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Abstract: Ground truth data is an important prerequisite for the development and evaluation of many algorithms in the
area of computer vision, especially when these are based on convolutional neural networks or other machine
learning approaches that unfold their power mostly by supervised learning. This learning relies on ground
truth data, which is laborious, tedious, and error prone for humans to generate. In this paper, we contribute
a labeling tool (EyeLad) specifically designed for remote eye-tracking data to enable researchers to leverage
machine learning based approaches in this field, which is of great interest for the automotive, medical, and
human-computer interaction applications. The tool is multi platform and supports a variety of state-of-the-
art detection and tracking algorithms, including eye detection, pupil detection, and eyelid coarse positioning.
Furthermore, the tool provides six types of point-wise tracking to automatically track the labeled points. The
software is openly and freely available at: www.ti.uni-tuebingen.de/perception

1 INTRODUCTION

Leveraging the power of machine learning methods
is particularly interesting in tasks where algorithmic
approaches are not able to cover the plurality of sce-
narios in which the algorithm is expected to perform.
One such scenario is eye tracking, in which a key
step is the correct detection of eye features such as
the pupil, eye corners, and eyelids. Whereas the al-
gorithmic detection rate of eye features is acceptable
in constrained scenarios, in unconstrained and realis-
tic ones they can be as low as 33% (Fuhl et al., 2016d;
Fuhl et al., 2016e). It is worth noticing that not only is
eye tracking challenging, but it also offers remarkable
opportunities for automotive, medical, and human-
computer interaction applications – e.g., driver activ-
ity recognition (Braunagel et al., 2015), medical dis-
order identification (Holzman et al., 1974), and us-
ability research (Jacob and Karn, 2003).

Similarly to other fields, unsupervised machine
learning has been employed in real eye tracking appli-
cations – e.g., automatic identification of eye move-
ments (Tafaj et al., 2012). However, most applica-
tions are based on supervised learning as these meth-
ods have been shown to reach state-of-the-art perfor-
mance in some tasks such as appearance-based gaze
estimation (Zhang et al., 2015; Wood et al., 2016),
pupil detection (Fuhl et al., 2016c), and blink detec-

tion (Appel et al., 2016). While powerful, these su-
pervised learning methods rely on statistical learning
and require a significant amount of annotated data to
learn. For example, Krizhevsky et al. (Krizhevsky
et al., 2012) had to employ about 1.3 million anno-
tated images to achieve a robust decision function.
Therefore, the capability of quickly annotating data is
a driving factor to leverage supervised machine learn-
ing methods. As such, to reach acceptable perfor-
mance in the detection of eye features across all use
cases, an outstanding amount of ground-truth is re-
quired.

To accomplish this task, in this work we intro-
duce a new open-source tool to annotate remote eye
tracking images such as the ones shown in Figure 1.
These images are relevant, for instance, in desk-
top settings (Jacob and Karn, 2003), interactive dis-
plays (Zhu and Ji, 2004), and automotive scenar-
ios (Braunagel et al., 2015). Our tool makes it pos-
sible to use prior knowledge of previous images and
also includes the state-of-the-art in detection algo-
rithms for automatic labeling. In the following sec-
tions, the tool’s Graphical User Interface, built-in al-
gorithms, and provided features for tracking are ex-
plained and visualized (when applicable). As a re-
sult, our tool provides a solid framework for quick
and semi-automated annotation of remote eye track-
ing data.

Link to data:
https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%
2FEyeLad%20LabelingTool&mode=list

www.ti.uni-tuebingen.de/perception


Figure 1: Example images from the data set provided by
(Fuhl et al., 2016a). Such images are typically acquired
from remote eye trackers – e.g., those built-in in car cock-
pits.

2 RELATED WORK

Annotation or labeling tools exist for different
kinds of tasks. A more distant annotation tool for In-
dian languages is DONLabel (Deivapalan et al., 2008)
which was developed due to the lack of available la-
beled data for this language. It is can handle log au-
dio recordings ≈ 60 seconds, can display text in dif-
ferent Indian languages, is usable through the web
browser and there is no special knowledge needed to
use it. The provided features are parametrized au-
tomatic segmentation and labeling, allows segment
boundaries to be edited, removed or added, can play
segments separately and zooming into segments.
An annotation tool for objects in images is SmartLa-
bel (Wu and Yang, 2006). It is a semi automatic la-
beling tool where the user has to specify only a small
region inside the object. SmartLabel (Wu and Yang,
2006) then tries to segment the complete object and
in addition similar objects in the image. For the ob-
ject completion SmartLabel uses Gaussian Random
Fields (Gudder, 1978) with iterated harmonic energy
minimization.
Another tool for object annotation is LabelMe (Rus-
sell et al., 2008), which was developed at the MIT. It
is a web based tool allowing the user to define object
outlines in images. In the background the annotated
data is stored in a database. The objects are addition-
ally described or named in words, which are enhanced
by using WordNet (Miller, 1995).
A labeling tool for 2D sketches was developed by
Worin et al. (Wolin et al., 2007). The authors focused
on an efficient fragmentation interface combining au-
tomatic and manual techniques, pen based selection
and labeling and visual feedback to the user.
Image Region Labeling Software (Goswami et al.,
2016) is a MATLAB toolbox and allows the user to
set polygonic regions with labels. Each region is set
up based on vertices which can be changed, deleted
or moved.
The Video Performance Evaluation Resource Ground
Truth authoring tool (ViPER-GT) (Doermann and Mi-
halcik, 2000), written in Java, is developed for label-
ing regions in any kind of video. It allows to create de-
scriptors for regions and enhance them with attributes.
In addition it offers a time line and also zooming and
panning.

Eye Picker (Bolme, 2016) is a Python GUI tool for
setting and modifying landmarks on images. It is ca-
pable of handling complete folders with images and
stores the labels as comma separated CSV file.
Recently developed annotation tools are Mindtag-
ger (Shin et al., 2015) for labeling knowledge base,
pUltra (Mavridou et al., 2016) for fluorescent annota-
tion of Enterobacteria, and AVclass (Sebastián et al.,
2016), which is used for malware labeling.
Some of the above mentioned annotation tools are not
related to image processing but serve the same pur-
pose, supporting annotators in their work which al-
lows the validation of algorithms and the usage of
machine learning techniques. Based on our knowl-
edge there exist no tool specifically made for remote
eye tracking data annotation, which is the motivation
behind this work.

3 LABELING TOOL

In this section, the developed labeling tool for re-
mote eye tracking data is described in detail. First the
GUI will be shown, and its elements described. After-
wards all built-in algorithms for object detection and
tracking are described. The last subsection describes
planed improvements for the future.

3.1 GUI

Figure 2 shows the GUI of the proposed labeling tool.
The global settings are selected in the top left red box
(Figure 2A). These settings allow to choose tracking
features, e.g., the intensity of the surrounding region,
the gradient of this image region, or the binary re-
sult of the Canny edge detector (Canny, 1986). For
the Canny edge detector, we used the implementation
provided by Fuhl et al. (Fuhl et al., 2015) due to the
automatic low-high threshold selection and the Gaus-
sian derivative for gradient calculation. In that section
of the GUI, one can also select the current video under
annotation, choose between tracking all points from
the previous frame or switching to the next frame and
tracking everything. The selection box on the bot-
tom right of this section shows the total video frame
count, current frame, and allows navigating through
the video.

The main visualization area (Figure 2E) shows the
current frame from the video. This region is used
for eye annotation. In the green box on the bottom
left (Figure 2B), eye annotation controls buttons are
shown. These controls allow to automatically detect
the eyes, track the eyes from the previous frame or re-
move/add eye annotations. It is worth noticing that,



Figure 2: The graphical user interface of our labeling tool (E). The red box on the left (A) shows the general adjustment
settings and the frame counter with position. The right red box (C) shows the labeled eyes, where the circles are movable by
mouse. The green box (B) shows the main window buttons and the blue box (D) the buttons needed for eye feature labeling.
The slider above the main window is for normalization and the slider on the right side for zooming in the same.

in its current state, the tool assumes only one person
is visible in the frame; future iterations of the tool are
planned to include cases where multiple subjects are
present.

The slider above the current frame visualization
allows the user to adjust the normalization of that im-
age, increasing the contrast. Similarly, sliders can be
found above the left and right eye boxes to adjust the
contrast in the eye box images (see the top of Fig-
ure 2D). The first normalization step is given by

I(x,y) =

{
I(x,y)< HP(I) I(x,y)
otherwise HP(I)

, (1)

where I(x,y) is the intensity value of the image at
pixel x,y and HP(I) is the relative threshold based on
the intensity histogram of the image. P is the value
specified by the slider in the range [0,1], and specifies
the percentage of intensity values used to select the
threshold. Afterwards, the remaining intensity values
are stretched over the range [0,255], i.e.,

I(x,y) =
255∗ (I(x,y)−min(I))

max(I)−min(I)
. (2)

Examples of this normalization are shown in Figure 3.
As can be seen in the first row, the normalization al-
lows the user to more easily and accurately identify
the pupil border points and the eyelid points. Further-
more the second row is an example where the illu-
mination of the eye was insufficient due to the head
rotation. Additionally, the reflection (small white dot
and glass frame) forces the imaging sensor to com-
press the eye intensity values, leading to a large gap in

Figure 3: Normalized images using equation 1 and equa-
tion 2. Each row shows the original input image (first col-
umn) and normalized images (second and third columns).

the intensity histogram. As a result, the image is per-
ceived as mostly dark by the annotator. The second
image in this row shows the same image normalized
(P = 0.75), allowing the annotator to clearly see the
eye features.

The slider on the right side of the current frame
visualization allows the user to adjust the zoom within
the range [25%,500%]. This feature is also present in
the eye boxes (see right side of Figure 2D).

In Figure 2, the red box on the bottom right high-
lights the eye boxes (Figure 2C). These boxes are de-
fined by two points marked by red circles, which can
be dragged and dropped with the mouse; during this
process, the region of interested is automatically up-
dated.

The blue box on the top right (Figure 2D) shows
a detailed view for the controls and visualization of
the right eye feature annotation area. Here the pupil,
eyelid and eye corner points can be tracked using in-
formation from the previous frame based on the fea-
tures set in the global settings (Figure 2A). For pupil



detection we integrated ElSe (Fuhl et al., 2016d) with
the modifications from (Fuhl et al., 2016a), enabling
it to be used for remote eye tracking images. For au-
tomatic eyelid detection we modified the method pro-
posed in (Fuhl et al., 2016b) to return equally distant
points from the Bézier spline. The eye corner detec-
tion uses the method (Fuhl et al., 2016b) to identify
eyelids and selects the two points with maximum dis-
tance as eye corners. The red circles in the blue eye
box (Figure 2D) are the pupil outline points, the green
circles are the upper eyelid points, the dark blue cir-
cles are the lower eyelid points, and the cyan points
are the eye corners. These can be toggled using the
Add/Remove buttons.

The saving and loading of labeling points is done
in the background as to not interrupt the user. For
each change, everything is saved and, if a video is
loaded, an equally named txt file is searched and
opened (or created if it is does not exist). If the file
has not the correct data format a backup is created.
The data format used by our tool is CSV, where we
use semicolon as data separators.

3.2 Eye Detection

For eye detection, we integrated the Haar Cas-
cade (Viola and Jones, 2004) face and eye detection
from OpenCV (Bradski, 2000). In the first step, we
used the face detection selecting only the top result.
In the resulting face region, we use the eye detec-
tion from OpenCV (Bradski, 2000) and select only
the two top results. The resulting two squares are than
converted into our two point format and visualized as
shown in Figure 2C.

3.3 Pupil Detection

The integrated pupil detection algorithm is ElSe (Fuhl
et al., 2016d), which in its original form starts with
edge detection and filtering. Due to the low resolu-
tion from the eye region in remote images, this step is
likely to fail. In (Fuhl et al., 2016a), a modification us-
ing only the second step of ElSe was proposed (Fuhl
et al., 2016d) and evaluated on remote images, outper-
forming existing methods. Therefore, we integrated
this implementation, which is a surface difference cir-
cle weighted by a mean circle on the inverted inten-
sity. This, however, only yields a rough pupil cen-
ter estimation. We used this algorithm with different
circle sizes and selected the result with maximal re-
sponse. Afterwards, equally distant points on the re-
sulting circle are selected as pupil contour points.

Figure 4: The three kinds of features used for tracking. The
first image is the input image and represent raw intensity
values. The second image is the gradient magnitude, and
the last image is the result from the Canny edge detection.

3.4 Eyelid and Eye Corner Detection

For eyelid point selection, we integrated the method
described in (Fuhl et al., 2016b). The algorithm starts
by calculating a likelihood map based on horizontal
edge value, mean, standard deviation and skewness.
On this likelihood map, a Canny edge detector is ap-
plied. Afterwards pairs of edges are evaluated based
on enclosed intensity, obliquely to one another and the
shift of their mean position. The highest rated pair is
chosen as eyelids. This method was developed for fast
eyelid aperture estimation but also delivers an eye lid
outline based on two combined Bézier curves. In the
aperture estimation the two most distant points from
those two curves are searched, which we use as eye
corners. On the upper and lower curve, equally dis-
tant points are set as eye lid points.

3.5 Point Tracking

For tracking, we used the surrounding region of each
labeled point and searched in the new image the posi-
tion that minimizes the function

T (x,y, I,N) =

n
2

∑
i=− n

2

n
2

∑
j=− n

2

|I(i, j)−N(x+ i,y+ j)|,

(3)
where I is the image patch of the labeled image, and
N is the new image in which the position has to be
searched. x,y is the current candidate location and n
the patch window size. We integrated different track-
ing features, which means that I and N in Equation 3
can be intensity, gradient, or binary images. In fig-
ure 4, examples of all three features are shown on the
complete image. In our implementation the Canny is
calculated on the small inspected patches and not the
complete image due to the possible non existence of
edge pixels. The first image shows the input or raw
intensity values. In the second image in figure 4 the
gradient magnitude of the first Gaussian derivative is
shown. The last image shows the Canny edge detec-
tor (Canny, 1986) response.



3.6 Future Improvements

Due to the specialization of our tool to remote set-
tings, we intent to include further point sets for label-
ing. This includes nose, eyes, eye brows, face outline,
and iris, which are important for head pose estimation
and face recognition, making the labeling tool more
generic and applicable to other face related tasks. In
addition, due to the increasing interest in crowd track-
ing (Saxena et al., 2008; Eshel and Moses, 2008),
we plan to include capabilities annotation capabili-
ties when more than a single subject is present in the
image. This could be useful to develop algorithms
estimating the gaze of those subjects supporting the
research in this area.

Planned algorithmic improvements are the
integration of histogram of oriented gradients
(HOG) (Dalal and Triggs, 2005) for eye and face
detection and the convolutional neuronal networks
from openFace (Amos et al., 2016), which are based
on the Google FaceNet (Schroff et al., 2015). For
tracking, we plan to add the ORB features (combi-
nation of FAST Keypoint Orientation (Viswanathan,
2009), Rotation-Aware Brief (Calonder et al.,
2010)) (Rublee et al., 2011), Scale-invariant feature
transform (SIFT) (Lindeberg, 2012), Maximally
stable extremal regions (MSER) (Matas et al., 2004),
and Speeded Up Robust Features (SURF) (Bay et al.,
2008) due to their robustness, which could be useful
for extremely challenging images.

Additionally, we want to investigate the possibil-
ity to apply learning based tracking approaches as in
SmartLabel (Wu and Yang, 2006), where they used
Gaussian Random Fields (Gudder, 1978). In the re-
mote eye tracking case, it would also be possible
to apply convolutional neuronal networks on image
patches or training Random regression forests (Svet-
nik et al., 2003) on image features. Due to the possi-
bility of using our labeling tool on color images fur-
ther improvements include also the visualization of
points and the justifiability of their size.

4 CONCLUSIONS

We propose a labeling tool only dependent on
OpenCV and Qt, making it portable and cross-
platform. We included different features for track-
ing and state-of-the-art algorithms for automatic de-
tection. The user can easily adjust image contrast and
zoom layer, improving usability and accuracy of the
resulting labels. Each labeling point can be dragged
and dropped with the mouse for an intuitive interac-
tion. The tool was validated by labeling more than

35.000 images1. We hope it will serve the community
and are open for suggestions to further improve it.
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