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Abstract

Eye movements are a powerful source of information as
well as the most intuitive form of interaction. Although eye-
tracking technology is still in its infancy, it offers the greatest
potential for novel communication solutions and applica-
tions. Whereas head-mounted eye-trackers are widely used
in research, several applications require most unintrusive
eye tracking, ideally realized by means of a single, low-cost
camera placed away from the subject. However, such re-
mote devices usually provide low resolution images and
pose several challenges to gaze position estimation. The
key challenge in such a scenario is the robust detection

of the pupil center in the recorded image. We evaluated
eight state-of-the-art algorithms for pupil detection on three
manually labeled data sets recorded in remote tracking sce-
narios. Among the evaluated algorithms, EISe [6] proved

to be the best performing approach on overall 3202 images
from remote eye tracking, which include changing illumi-
nation, occlusion, head movements, and off-axial camera
position. In addition, we contribute a new data set with 445
annotated images, recorded in a fixed setup with a low cost
camera capable of using natural and infrared light.

Author Keywords
Pupil detection, remote eye tracking, data set, algorithm
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Introduction

Video-based eye tracking is available as head-mounted and
remote technology. In remote eye tracking, one or more
cameras are mounted in the scene and aligned to the sub-
ject’'s head. The gaze can be estimated from the recorded
images after several processing steps based on a correct
extraction of the eye and, in particular, of the pupil center.
Most image-based pupil detection algorithms are developed
for head-mounted eye-tracking technology or remote tech-
nology, where the cameras zoom to the subject’s eyes [5,
6,9, 12, 14]. Many use cases, such as in the context of
driver observation (e.g., [3, 13]) or gaze-based assistance
systems (e.g., [11]), require accurate and non-intrusive sys-
tems. In such use cases, cameras are placed at some dis-
tance from the subject, mostly recording the upper body of
the subject.

Applying the above pupil detection algorithms to remote
tracking requires some prior steps to extract the eye region
from the recorded image. This could lead to impairments

in pupil detection due to inaccuracy in the eye region de-
tection. In addition, the characteristics of the extracted eye
regions are quite different compared to head-mounted se-
tups. Usually, they provide a lower resolution as well as a
reduced color depth. Besides the image quality, remote
systems also need to deal with inadequate camera per-
spectives or eyes not visible in the image due to extreme
head angles.

In this work, we evaluate the performance of pupil detec-
tion algorithms on image data from remote tracking. Eight
approaches from the state of the art in head-mounted and
remote eye-tracking video processing are evaluated on two

existing data sets, namely BiolD [10] and GI4E [17], and on
a new data set introduced with this work. By applying these
algorithms on automatically detected and manually labeled
eye regions, we investigate and discuss the influence of
inaccuracy related to eye region detection.

This evaluation, including algorithms and data, is available
for download at:
http://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html

Eye-image processing algorithms

In a recent publication, Fuhl et al. [7] evaluated state-of-the-
art algorithms for pupil detection in eye images from head-
mounted eye tracking. For our evaluation on low resolution
images, we employ the algorithms evaluated there, namely
Swirski et al. [14], Starburst [12], ExCuSe [5], SET [9], and
the best performing approach EISe [6]. In addition, we eval-
uate methods that were explicitly design to process image
data from remote tracking, such as the approach by George
and Routray [8], Droege and Paulus [4], and by Timm and
Barth [15]. For each of these algorithms, we choose the
best parameter setting based on the BiolD. In the following,
we will briefly describe each of the algorithms.

Swirski

Swirski et al. [14] estimate the pupil contour in three stages.
In the first stage, Haar-like features are applied to obtain the
pupil region in the input image, i.e., to reduce the search
space. The second stage consists of a segmentation of the
pupil region by using a k-means clustering of the histogram
followed by a Canny edge detection. Finally, RANSAC is
applied to estimate the pupil contour, for which the edge
gradient direction of the inliers are considered [14].

ExCuSe
ExCuSe [5] is based on edge detection and ellipse fitting,
combining two algorithms for pupil detection. Depending
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on the histogram analysis one of them will be applied. The
first algorithm estimates a coarse pupil center. A Canny
filter provides an edge image, which is then refined by mor-
phological operations and finally filtered by analyzing the
curvature of the edges. An ellipse approaching the pupil
contour is finally fit to the best edge. The second algorithm
detects a coarse pupil position by an angular integral pro-
jection function and refines this position iteratively until con-
vergence. On each iteration rays are spread out from the
last determined pupil center in every direction in the Canny
filtered input image. If a ray hits an edge, the cutting point
is used to fit an ellipse, refines thus the pupil center posi-
tion [5].

SET

SET operates based on the assumption that the pupil shape
is circular. Therefore, it processes a binary image by first
thresholding the image and, afterwards, employs segmenta-
tion to group related pixels. Segments containing less than
a certain number of pixels are left out. For each remaining
segment, the border pixels are calculated and used as in-
put for an ellipse fitting. The center of the ellipse which is
closest to a circle is taken to represent the pupil center [9].

ElSe

Similar to ExCuSe, EISe provides two algorithms to es-
timate the pupil center. The first algorithm uses a Canny
filtered image and morphological operations to detect pupil-
related edges. As ExCuSe, it selects the best edge by var-
ious heuristics like the shape and enclosing intensity. This
edge is used to perform an ellipse fitting, which yields the
pupil center and contour. In case the first algorithm is not
successful, an advanced blob detection is applied to find
the pupil center [6].

Starburst

Starburst is an iterative method to estimate the pupil con-
tour on an input image. It starts at any random start point in
the image and sends rays in all directions. If a ray exceeds
a minimal edge threshold, the related point in the image is
marked. In the second step, all marked points sending a
burst of rays back into the direction of the origin and also
marks the first point the ray exceed the edge threshold. All
the points marked in this way are used to find the best fit-
ting ellipse. There can be several marked points which are
not related to the pupil contour. Therefore, Starburst uses
RANSAC for ellipse fitting to remove outliers. The center
point of the fitted ellipse is used as the new start point for
the next iteration [12].

Droege and Paulus

In their approach, Droege and Paulus [4] consider the fact
that when the eye region is extracted from images recorded
by a remote camera, not only the image is of low resolu-
tion but may contain glints covering parts of the pupil or iris.
Therefore, the authors use the direction and length of the
pixel gradients as a stable feature. More specifically, the
pixel gradients are first filtered to remove irrelevant pixel
gradients or outliers. For estimating the pupil center the
intersection of all remaining gradient vectors is then calcu-
lated by applying an M-Estimator’ [4].

Timm and Barth

Similar to Droege and Paulus, Timm and Barth use the di-
rection of pixel gradients as a feature to determine the pupil
center [15]. The basic idea of this approach is that the di-
rection from the pupil center point to any pupil or iris con-
tour point should be the same as the gradient direction at
the pupil or iris contour (except for the sign). The pupil cen-

Our implementation of the algorithm from Droege and Paulus solves
the equation system using least square instead of a M-Estimator



ter is determined as following: for each pixel in the input im-
age, the algorithm runs over the whole gradient image and
accumulates the square product of the normalized displace-
ment vector of the pupil center candidate to the gradient
pixel and the normalized pixel gradient vector. To take into
account that the pupil is usually dark, Timm and Barth use
an additional factor that multiplies the accumulator by the
inverted intensity of the pupil center candidate. Finally, the
center candidate with the highest accumulator is taken as
the pupil center [15].

George and Routray

The approach by George and Routray [8] starts with a
coarse positioning by using the orientation anulus con-
volution filter from [1]. The filter initialization was slightly
modified to adjust the weights of vertical edge gradients
stronger. Furthermore, the authors employ a Schaar kernel
for calculating a gradient image, followed by an inverted cir-
cular mean filter to weight dark regions. All local maxima in
the result are then selected, and the relationship between
the response, standard deviation, and the mean value is
calculated. The local maximum is selected as coarse posi-
tion. Afterward, all gradients in the radius range are thresh-
olded based on their magnitude and angle to the coarse
position point vector. The collected gradients are median
filtered, and an RANSAC ellipse fit is applied. In our imple-
mentation of this algorithm, we apply a least squares ellipse
fit to all instances instead of RANSAC-based ellipse fitting
since it showed better results empirically.

Data sets
We evaluated the previously described algorithms on three
data sets, namely BiolD [10], GI4E [17], and our own dataset.

BiolD

The BiolD data set consists of 1521 grayscale images (384 x
286 pixel) showing faces of 23 subjects recorded at different
office environments with varying illumination. Challenges
associated with this dataset are different camera distances
to the subjects, blink and small head movements. Figure

1 shows example images out of the BiolD data set. The
data set was collected for evaluation of face detection al-
gorithms. Hence, BiolD provides only information about

the eye centers, but there are several further labels (pupil
center and various facial landmarks, such as eye corner or
nose tip) available for this data set provided by the FGnet
project.

Figure 1: Example images from the BiolD data set.

GI4E

The GI4E data set provides 1236 RGB images (800 x 600
pixel) of 103 subjects recorded by a standard webcam.
Each image shows a frontal face view. For each subject,

12 sequential frames in which the subject gazes at different
points on a screen are provided. Some of the subjects wear
glasses. Figure 2 shows four example images randomly
taken from the data set. For each image, the eye corners,
and the iris center is labeled [17].

Figure 2: Example images from the GI4E data set.



New data set

With this work, we provide a new data set consisting of 445
manually-labeled images of two subjects. This data was
recorded in an office environment by means of a FOSCAM
FL9826P surveillance camera and contains distinct head
and eye movements as well as blinks and reflections. The
data set includes infrared and grayscale converted RGB
images of 1280 x 960 pixel resolution. For each frame,
we labeled the iris and pupil contour and the bounding box
around each eyes. Figure 3 shows some example images
from this data set.

e el
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Figure 3: Example images from our new data set. The left two
images are grayscale converted RGB images. The remaining
ones were infrared recorded.

Evaluation procedure

Detecting eye regions in remote data is a non-trivial task
and usually produces eye regions with varying shape, size,
and position. In contrast, labeled eye regions are usually
aligned to the eye corners or other landmarks like eyebrows
by definition of the labeling procedure. To examine the in-
fluence of these differences, our evaluation is conducted for
two scenarios: in the first case, labeled eye regions were
extracted and used as input to a pupil detection algorithm;
in the second scenario the pre trained openCV [2] Haar
Cascade [18] combined with a KLT-feature tracking [16] is
applied for eye region extraction. We removed all misclas-
sified eye regions for a fair comparison of algorithms. Eye
regions in remote data are usually of low resolution com-
pared to head-mounted setups. Since the above algorithms
Starburst, Swirsky, EISe, ExCuSe, and SET were designed
for high resolution eye images, we scaled up the extracted

[ BolD | GIE I New \

Man. HC Man. HC Man. HC
labeled detected || labeled detected || labeled detected

Minimum| 20x40 12x18 ||20.5x20.9 26x39 22x30 35.1x49.7
Maximum| 20x40 35x52 |(|26.7x44.9 42x62 47x99  79x118

Mean| 20x40 21.2x31.8|| 22x31.2 30.1x45.2(|24.5x60.8 49.8x74.5
Median| 20x40 21x32 ||21.5x30.7 30x45 22x61 49x74

Table 1: The eye region resolutions in pixel for all data sets
including the detected eye boxes.

eye regions from remote images using a nearest neighbor
interpolation. For each algorithm, we explored the best pa-
rameter setting based on the achieved performance on the
BiolD dataset. This setting was then used for further evalu-
ation.

We report the detection rate relative to an error tolerance
given by the euclidean distance between ground truth and
detected pupil center. Additionally the normed error, divid-
ing the euclidean error by the diagonal length of the eye
region, is shown too.

In table 1 the minimum, maximum, mean and median val-
ues are shown. The minimum is the resolution of the min-
imal diagonal. Maximum and median resolutions are also
calculated based on the diagonal.

Results

We evaluated the algorithms both on the detected eye re-
gions by means of a Haar-Cascade and on annotated eye
regions. As shown in Figure 4, the Haar Cascade achieved
2774 successful detections on the Biold data set, 2437 on
the GI4E and 534 on our new one. In contrast do the data
sets BiolD and GI4E, our data contains a large number of
head rotations and occluded eyes, which reduces the num-
ber of successfully detected eye region considerably.
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Figure 5: The left sided six plots (title absolute error) show the euclidean distance in pixels whereas the right sided six plots (title relative error)
show it normed with the eye box diagonal. In the top box the membership of the color to the algorithm is defined. The first and third column
show the results for the labeled eye boxes and the secound and fourth column the results for the detected eye boxes. Each data set is show
seperately as indicated on the left.
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Figure 4: Proportion of correct detected eye regions by means of
Haar Cascades.

Figure 5 shows the results of the evaluation. The plots on
the left side provide the detection rate depending on the
euclidean distance between the predicted pupil center and
ground truth. The plots on the right side of the image are
based on a relative error measure, i.e., the euclidean dis-
tance is normalized by the maximum error (diagonal length
of the eye region). Thus, effects that arise due to different
sizes of the processed eye regions are compensated. Note
that each row of plots in Figure 5 corresponds to the results
on one data set.

Our results show that algorithms designed for processing
remote images do not achieve better results than algo-
rithms designed for head-mounted tracking. Among the
evaluated approaches, the algorithm EISe [6] and the ap-
proach by Timm and Barth [15] show a stable detection rate
on all data sets, which suggests that these algorithms are
robust against various sources of noise, such as illumina-
tion or off-axial camera position.

Table 2 provides the detection rate of the evaluated algo-
rithms at a relative error of 20%. The best performing al-

gorithms on the BiolD data set are EISe and Starburst. In
terms of the relative error, EISe achieves detection rates

of 90.7% at a relative error of 20%. Similar results are

o)

(a) Pupil (b) Off-axial (c) Pupil indis-  (d) Bright pupil
covered by camera tinguishable effect
reflection perspective from iris

Figure 6: Challenges posed by our new data set.

achieved on the GI4E data set, where EISe has very high
detection rates (close to 100%) on the manually labeled
bounding boxes. Lower detection rates are achieved by all
algorithms on our own data set. On the manually labeled
bounding boxes, EISe and the algorithm by Timm and Barth
show very high detection rates of above 90%. Lower de-
tection rates are achieved when the eye regions were de-
tected by the Haar-Cascade. At a relative error of 20%, the
algorith by Timm and Barth, EISe, and Swirski reach sim-
ilar detection rates of approximately 80%. This data set is
especially challenging due off-axial eye images caused by
head movements as well as reflections on the pupil and
other effects caused by the infrared lighting as shown in
Figure 6.

Although specifically designed to process images in the
context of remote eye tracking, the algorithms by George
and Routray [8] and Droege and Paulus [4] show lower de-
tection rates than the best performing algorithms. Similar
performance is also achieved by the algorithms for head-
mounted eye tracking ExCuSe [5] and SET [9]. Especially
in the case of Starburst, we observe an algorithmic per-
formance that is highly dependent on the size of the pro-
cessed eye region (manually labeled vs. detected by a Haar
Cascade). For Starburst we selected the center of the im-
age as start point. This position is improved in each iter-



[ BoD |[  GME ][ New |

Man. HC Man. HC Man. HC
labeled detected||labeled detected||labeled detected

George|| 0.772 0.884 || 0.794 0.760 || 0.479 0.703
Droege|| 0.096 0.739 || 0.304 0.283 || 0.066 0.316
Timm|| 0.696 0.823 || 0.806 0.867 || 0.891 0.838
SET|| 0.599 0.638 || 0.189 0.395 | 0.288 0.323
Starburst|| 0.273 0.915 || 0.904 0.835 || 0.066 0.802
Swirski|| 0.759 0.799 || 0.729 0.815 || 0.605 0.814
ElSe|| 0.907 0.939 || 0.983 0.898 || 0.927 0.933
ExCuSe|| 0.011 0.796 || 0.484 0.311 || 0.037 0.065

Table 2: Detection rate of all evaluated algorithms with a relative
error tolerance of 20%

ation by selecting surrounding edges and model fitting. In
general this works well in case the start point is inside the
eye. The larger the eye region is, the more likely it is that
Starburst selects an inadequate start point and converges
to a local minima that is unlikely to contain the pupil. Figure
7 exemplarily shows how starburst fails in a large eye region
(a) and succeeds (b) in a smaller eye region.

Figure 7: The blue
line indicates the star
point and the
following estimated
pupil center by the
algorithm Starburst.

a) Large eye b) Small eye .
() Large ey (b) Small ey The black lines
region with region with - .
. indicate ray reflecting
inadequate start adequate start

) . edges.
point point

Most algorithms designed for head-mounted setups, pur-
suing different approaches for detecting pupil edges. Eye
images extracted from a remote camera usually have a

poor image quality compared to head-mounted setups as
shown on Figure 6 which makes edge detection difficulty.
EISe shows the best results but on closer examination we
found that only the second algorithm (blob detection) were
successful. The evaluated algorithms designed for remote
data uses pixel gradients instead of edges as more stable
feature in bad image quality than edges.

Conclusion

Remote eye tracking deals with the challenge of pupil de-
tection in low-resolution images and off-axial camera per-
spectives. Only few pupil detection algorithms address
these points. In this work we evaluated eight state-of-the-art
algorithms regarding their capability to find the pupil cen-
ter on remote data. Our evaluation reveals that algorithms
designed for head-mounted setups, especially EISe [6] can
not only be applied to pupil detection in remote data but
even outperform them. In addition, we introduced a new an-
notated data set for pupil detection on remote data. This
data set provides 445 images with distinct head move-
ments, blinks, and varying illumination collected by a low-
cost surveillance camera using RGB and infrared. In our
future work, we will consider the pupil shape in the error
measure, since in many use-case, a valid pupil shape could
be helpful for 3D reconstruction.

All newly implementations of algorithms and the datasets
are available at:
http://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html
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