 1.53 5.00 2.16 0.45 0.38
NN50LM 7.30 3.84 1.62 1.39 7.30 3.84 1.62 1.39 12.33 5.62 1.46 1.21 5.00 2.16 0.39 0.36
NN10BR 10.73 7.75 7.19 5.65 10.73 7.75 7.19 5.65 13.11 12.51 4.02 3.46 5.00 2.48 1.15 1.40
NN20BR 8.81 5.77 3.41 3.37 8.81 5.77 3.41 3.37 12.73 7.32 3.19 2.40 5.00 2.27 0.55 0.62
NN30BR 7.89 4.19 3.28 2.06 7.89 4.19 3.28 2.06 12.52 5.93 2.53 1.70 5.00 2.17 0.48 0.33
NN40BR 7.41 3.44 2.22 1.69 7.41 3.44 2.22 1.69 12.49 5.28 1.93 1.32 5.00 2.16 0.33 0.37
NN50BR 7.20 3.10 1.97 1.32 7.20 3.10 1.97 1.32 12.33 4.84 1.73 1.02 5.00 2.14 0.34 0.32
T1LS 15.31 5.19 5.29 5.80 15.31 5.19 5.29 5.80 12.41 5.32 5.24 5.60 5.00 1.24 1.25 1.34
T5LS 8.17 3.63 2.89 3.37 8.17 3.63 2.89 3.37 11.37 3.90 2.81 3.16 5.00 0.68 0.69 0.74
T10LS 7.47 3.03 2.32 2.07 7.47 3.03 2.32 2.07 10.72 3.05 2.48 2.12 4.99 0.61 0.59 0.63
T1Bag 18.82 20.11 22.80 18.91 18.82 20.11 22.80 18.91 13.45 20.11 22.81 18.89 5.00 2.26 2.08 3.13
T5Bag 17.71 10.89 11.21 7.94 17.71 10.89 11.21 7.94 13.15 11.06 11.00 7.92 5.00 1.52 1.48 2.15
T10Bag 16.38 7.72 7.64 5.67 16.38 7.72 7.64 5.67 12.92 7.36 7.74 5.64 5.00 1.35 1.38 1.59
SVMLIN 15.72 5.03 5.13 5.17 15.72 5.03 5.13 5.17 13.67 4.88 5.02 5.08 5.02 1.03 1.03 1.03
SVMGAU 9.33 7.06 10.97 18.47 9.33 7.06 10.97 18.47 12.40 7.34 11.45 19.64 5.03 0.89 1.08 1.49

4.1 Real Data

Figure 3: Exemplary results on real data of our best model.

For the evaluation on real data we used the semitic segmented
data of [Fuhl et al. 2019b] and [Fuhl et al. 2019a], because the pupil
ellipse can be extracted from the pupil segment. [Fuhl et al. 2019b]
has more than 800.000 segmented images from the same studies
[Kasneci et al. 2014] as used for the data sets in [Fuhl et al. 2015,
2017c, 2016a]. [Fuhl et al. 2019a] contains the segmentations for
more than 100.000 images from the known data set [Tonsen et al.
2016]. In total, our approach has been applied to more than one
million single images with each image having a size of 192 × 144.
Figure 3 shows some exemplary results of our best model NN50W20.
These results are made available to the public together with the
generator code for training.

5 CONCLUSION
In this work we presented a generator for the fast generation (5.000
samples per second in Matlab on a i5 single core) of training data
together with an evaluation of different machine learning methods.
Among the evaluated procedures are Support Vector Machines with
different kernel functions, decision trees, Boosted decision trees,
and different neural network models. Each of these methods was
evaluated with respect to accuracy and run-time. As an alternative
to single pupil ellipses as input, a window-based approach with

different sizes was evaluated. The best model was also applied to
real data from a public source. The results on the public data as
well as the code for the generator are made available to the public.

Future research in this area should explore the applicability of
machine learning approaches to determine parameters for more
complex models than a simple sphere as an eye ball. This would pro-
vide further improvements in the field of gaze vector determination
and allow to provide even more accurate data sets.

This data and the generator should make it easier to train and
evaluate own models in the future. It is freely accessible for both
science and industry and shall further advance the progress in the
field of eyeball parameter estimation as well as the calculation of
the optical axis. The results of this work will serve as reference
values and the models can be used as well. Link to the generator
and models.
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