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ABSTRACT
Modern eye tracking systems rely on fast and robust pupil detection,
and several algorithms have been proposed for eye tracking under
real world conditions. In this work, we propose a novel binary fea-
ture selection approach that is trained by computing conditional
distributions. These features are scalable and rotatable, allowing
for distinct image resolutions, and consist of simple intensity com-
parisons, making the approach robust to different illumination con-
ditions as well as rapid illumination changes. The proposed method
was evaluated on multiple publicly available data sets, considerably
outperforming state-of-the-art methods, and being real-time capa-
ble for very high frame rates. Moreover, our method is designed to
be able to sustain pupil center estimation even when typical edge-
detection-based approaches fail – e.g., when the pupil outline is not
visible due to occlusions from reflections or eye lids / lashes. As a
consequece, it does not attempt to provide an estimate for the pupil
outline. Nevertheless, the pupil center suffices for gaze estimation –
e.g., by regressing the relationship between pupil center and gaze
point during calibration.
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1 INTRODUCTION
Visual perception is the focus of many research areas like medicine,
psychology, advertisement, autonomous driving, or application
control. The main focus of these areas lies in the extraction and
understanding of human visual perception and attention. Various
manufacturers have provided such eye-tracking devices to mea-
sure and investigate the human viewing behavior in real-world
and dynamic tasks [Instruments 2015; Kassner et al. 2014; Lange
et al. 2006; Tobii 2015]. In general there are two main categories of
eye-tracking systems: 1) Remote systems, which consist of at least
one external camera recording the subject, and 2) head mounted
eye-trackers, which are worn by the subject and record the eyes
and field of view. For remote eye tracking, additional challenges
have to be solved like face and eye detection as well as the deter-
mination of the head orientation ([Jian and Lam 2015; Jian et al.
2013]). Due to the large recording area of the camera, the extracted
eye images have only low resolutions. Many approaches have been
proposed for pupil detection in such images, including image hallu-
cination [Jian et al. 2014], which is used to increase the resolution
and, therefore, the gaze estimation accuracy. In contrast, the mea-
surement of eye movements in head-mounted eye-trackers is based
on recordings from the eye of the subject directly. Therefore, the
camera is placed close to the eye, delivering high resolution images,
and the eye region does not have to be detected. Since the the eye-
tracker is head-worn, the camera recording the field of view moves
with the subjects head, which also eliminates the head orientation
determination.

In both systems, the gaze position of a person is typically deter-
mined based on the pupil center and a mapping function obtained
during calibration. While there are other approaches that deter-
mine the gaze location directly from the eye image [Tonsen et al.
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2017; Wood and Bulling 2014; Zhang et al. 2015], the pupil center
based approach is currently the most developed and widely used.
In order for this approach to be successful, the center of the pupil
has to be detected accurately under various challenging conditions
like reflections, changing illumination, make up, contact lenses, etc.
[Schnipke and Todd 2000] summarized already in the year 2000
many difficulties occurring during eye tracker usage. Nowadays,
in natural environments, many researchers report difficulties dur-
ing their studies (e.g., driving [Braunagel et al. 2015; Kasneci 2013;
Kasneci et al. 2015, 2014a; Liu et al. 2002; Trösterer et al. 2014],
museum visit [Santini et al. 2018a], shopping [Kasneci et al. 2014b;
Sippel et al. 2014], and walking around [Sugano and Bulling 2015])
regarding the gaze estimation quality caused by a erroneous pupil
detection. Therefore, the data in such studies has to be manually
corrected. Although this is a laborious and error-prone job, it is still
feasible for offline analyssis; in contrast, online applications can
not use such post processing approaches. Examples of online appli-
cations are driver assistance systems [Tafaj et al. 2013], gaze-based
interaction [Majaranta and Bulling 2014; Stellmach and Dachselt
2012; Turner et al. 2014] and virtual reality interaction [Duchowski
et al. 2002, 2001; Hillaire et al. 2008; Krapichler et al. 1998] (more
applications can be found in [Duchowski 2002]).

2 RELATEDWORK
A large body of algorithms for pupil detection has been proposed
in the last years. Most approaches are developed for usage under
laboratory conditions [Goni et al. 2004; Keil et al. 2010] where
thresholds are applied to images recorded under near infrared il-
lumination [Lin et al. 2010; Long et al. 2007; Peréz et al. 2003] to
extract the pupil. For center estimation the center of mass is used.
In [Zhu et al. 1999], another threshold based approach was used
with the difference that the pupil is detected based on the shape of
the extracted region. A similar approach is also used by the recently
published algorithm SET [Javadi et al. 2015], which first extracts
pupil pixels based on a luminance threshold. Afterwards, the shape
of the thresholded area is extracted and compared against a sine
curve. Another curvature based approach using isophotes was pro-
posed in [Valenti and Gevers 2012] where the center with maximal
isophote edge votes is used as pupil center. Similar to the isophotes
approch an iterative circle detection method using isopohte edge
pixel selection was proposed in [Marco et al. 2015]. The most fa-
mouse algorithm is Starburst [Li et al. 2005]. This algorithm sends
out rays in multiple directions and collects all positions where the
difference of consecutive pixels is higher than a threshold. The
mean position is then calculated, and this step is repeated until
convergence. Swirski et. al [Świrski et al. 2012] starts with a coarse
positioning using Haar-like features and then refines the pupil
center position. The intensity histogram of the coarse position is
clustered using k-means followed by a modified RANSAC ellipse fit.
In the open source software from Pupil Labs [Kassner et al. 2014],
there is also an purely image based pupil detection algorithm. The
algorithm also uses the Haar features from [Świrski et al. 2012] to
estimate a coarse position. Afterwards edges are computed, filtered
based on their surrounding intensity values, and collected as con-
nected components [Suzuki et al. 1985]. Ellipses are fitted to subsets
of component contours and rated based on their supporting edges

and ellipse circumference. ExCuSe [Fuhl et al. 2015], ElSe [Fuhl et al.
2016b] and PuRe [Santini et al. 2018b] are edge based approaches
that rely on edge filtering. The extracted edges are morphologically
filtered to break up incorrect connections and the best edge is se-
lected for ellipse fitting. ExCuSe [Fuhl et al. 2015] and ElSe [Fuhl
et al. 2016b] provide alternative approaches for cases when edge
detection is not applicable. PuRe in comparison is capable of se-
lecting multiple edges for the final fitting and edge selection. The
first convolutional-neural-network-based approach was proposed
in [Fuhl et al. 2016a] and uses one CNN for coarse positioning and
an additional one to refine the center estimate. Additionally, other
approaches differing from the aforementioned ones are appearance-
based methods, which directly compute the gaze location from the
eye image [Tonsen et al. 2017; Wood and Bulling 2014; Zhang et al.
2015].

3 METHOD
Our method is based on random ferns, similar to [Ozuysal et al.
2010; Villamizar et al. 2010]. A fern consists of multiple binary
decisions, which evaluate to one or zero. These results construct
an index that is used to access a probability distribution. Figure 1

Figure 1: Three binary decisions and the indexing schema.
The red bars represent the conditional distribution.

illustrates a fern, where B1, B2, and B3 are binary decisions. In
our implementation, they are simply larger- and smaller-than pixel
intensity comparison operations to make our features robust to
illumination changes. The distribution, illustrated in red, holds the
probability of an image position to be the pupil center under the
conditions B1, B2 and B3. These ferns represent weak classifiers,
which, combined, form a strong classifier. Therefore, the probability
of multiple ferns is multiplied. In our implementation, we summed
the results to avoid a multiplication with zero probability. Another
difference of our implementation is the usage of two conditional
distributions similar to [Villamizar et al. 2018]: One for the valid
and one for the invalid examples. The final result for an index is,
therefore, P (Posit ive |B)

P (Neдative |B)+ϵ , where ϵ is as small constant to avoid
division by zero. These two distributions allow us to use gradi-
ent decent, which is the last part in training our approach. In the
sequence, we will describe our circular binary feature selection
procedure, the training, and our detector.
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3.1 Features
In order to have a scalable and transformable set of binary features,
we construct them circularly around one position. This means that,
instead of selecting random image locations, we randomly select a)
an angle (Figure 2 a), and b) two random distances (Figure 2 d1 and
d2) along a vector along the selected angle. This feature construction
is motivated by the shape of the pupil itself, whereas the binary
comparisons are inspired by edge detection. Feature constructions is

Figure 2: The feature construction. a is the angle, d1 and d2
the distances, and CP the center point between these dis-
tances.

illustrated in Figure 2. This procedure allows to scale and transform
the features around the circle center for different image scales
or distortions. In order for the scaling to be applicable, we have
to evaluate each pixel position, where each pixel represents the
circle center. This scaling, for example, can be performed either per
distance or using the center between both distances (CP). We used
the per distance scaling in our implementation. Another benefit
from this scalable feature are the computational cost reduction by a
pyramid-like detection. In other words, we start with a downscaled
image and up scale in subsequent iterations.

3.2 Training
The main problem with training a conditional distribution is that
overrepresented samples have a strong influence. In eye tracking
data, this is a common issue because the eye remains at the same
position while the user perceives the gazed area – i.e., during a
fixation. To work around this problem, only a very small subset
of all possible training data was selected to train a fern (≈ 2000
images). This was done multiple times randomly. These training
images originate from different datasets with different resolutions.
Therefore, we selected the validation image size downscaled by a
factor of two as image size for all training images. The downscaling
was done to reduce computational costs.

Our training consisted of two main steps. The first step was the
fern feature selection and preliminary training. In the second step,
we combined these features into a strong classifier and refined the
distributions using gradient decent.

In the first step, we randomly selected a subset of training im-
ages from the entire training data set and randomly evaluated the
generated binary features on it. The ranking of these features was
done by counting the outcome for valid and invalid image posi-
tions. The final rank was computed as |(Truevalid +FalseInvalid )−

(Falsevalid +TrueInvalid )|. Here, Trueinvalid means that the bi-
nary decision evaluated to true, and the image position was invalid.
The absolute value was used so that a high score in (Truevalid +
FalseInvalid ) or (Falsevalid + TrueInvalid ) is judged as a good
feature as long as the opposite is low (instead swapping P1 and
P2). The best ten percent features are then used as feature pool. For
the ferns, we selected randomly N = 20 features. This is a mem-
ory consuming choice because each fern needs 4 ∗ 2 ∗ (2N ) ≈ 8, 4
mega bytes. We did this to reduce the necessary amount of ferns in
our final detector, which reduces the binary evaluation and, thus,
runtime. The training of the distribution was done by randomly
selecting one hundred invalid positions per image and forty nine
valid samples (7 × 7 region surrounding the hand-labeled center).
Each valid sample was weighted by their Euclidean distance to the
labeled center ( distance

maximaldistance ∗10). The factor ten is used to com-
pensate for the different amounts of samples between the invalid
and valid distributions. For the second step of our detector, we used
only the region surrounding the pupil (31 × 31) to collect invalid
examples. Afterwards, all ferns were evaluated on the validation
set, and the one with the best performance was selected. This was
done multiple times with different training sets. This procedure
generates a fern pool for the second step of our training.

The second step of our training consisted of selecting fern tuples
from the fern pool. For each fern tuple, we applied batch based
gradient decent. This means that we selected a batch of 100 images
from the two training sets of the two ferns and evaluated those. For
each failure, the positive distribution was increased with a specified
learning rate 0.01−0.0001 in the area surrounding the labeled center
(7 × 7) and decreased at the selected wrong position (7 × 7). For the
positive increase, we selected learning rates between 0.01 − 0.0001,
and, for the negative, this learning rate was doubled. A failure is if
the coarse step has an Euclidean distance larger than fifteen and
for the accuracy step if the Euclidean distance is larger than five.
After each batch, the detector was evaluated on the validation data
set. If the performance increased, the detector was saved, if not the
training continued. After five consecutive performance decreasing
batches the current distribution was dropped and the last one stored
loaded.

3.3 Detector
For our detector, we employed a two step approach: one for the
coarse positioning, and one for the accurate center estimation. The
coarse positioning detector is applied to each image position. The
maximum in the resulting probability map is afterwards used as
starting position for the accurate center estimation. The accurate
detector searches outgoing from this starting position in an (31) ×
(31) region. The resulting maximum is used as the pupil center.

4 LIMITATIONS
The training of ferns with a conditional distribution of size 220 is a
memory consuming process. Moreover, the evaluation of hundreds
of thousands of features and the gradient decent of multiple detec-
tors is also time consuming. Another issue with the scoring and
training is that statistics have an high impact on the learning and
selection. The same is true for the selection of the ferns based on
their performance on the validation data set. If this validation data
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only represents one challenge, the ferns will be selected accordingly.
In direct comparison with the edge selection and ellipse fitting, the
proposed method, similar to PupilNet, is generally less accurate
because of the pixel voting.

5 EVALUATION
Figure 3 shows the detection rates for the data sets ExCuSe [Fuhl
et al. 2015], ELSe [Fuhl et al. 2016b], PupilNet [Fuhl et al. 2016a]
and labeled pupils in the wild [Tonsen et al. 2016]. The results for
Pure and PupilNet where provided by their respective authors. As
can be seen, the proposed approach outperforms the state-of-the-
art algorithms. However, these results have to be taken with care.
As previously mentioned, we only used a tiny subset of the entire
training data to train our ferns, and the detectors consist only of two
ferns per stage (coarse and accuracy). These decisions where made
to have a method that is quick and resource-saving, but restrict
the generalization over the entire data. For a generalized detector,
more ferns have to be selected, and the validation, as well as the
training data, has to contain a large variety of distinct challenges.
Table 2 lists the runtime of all evaluated algorithms. For the other
approaches, we used the runtime provided in [Fuhl et al. 2016a;
Santini et al. 2018b]. As can be seen, the pyramid based approach
is capable of providing a runtime below one millisecond. Table 1
shows data sets, in which we see the main application area of our
approach. In particular, in cases when edge detection is not possible,
such as nearly closed eyes, blurred images, or bad image quality. In
the data set ExCuSe II, for examples, there are few examples with
low contrast and nearly closed eyes. ElSe and ExCuSe can only cope
with it because of their secondary approach. LPW 3 file 1 contains
reflections that blur the image causing the edge detection to fail.
In LPW 4 file 1, nearly closed eyes from an highly off axial angle
are shown. Together with LPW 5 file 3, which contains the pupil
mainly behind lenses borders, these shows how underrepresented
many challenges are. This is also the reason that our method could
not find good features for LPW 5 file 3.

6 RESULTS

(a) (b)

Figure 3: The detection result as average per data set (each
recording is weighted equally) for the labeled pupils in the
wild, ExCuSe, ElSe, and PupilNet data sets.

7 CONCLUSION
We proposed a binary feature selection approach and a training
procedure for random ferns. The main purpose of this paper is the

(a) ExCuSe II (b) LPW3 file1 (c) LPW4 file1 (d) LPW5 file3

Data ElSe ExCuSe PupilNet PuRe CBF
(a) 65 40 80 29 99
(b) 8 1 – 30 92
(c) 7 3 – 9 52
(d) 1 2 – 1 20

Table 1: Detection rate for some of the data sets where edge
detection is not applicable.

Downscaled by 2 (384 × 288) 2.4ms
Pyramid approach (384 × 288) 0.44ms
Downscaled by 2 (640 × 480) 6.8ms
Pyramid approach (640 × 480) 0.46ms
ExCuSe 2ms
ElSe 6.5ms
PuRe 5.5ms
PupilNet 7ms
Swirski 4ms

Table 2: The runtime on one CPU core of the proposed ap-
proach for the resolutions 640 × 480 (LPW) and 384 × 288 (Ex-
CuSe,ElSe,PNet) with precomputed indexes in comparison
to the competitor algorithms.

demonstration of the applicability of random ferns for real-time
pupil detection because the evaluated detectors are not general-
ized. The proposed approach outperforms the state-of-the-art but
is rather limited to scenarios where edge detection is not possible
due to its reduced accuracy. The low computational costs in combi-
nation with its robustness make it a valuable coarse positioning or
backup method for scenarios like driving against the sun light.

Future research will go into the simplification of the training
and a framework to combine detectors trained on different data
sets. This would allow to refine the detector later on and reduce
training time. The library for training and boosting as well as two
general detectors (trained on the LPW and validated on the Ex-
CuSe, ElSe and PupilNet data sets) can be downloaded at http:
//www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html. The differ-
ence between both is the fern size (15 for the first and 20 for the
second one). The runtime for both detectors is 0.5ms and they have
detection rates of 78.9% and 91% for all images (≤ 5 pixels). The
limitations for both detectors is the RAM consumption due to the
precomputed indexes and the conditional distribution size (3 GB
and 9.5 GB).
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